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Abstract

This project attempts to study the cerebral atrophy patterns in gray matter across the
different stages of the Alzheimer’s Disease (AD), or more specifically, along the entire AD
continuum, in a voxelwise approach. To this end, we propose and implement an extensible
toolbox that allows to fit different models to the data, hence defining a curve for each voxel
that shows the evolution of the gray matter volume in the respective region as compared
to the progression of the disease. The toolbox also includes several evaluation methods
to estimate how closely the proposed model fits the data for each particular voxel. The
resulting values, namely fitting-scores, serve as a base to achieve two different goals: a)
to identify the regions within the brain that are (most) likely to follow the curve-shape
specified in a given model, and b) to depict the model that best describes the behavior of
the gray matter volume in each voxel from a fixed set of models.

Este proyecto trata de estudiar los patrones de atrofia cerebral de materia gris en las difer-
entes etapas de la enfermedad de Alzheimer (AD), y más concretamente, a lo largo del
cont́ınuo del alzhéimer, llevando a cabo un análisis a nivel de vóxel. Con este objetivo,
proponemos e implementamos un paquete de herramientas extensible que permite ajustar
diferentes modelos a los datos, definiendo aśı una curva para cada vóxel que muestra la
evolución del volumen de materia gris en la respectiva región con respecto al progreso de
la enfermedad. El paquete también incluye varios métodos de evaluación para estimar la
exactitud con la que el modelo propuesto encaja con los datos para cada vóxel particular.
Los valores resultantes, denominados fitting-scores (calificaciones de ajuste), sirven como
base para obtener dos objetivos diferentes: a) identificar las regiones del cerebro que (más)
probablemente siguen la forma de las curvas especificadas en un modelo dado, y b) se-
leccionar el modelo que mejor describe las pautas de la materia gris en cada voxel de un
conjunto prefijado de modelos.

Aquest projecte tracta d’estudiar els patrons d’atrofia cerebral de matèria grisa en les difer-
entes etapes de la malaltia d’Alzheimer (AD), i més concretament, al llarg del continu de
l’alzheimer, duent a terme una anàlisi a nivell de vòxel. Amb aquest objectiu, proposem i
implementem un paquet d’eines extensible que permet ajustar diferents models a les dades,
definint aix́ı una corba per a cada vòxel que mostra l’evolució del volum de matèria grisa
en la respectiva regió a mesura que la malaltia progressa. El paquet també inclou diversos
mètodes d’avaluació per tal d’estimar l’exactitud amb la qual el model proposat encaixa amb
les dades per a cada vòxel particular. Els valors resultants , anomenats fitting-scores (qual-
ificacions d’ajust), serveixen com a base per obtenir dos objectius diferents: a) identificar
les regions del cervell que (més) probablement segueixen la forma de les corbes especificades
en un model donat, i b) seleccionar el model que millor descriu les pautes de la matèria
grisa en cada vòxel d’un conjunt prefixat de models.
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Chapter 1

Context of the project

1.1 Introduction

This project is the result of the collaboration between the Image Processing Group (GPI)1

at the Technical University of Catalonia (UPC)2 and the Pasqual Maragall Foundation
(FPM)3. The main objective is to build a toolbox that helps researchers at the aforemen-
tioned foundation, and in the neuroimage community as a whole, to better understand how
the gray matter volume across the brain of a patient evolves as they develop Alzheimer’s
Disease, and hopefully contribute to discover more effective treatments for such disease
and/or its symptoms.

1.2 Alzheimer’s Disease

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that is characterized by
progressive neuropathology and cognitive decline. According to the Alzheimer’s Associa-
tion4, it currently affects more than 36 million people in the world, accounting for 60% to
80% of dementia cases. Patients suffering from such pathology experience various symp-
toms, among which memory loss and reduction of other mental abilities can be found, that
worsen over time, getting severe enough to interfere with their daily lives.

Unfortunately, even though treatments that slow down the progress of the mentioned
symptoms are available and a worldwide effort is being put on finding better ways to fight
the disease, as for today no cure for AD is known to mankind.

1Official website: https://imatge.upc.edu/
2Official website: http://www.upc.edu/
3Official website: https://fpmaragall.org/
4Official website: http://www.alz.org/
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On the other hand, it is well known that a patient’s brain suffers changes during the
earliest stages of the disease and long before showing any clinical symptoms. For that
reason, researchers focus their efforts towards defining which changes occur and where
they take place, with the goal of detecting indicators to predict the development of the
disease.

As explained in [Gispert et al., 2015], the characteristic progressive memory impairment
in AD is related to a pattern of atrophy in the volume of gray matter in various regions
of the brain. Along with this, cerebrospinal fluid (CSF) concentrations of β-amyloid 1-
42 (Aβ42) and total tau (t-tau) proteins, among others, have shown to serve as in vivo
proxy measures of the central neuropathological hallmarks of AD ([Braak et al., 2013]).
Therefore, studying the relationship between CSF biomarkers and regional changes on
the brain’s structure may contribute to understanding the pathological mechanisms of the
disease.

1.3 AD-CSF Index

To be able to analyze and represent the evolution of gray matter volume as the Alzheimer’s
Disease progresses, a concept that is based in biological measurements and captures such
progression as a continuous incremental value must be introduced. The AD-CSF index
presented in [Molinuevo et al., 2013] is an indicator composed by the sum of the normalized
CSF levels of Aβ42 and t-tau proteins that reflects the degree of the pathology, therefore
determining where the patient is along the AD continuum.

This index has shown higher diagnostic capability than the individual biomarkers and
other progression indices in a multicenter validation study ([Molinuevo et al., 2013]) and
in autopsy-confirmed patients with AD ([Struyfs et al., 2014]). However, the process to
obtain the data necessary to compute such index is rather expensive and highly intrusive
(even painful) for the patient. As a result, there is a strong interest in understanding the
dynamics of other more affordable and less intrusive biomarkers, such as the brain region
connectivity or the gray matter volume, and their potential to predict the patient’s state
along the AD continuum.

1.4 State of the art

Several approaches have been used to establish the association between CSF biomark-
ers and brain atrophy. The most frequently used method relies on linear models that
assume a uniform association of both variables across the whole AD spectrum, i.e., re-
gardless of whether these reach pathological values or not ([Insel et al., 2014]). Another
approach consists of grouping the range of CSF measurements into ’positive’ and ’nega-
tive’ categories using thresholds that are generally derived from their diagnostic capacity

2
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([Molinuevo et al., 2013]). The latter method generally assumes constant atrophy rates in
each group with no transition between them.

Although these models allow for a simple interpretation, they are unlikely to represent the
relationship between CSF biomarkers and brain atrophy realistically ([Insel et al., 2014]).
Moreover, there is prior evidence that the trajectories of CSF biomarkers and cortical
atrophy are nonlinear ([Sabuncu et al., 2011]) and affected by interactions with age and
other complex factors ([Jack Jr et al., 2012]). Therefore, linear models are not the best
suited to describe the associations between biomarkers known to have nonlinear dynamics
([Jack Jr et al., 2013]).

As regards nonlinear methods, several studies have used them to model the relationship
between biomarkers and neuroimaging-derived measurements. For example, polynomial
regression was used in [Fjell et al., 2010] to model age-related atrophy in relation to CSF
Aβ levels using a quadratic term. Other methods do not need to explicitly model the
parametric form of the association: generalized additive models (GAM) have been used
to model the effect of aging ([Schuff et al., 2012]), whereas splines was used to model the
relationship between brain atrophy and CSF Aβ levels in [Insel et al., 2014], and local
regression methods were employed to track the evolution of several biomarkers in domi-
nantly inherited AD as a function of the estimated years from expected symptom onset in
[Bateman et al., 2012].

Finally, a polynomial approach was used in [Gispert et al., 2015] to model the dynamics
of gray matter reduction associated to progression through the AD biological continuum,
reporting significant nonlinear dependencies in specific memory-related areas of the brain
as a result of the analysis.

3



Chapter 2

Proposed approach

2.1 Definition of the main objective

Now that we have introduced a few key concepts, let us define the goal of the current
project as follows: we will aim at developing an extensible toolbox in python that allows
to fit arbitrary models that may explain how the gray matter data relates to the AD-CSF
index -defining thus the gray matter volume as a function of the stage of the disease–, and
assess the results by means of an arbitrary evaluation function. The procedure will be
almost completely based in a voxelwise approach, and we will mainly focus on analyzing
various nonlinear fittings.

2.2 Data

We will study the processes of the brain all along the disease’s stages using images obtained
through different MRI techniques, provided to us by the Pasqual Maragall Foundation
(FPM). These images have already been treated and normalized by the FPM to fit a ref-
erence template such that the stored volumetric data represents the amount (percentage)
of gray matter for each voxel (3-dimensional pixel corresponding to a cube of 1.5mm x
1.5mm x 1.5mm) of the brain. The exact procedure followed to obtain such volumetric
data is described in more detail in [Gispert et al., 2015]. Each of the 129 subjects in the
study has also been diagnosed to be in one of 4 classes: NC (control, no indicators of
the disease), PC (pre-clinical, some indicators but without cognitive decline), MCI (mild
cognitive impairment, with a slight cognitive decline), and AD (Alzheimer’s disease, al-
ready having the disease). Furthermore, information regarding other biomarkers is also
available for each subject, including but not limited to age, sex, AD-CSF index value,
APOE4 protein level, and education level. A detailed list of available measurements and
their description is attached in appendix A.

4
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2.3 Hypotheses

Given the lack of data as regards the behavior of the aforementioned factors over time,
some assumptions must be made in order to obtain statistically significant results. These
are listed below:

• The AD-CSF index is a good indicator of the stage of the Alzheimer’s Disease re-
gardless of such stage.

• The gray matter volume in each voxel follows well-defined patterns along the AD-
continuum described by the AD-CSF index.

• The distribution of the template-normalized and sex- and age-regressed gray matter
volume values is the same for control patients that will never develop the disease
and those that will evolve into PC, MCI, and/or AD patients.

• As a generalization of the previous point, the distribution of the aforementioned
gray matter volumes for a patient that is in a certain stage in the AD-continuum
(described by the AD-CSF index) is the same regardless of the degree to which such
patient will develop the disease in the future.

• There are enough subjects for each interval in the AD-continuum for the results to be
statistically significant, i.e., the sample of the population is large enough to correct
the influences of the outliers and yield sound statistical results.

2.4 Workflow

Figure 2.1 shows the execution pipeline for which the toolbox has been designed.

Figure 2.1: General execution pipeline.

5



Dynamics of gray matter reduction in AD Asier Aduriz Berasategi

In it, the first block is fed with the information of all 129 subjects, as described in sec-
tion 2.2. Then, N models are selected, and for each of them their parameters are set so
that they fit the data optimally according to an arbitrary criterion defined at runtime.
Once computed, the results are either displayed in the form of curves (one for each voxel
and model), or evaluated with an arbitrary evaluation function.

In the latter case, N 3-dimensional maps are generated, one for each model, in which
each voxel describes how well the selected model fits the information obtained from the
subjects. This way, each of the generated maps can be used to detect the regions of the
brain where the data behaves as hypothesized by the respective model. Another option
is to compare the N models against each other to generate new maps (e.g., by selecting
the maximum value and the model to which this corresponds for each voxel), in order to
decide which ones are most likely to explain the behavior of the data, and to what extent
they are able to do so.

In any case, we may have the need to correct possible outlier voxels and treat the final
results so that they can be appropriately visualized. To this end, we include two additional
blocks in the pipeline, that can be iterated an arbitrary number K of times with different
thresholds and/or visualization transformations.

The generated maps are stored in the form of NIfTI-1 image files, and can be visualized
using external tools, such as FSLView1. On the other hand, given the amount of space
that it would require to explicitly store the values of each curve for each voxel and model,
we decided to integrate a method that would interactively generate and return such values
for the specified voxels so that they can be easily plotted (or even stored, if wanted) with
a few lines of code.

2.4.1 Model fitting block

The first block of the pipeline constitutes the core of the toolbox. In it, extensibility is
key to ensure that anyone who wants to contribute to the project or just use it for their
own experiments can do it without too much effort. As a consequence, this block must be
general enough to include as many scenarios as possible, but simple enough to be easily
understandable and usable. We propose a workflow in which two separate main blocks
are present: in the first stage, the effect of the covariates, i.e., independent variables that
are not of interest but may affect the observations, is subtracted from the original ob-
servations, therefore correcting the data and only leaving the behavior that is due to the
variables of interest and random or unexplained causes; the second stage tries to predict
such behavior by using the variables of interest. For this reason, in the scope of this project
the covariates are also called correctors, whereas the variables of interest are often referred
to as predictors.

1http://fsl.fmrib.ox.ac.uk/fsl/fslview/
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Figure 2.2 depicts the complete process, in which it can be observed that the correction
parameters and the prediction parameters are optimized separately, and for two potentially
different models.

Figure 2.2: Execution pipeline for model fitting.

Although the toolbox has been designed to support this rather general scheme, in the
context of this projects some restrictions will be applied:

• Since our goal is to analyze the dynamics of gray matter along the AD continuum,
our observations will always correspond to gray matter volume values, and we will
only have one predictor, corresponding to the value of the AD-CSF index.

• For the sake of simplicity, we will consider that the correction for any fitter is always
of the following form:

Correction (Y,C,CP ) = Y − Prediction (C,CP ) (2.1)

where Y is the observations variable, C is the set of correctors, and CP is the set of
correction parameters.

• We will also want the results to be comparable among themselves and to the ones
presented in [Gispert et al., 2015]. To this end, we will always correct the data
with the General Linear Model fitter (section 2.6.1). The correctors will also be the
same in all experiments, that is, the sex of the subject and both, the linear and the
quadratic terms of their age.

7
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2.4.2 Fit evaluation block

The fit evaluation block is an important element of the pipeline as well, since it allows to
easily assess the quality of the fit for each model and voxel. In general, a fit evaluation
method may not be suitable for all the models in the system, as it may assume some
conditions that are not always fulfilled. However, various methods should still be available
to allow for different experiments to be tested against the data.

On the other hand, if the model comparison block is to be used in an experiment, employing
the same method to test all the input models is recommended, given that results yielded
by different tests might not be comparable neither in range, nor in statistical properties.

2.5 The toolbox

We present a system that is composed of an independent fitting library, which comprises the
curve fitting classes and the fit evaluation methods, and a processing block that interacts
with this library by feeding it the adapted data from the database (see fig 2.3).

To deal with the rather large amount of data corresponding to the gray matter volume
maps (there are >2M voxels/subject, and >270M voxels in total), a data hub has also
been incorporated to the system.

Figure 2.3: General implementation scheme.
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The whole framework is built over the NumPy2 package and its structures, but additional
libraries are also imported whenever needed inside each module.

2.5.1 Data hub

The data hub block contains three modules, called niftiIO, Subject and Database.

The niftiIO module is a tool that facilitates the management of potentially heavy NIfTI-1
image files by using the Nibabel3 library.

The Subject module makes use of the niftiIO module to implement an auxiliary method
that allows to load the gray matter volumes chunk by chunk, specifying the maximum
size of each chunk (in MB), and also defines the Subject class, which contains all the
attributes necessary to represent the different measurements available in the database for
each subject.

Finally, the Database module is the responsible of accessing the xls-formatted file in which
most of the measurements are, in order to initialize a list of Subjects to work with and link
each subject to the NIfTI-1 image file of the file system that contains their gray matter
volume data.

This way, the user only must edit the user paths.py file to introduce the paths of both, the
xls file and the directory that contains all the gray matter data files in their environment,
and call the get data method in the Database module to load the subjects and the chunks
method in the Subject module to go through the gray matter data chunk by chunk when
needed.

2.5.2 Processing

The processing block is designed so that one processor exists for each fitter in the fitting
library. We consider that all processors should have some specific functions, such as
a process method that would query the computation of the correction and prediction
parameters for all the voxels in a region delimited by two 3-dimensional points, or a
curve method that would return the values of the prediction function for tpoints equally
distributed points between t1 and t2 for the same region.

Hence, an abstract Processor class has been implemented with such methods and other use-
ful tools, from which all processors shall inherit and override the required model-dependent
methods to connect each particular fitter and make it usable with the same interface. This
idea is portrayed in the simplified UML diagram in appendix B.

2http://www.numpy.org/
3http://nipy.org/nibabel/
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A detailed description of each public method of the Processor class, with its arguments
and return values is given below (arguments surrounded by brackets are optional):

• subjects : List of Subject instances representing the subjects of the current Proces-
sor instance.

• correctors : NxC (2-dimensional) matrix, representing the values of the features of
the subjects that are to be used as predictors in the fitter, where N is the number
of subjects and C the number of correctors.

• predictors : NxP (2-dimensional) matrix, representing the values of the features of
the subjects that are to be used as predictors in the fitter, where N is the number
of subjects and P the number of predictors.

• progress : float, indicating the progress (percentage of data processed) of the last
call to process. If it has not been called yet, this will be 0.0, whereas if the task is
already completed it will be 100.0. Useful if the process method is called inside a
thread/process and another thread/process wants to know the state of the call, e.g.
in a GUI.

• process([(x1:x2, y1:y2, z1:z2) : Region], [mem usage : float]) : processes the cor-
rection and prediction parameters for the specified regions, loading chunks of at
most mem usage MB each time, and returns them in the form of a Processor.Results
instance.

• user defined parameters : tuple of floats that encodes the options selected by
the user. This is useful to reproduce the curves or compute the evaluation of the
fittings in a later execution, by saving the return value and using it to initialize the
Processor instance in the next execution.

• corrected values(correction parameters : array-like, [(x1:x2, y1:y2, z1:z2) : Re-
gion], [(origx, origy, origz) : Point3D], [mem usage : float]) : given the correction
parameters, an origin point from which the correction parameters were computed,
and a region specified by coordinates relative to the origin point, loads and cor-
rects the data of such region in chunks of at most mem usage MB, and returns the
corrected values in the form of an numpy array.

• curve(prediction parameters : array-like, [(x1:x2, y1:y2, z1:z2) : Region], [(t1, t2,
tpoints) : Timeline]) : given the prediction parameters, a region specified by co-
ordinates relative to the origin point from which the prediction parameters were
computed, and a timeline specified by its two extremes and the number of points
between them, returns a list of length tpoints that contains the uniformly distributed
values between t1 and t2 and an array-like structure containing the values of the
curve in such points for each voxel.

• static evaluate fit(evaluation function : function, correction processor : Proces-
sor, correction parameters : array-like, prediction processor : Processor, predic-
tion parameters : array-like, [(x1:x2, y1:y2, z1:z2) : Region], [gm threshold : float],

10
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[filter nans : bool], [default value : float], [mem usage : float]) : returns an array-like
structure that contains the score obtained by the fitting for each voxel in the specified
region, ensuring that the data is loaded by chunks that do not exceed mem usage
MB in each step. Such score is computed by applying the evaluation function to the
correction and prediction processors with the correction and prediction parameters
specified by the arguments. The results are filtered by setting each voxel to the
default value if any of the following conditions are fulfilled: the mean (over the sub-
jects) gray matter volume in such voxel does not reach the specified GM threshold,
or the result of the evaluation is not a number and the filter nans flag is set.

• static cluster(fitting scores : array-like, [default value : float], [fit lower threshold :
float], [fit upper threshold : float], [cluster threshold : int], [produce labels : bool]) :
returns the fitting thresholds after filtering them as specified by the upper and lower
thresholds at the voxel level, clustering them and removing any clusters below the
cluster threshold. Any voxel that is not in the allowed range and does not pertain
to a cluster of sufficient size is set to the default value specified in the arguments.
Finally, if the produce labels flag is set, a second map that indicates the cluster to
which it voxel pertains is also returned.

Notice that, since the aforelisted methods are generic and applicable to any processor,
they must internally call some ‘private’ methods that are model-specific. For this reason,
these other methods have been specified as abstract functions and must consequently be
overridden in the subclasses to ensure their correct functioning. Additionally, some other
helper functions that might be useful to facilitate the creation of new processors have been
included, such as the get* methods that make the interaction with the user transparent
to the subclasses (see below):

• abstract fitter (user defined parameters : tuple) : given the parameters obtained
either by calling read user defined parameters in this same execution or by loading
them from a file in which they were stored as returned by user defined parameters
in a previous execution, this method returns a fully initialized instance of a subclass
of CurveFitter. This method is always called in the initialization of a Processor
instance.

• abstract user defined parameters (fitter : CurveFitter) : given the fitter ob-
tained from the fitter method, returns a tuple of floats representing the user
defined parameters that would be required in such method to initialize an identical
fitter from scratch.

• abstract read user defined parameters (predictor names : iterable<Subject.At-
tribute>, corrector names : iterable<Subject.Attribute>) : reads the parameters that
are necessary to successfully initialize a new instance of a fitter from the user, and
returns a tuple of floats that encode such parameters. The fitter method is then
called with this tuple ‘as is’ as argument. The get* functions should be used here
together with the built-in super function to ensure that the user interface is coherent

11
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and benefits from all the future improvements.

• curve (fitter : CurveFitter, predictor : list<float>, prediction parameters : array-
like) : given a fully initialized fitter, a list of floats (the axis) and the prediction
parameters of each voxel, returns the value of the curve evaluated in each point of
the axis for each voxel. This is not an abstract method as it calls the predict function
of the fitter with the prediction parameters and the predictors by default, but this
behavior should be overridden if it does not yield the desired output.

• corrected values (fitter : CurveFitter, observations : array-like, correction pa-
rameters : array-like) : given a fully initialized fitter, a map of observations and
a map of correction parameters, returns an array-like structure containing the cor-
rected values of the observations. This is not an abstract method because it calls
the correct function of the fitter with the observations and the correction parameters
by default, but this behavior should be overridden if it does not yield the desired
output.

• getint (...), getfloat (...), getoneof (...), getoneinrange (...), get-
yesorno (...), ... : helper methods to obtain input of different types from the user
in execution time. Each of these functions is based on the processor get static
method, and has several optional parameters to personalize the data retrieval with a
default value, the number of trials, the range of acceptable values, the text to show
to request the data, etc.

• static processor get ([obtain input from], [apply function], [try ntimes], [default
value], [show text], [show error text]) : base function to interact with the user for
input requests. The data retrieval will be obtained from the specified source (for in-
stance, the command line or a GUI component) by showing the indicated text. Then
a function will be applied to the obtained value, and in case the process raises any
errors the data retrieval will be retried as many times as specified in the arguments,
showing the error text in each case. If the input could not be correctly obtained, an
error will be raised. The default value will be returned if the user does not fill the
corresponding field. All parameters are optional.

Having defined this class as described allows to modify the base class as desired (for
instance, by adding a GUI) and automatically obtain the benefits of the modification on
all its subclasses by just applying inheritance properties.

2.5.3 Curve Fitting

In the context of this project, a fitter is an algorithm that, given a target variable, one or
more variables of interest that might explain the behavior of such target and possibly some
covariates (variables that are not of interest) that may also contribute to such behavior,
all of them potentially random, adjusts the set of parameters of a parametric function so

12
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that once accounted for the contribution of the covariates, the function with the variables
of interest as input fits the observations of the target variable in the best possible manner
according to a certain quality measure.

In other words, a fitter is an algorithm that, given a parametric function f (the prediction
function) with parameters p1 to pk, a quality-measure Q, a dependent variable y whose
behavior is unknown and we want to predict (the target), a set of variables x1 to xn that
might explain the behavior of y (the variables of interest/predictors), and another set of
variables c1 to cm whose contribution to y we want to remove (the covariates/correctors),
computes the following expression:

p̂1, . . . , p̂k = argp1,...,pkmax [Q (fp1,...,pk (x1, . . . , xn) , g (y, c1, . . . , cm))] , (2.2)

where g denotes a function that corrects the target variable so that the information con-
tributed by the covariates is removed from it.

Given that the variables are potentially random and we might be unaware of their sta-
tistical properties, their behavior will be estimated through a number of measurements
obtained as follows:

• The target variable y will be observed N times, having thus a vector yNx1 of N
observations that we want to explain. It is important to notice that such observations
can be sampled in a completely arbitrary way from any kind of set, e.g., moments
in time, points in space, samples of a population, etc.

• Both, the variables of interest and the covariates will be observed at the same times
(with the same samples) as those of the target variable and gathered in two matrices,
XNxn and CNxm, respectively, such that the ith column of XNxn contains the N
observations of the ith variable of interest, that is, xi, and the jth column of CNxm
contains the N observations of the jth covariate, cj .

Since all the fitters are oriented to obtaining the optimal parameters for a specific function
f (a.k.a. model), we will name each fitter with the name of such function.

As in the Processing block, we define an abstract CurveFitter class that will implement the
methods that are potentially common to every fitter. Again, the simplified UML diagram
of such class and its connection with the Processing block can be observed in appendix B.
The details of such methods are given below:

• correctors : NxC (2-dimensional) matrix, representing the correctors of the model,
where N is the number of observations and C the number of correctors.

• predictors : NxP (2-dimensional) matrix, representing the predictors of the model,
where N is the number of observations and P the number of predictors.

• features : Nx(C+P) (2-dimensional) matrix, representing the features (correctors
and predictors) of the model (see the correctors and predictors attributes).
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• correction parameters : Array-like structure of shape (Kc, X1, ..., Xn), represent-
ing the correction parameters for which the correctors best explain the observational
data passed as argument in the last call to fit, where Kc is the number of parameters
for each variable in such observations, and X1, ..., Xn are the dimensions of the
observations argument in the last call to fit (there are X1 ∗ ... ∗Xn target variables).

• prediction parameters : Array-like structure of shape (Kp, X1, ..., Xn), represent-
ing the prediction parameters for which the predictors best explain the observational
data passed as argument in the last call to fit, where Kp is the number of parameters
for each variable in such observations, and X1, ..., Xn are the dimensions of the
observations argument in the last call to fit (there are X1 ∗ ... ∗Xn target variables).

• orthogonalize correctors(), normalize correctors(), orthonormalize correc-
tors(), orthogonalize predictors(), normalize predictors(), orthonormalize
predictors(), orthogonalize all(), normalize all(), orthonormalize all() : Or-
thogonalizes/Normalizes/Orthonormalizes each corrector/predictor with respect to
all the previous features applying the Gram-Schmidt algorithm4 and returns a de-
orthonormalization matrix that right-multiplied with the new, orthonormalized fea-
ture matrix yields the original feature matrix.

• fit(observations : array-like) : Computes the correction and prediction parame-
ters that best fit the observations. The results are accessible by calling the cor-
rection parameters and prediction parameters attributes of the class. This method
returns a reference to self, i.e., the CurveFitter instance in which it is called.

• correct(observations : array-like, [correctors : 2D array-like (matrix)], [correc-
tion parameters : array-like]) : Returns an array-like structure of the same shape
as the observations argument, containing the values of the data after accounting for
the correctors by using the correction parameters. Any optional arguments that is
omitted is replaced with the corresponding structures stored as internal attributes.
If the shape of the observations is (N,X1, ..., Xn), then the correctors must be a
NxC matrix and the correction parameters must be of shape (Kc, X1, ..., Xn), where
N is the number of observations for each variable, C is the number of correctors,
M = X1 ∗ ... ∗Xn is the number of target variables and Kc is the number of correc-
tion parameters for each target variable.

• predict([predictors : 2D array-like (matrix)], [prediction parameters : array-like])
: Returns an array-like structure of shape (N,X1, ..., Xn) that contains the predic-
tion computed by using the predictors together with the prediction parameters. The
predictors argument must be a NxP (2-dimensional) matrix, whereas the predic-
tion parameters argument must be of shape (Kp, X1, ..., Xn), where N is the number
of observations for each variable, P is the number of predictors, M = X1 ∗ ... ∗Xn

is the number of target variables and Kp is the number of prediction parameters for
each variable. If any of the arguments is omitted, it is replaced by the corresponding

4https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt process
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structure in the internal attributes of the instance.

Analogously to the Processor class, here too the generic methods must call abstract, model-
specific functions (implemented in the subclasses) to be able to work correctly. Those
functions do not need to check for generic shape incompatibilities among the arguments,
since these are already inspected in the corresponding generic methods of the CurveFitter
class. The list below describes the methods that must be implemented in the subclasses5:

• abstract static fit (correctors : 2D array-like (matrix), predictors : 2D array-
like (matrix), observations : 2D array-like (matrix)) : Computes and returns the
correction and prediction parameters that optimally fit the features (correctors and
predictors) to the observations. The correctors argument is a NxC matrix, whereas
predictors is a NxP matrix and observations is a NxM matrix. The result should be
a tuple of two elements, in which the first element is the KcxM matrix containing
the correction parameters and the second element is the KrxM matrix of prediction
parameters. M is the number of target variables, N is the number of observations
for each variable, C the number of correctors, P the number of predictors, Kc the
number of correction parameters for each target variable and Kp the number of
prediction parameters for each target variable.

• abstract static correct (observations : 2D array-like (matrix), correctors : 2D
array-like (matrix), correction parameters : 2D array-like (matrix)) : Computes
and returns the values of the observations after accounting for the correctors by
using the correction parameters. Here, observations is a NxM matrix representing
the observational data to be corrected, correctors is a NxC matrix that contains
the covariates (features in which we are not interested), and correction parameters
is a KcxM matrix that stores the parameters that best fit the correctors to the
observations for each variable. M is the number of target variables, N is the number
of observations for each variable, C the number of correctors, and Kc the number of
correction parameters for each target variable.

• abstract static predict (predictors : 2D array-like (matrix), prediction parameters
: 2D array-like (matrix)) : Computes and returns a prediction made using the pre-
dictors together with the prediction parameters. The predictors argument is a NxP
matrix containing the features to be used to try to explain/predict the corrected
observational data, whereas prediction parameters is a KpxM matrix that stores the
parameters that best fit the predictors to such data for each variable. M is the num-
ber of target variables, N is the number of observations for each variable, P is the
number of predictors and Kp the number of prediction parameters for each target
variable.

5Here the static keyword in means that a method is allowed to be implemented as a static function in
the subclass
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A MixedFitter metaclass has also been defined to allow for the creation of fitters that cor-
rect the data following a given pattern and predict the corrected data applying a different
model6.

Finally, a subclass that defines the correct method as stated in equation 2.1 (see sec-
tion 2.4.1), namely AdditiveCurveFitter, has also been implemented to be used in the
scope of this project.

2.5.4 Fit evaluation

The fit evaluation block is composed of various functions that may have nothing in com-
mon. For this reason, there is not an abstract FitEvaluator class from which all fit eval-
uation methods inherit, but rather a set of functions that define the properties of each of
them. These functions are:

• requires(evaluation method : function, target method name : string, target meth-
od description : string) : sets a dependence on a target method (with its name and
description) for the evaluation method.

• default(evaluation method : function, target method name : string, target method
description : string, default method : function) : indicates that default routine is
being used in the evaluation method in place of the target method, but this could
be overridden if wanted.

• bind(fitter : CurveFitter, evaluation method : function, target method name : string,
target method : function): binds the target method to the evaluation method, des-
ignating that this should be used whenever a call to target method name is executed
when evaluating the indicated fitter.

Note: This is NOT the current implementation of the methods, since implement-
ing this block as described above would require very advanced python skills and a
huge amount of time and testing to ensure its correctness and liability. Instead, the
required methods have been implemented in the CurveFitter class, raising a NotImple-
mentedError by default, and are called from each evaluation method without checking
for errors. This way, if an evaluation method is not compatible with a particular fit-
ter, an error will be raised when the user tries to combine them.

2.5.5 Model comparison

We have implemented two paradigms of comparison among different models, namely RGB
and BEST.

6Although the implementation of this class is still incomplete, a first version has already been created.

16



Dynamics of gray matter reduction in AD Asier Aduriz Berasategi

In the RGB mode, the comparison is conducted by generating a 3-dimensional image of 3
channels (i.e., each voxel would comprise 3 elements) in which each channel corresponds
to the results of one model, therefore making it possible to visualize the fitting scores of
each model as one of the red, green or blue components of the color for each voxel. This
idea could possibly be generalized to support other color spaces (e.g., HSV), or even more
colors -by keeping 3 RGB channels in each voxel, but combining (adding up) an arbitrary
number K of distant/complementary colors7 (one for each model) weighted by the value of
the corresponding model in such voxel–. However, this would result in much less intuitive
maps being generated, which would lead to more difficulties to interpret the results.

In the BEST mode, on the other hand, two maps are generated: BestFitScores and
BestLabels. BestFitScores is computed by selecting the best fitting score over the different
models for each voxel, whereas BestLabels stores the index of the model to which such score
corresponds. Please, notice that the ‘best’ fitting score must be decided according to an
appropriate criterion for each evaluation method. As an example, the Akaike Information
Criterion (section 2.7.4) outputs lower values for better models, whereas the R-squared
method (see section 2.7.2) assigns a higher value to more preferable models. This method
creates a map of best fits together with a mask that can be colorized so that each color
represents one model. This way, when superposing the grayscale image corresponding to
the BestFitScores map with a colorized mask based on the BestLabels map, we obtain a
visual representation in which it is easy to see which model explains the data best and to
what degree it is able to do so.

Table 2.1 summarizes the advantages and disadvantages of each paradigm:

Paradigm Advantages Disadvantages

RGB - Easy to visually compare how
better a model is as compared to
the others.
- Goodness of fit correlated with
brightness of colors.
- Information of all models in
same picture simultaneously.

- Only up to 3 models supported
for each comparison.

BEST - Best model visually clear.
- Goodness of fit also clearly
visible.
- Suitable for virtually as many
models as wanted.

- No way to compare how better
a fit is as compared to the others
(for a particular voxel).
- Boundaries between dominant
models prone to errors.

Table 2.1: Advantages and disadvantages of model comparison paradigms

Both methods have been implemented as separate scripts.

7For instance, a possible selection for K = 4 would be orange, cyan, purple and yellow
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2.5.6 Filtering and clustering

The filtering and clustering performed through calls to the cluster function in Processor
uses a module named graphlib, that has been implemented to support a few useful graph-
based methods. The exception to this is the gray-matter filtering, whose implementation is
in the evaluate fit function of the Processor class (refer to section 2.5.2 for more information
on this class). This code ‘drops’ the voxels that do not have a large enough mean gray
volume right after the evaluation, meaning that the returned fitting-scores have already
been filtered based on the mentioned criterion.

The graphlib module contains the definition of an abstract class called Graph, that only
requires the implementation of two methods to become concrete: nodes(), which yields
(generates) the nodes of the graph one by one, and neighbors(node), that given a node
yields its neighbors. This class then automatically adds the sccs method, that detects
the Strongly Connected Components8 of the graph using an iterative version of Tarjan’s
algorithm9, and the rec sccs method that contains its recursive version.

On top of this base class, the UndirectedClusterization3DGraph defines an undirected
graph that is represented as a 3-dimensional matrix in which each voxel corresponds to
a node. In this graph, the (undirected) edges are defined as follows: a node will have
as neighbors all its surrounding voxels (e.g., 26 if it is a central voxel) if and only if the
node itself fulfills a specific condition, and no neighbors at all otherwise. The condition
is specified through a function that receives a node and returns a boolean value, which
is fed to the initialization method when instantiating the graph. Given that this is an
undirected graph, the sccs method is overridden and Tarjan’s algorithm is replaced by a
more efficient and simple Breadth First Search (BFS)10.

Finally, a class called NiftiGraph is built on the UndirectedClusterization3DGraph by defin-
ing the condition function as the fact of pertaining to a certain range, i.e., given a minimum
and/or a maximum threshold(s), a voxel fulfills the condition if and only if its value is
greater or equal to the lower threshold and strictly smaller than the upper threshold,
being both values defined when instantiating the graph (if omitted, the lower and upper
thresholds are set to minus infinite and plus infinite respectively).

In addition to these structures, a generic graph was implemented in the form of a class,
namely GenericGraph, in this same module, in order to test the correctness and perfor-
mance of the aforementioned graph algorithms. This class is not used in the toolbox, but
can be imported and employed in any other application if wanted.

Currently, the toolbox supports filtering by mean gray matter volume (GM filtering) using
a lower threshold, by fitting score (FS filtering) by means of lower and upper thresholds,
and by cluster size (CS filtering) through a lower threshold.

8https://en.wikipedia.org/wiki/Strongly connected component
9https://en.wikipedia.org/wiki/Tarjan’s strongly connected components algorithm

10http://www.tutorialspoint.com/data structures algorithms/breadth first traversal.htm
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2.5.7 Visualization transformation

In some particular situations, the final data of an experiment must be adapted to the
visualization tools used to display it so that the results are easily understandable. This is
the case, for instance, of the maps of p-values generated by the F-test evaluation method
(see section 2.7.3), which can be easily interpreted when displayed in the form of numbers,
but are not suited to be mapped to gray-scale values and displayed as they are.

To solve this, a transformation function can be applied to the data, obtaining this way new
values that the visualization tool will display much more clearly. In the example of the
F-test, obtaining the z-values corresponding to the inverted p-values (after clusterization)
has shown to be a good way of adapting the data to be displayed with FSLView.

This block is not integrated in the toolbox, and has been written for particular cases in
the form of scripts, since the transformation depends on the specific properties of the data
(distribution, range, etc.) and the tool for which it is being adapted (e.g., FSLView).

2.6 Fitters

2.6.1 General Linear Model: GLM

The General Linear Model (GLM) is based on the assumption that the target variable is
linearly related to the variables of interest and the covariates, as expressed by the following
expression:

y = δ1c1 + . . .+ δmcm + β1x1 + . . .+ βnxn + ε (2.3)

As we can see, the target variable is just a linear combination of the variables of interest
and the covariates plus a certain error term (ε), which is considered to be a gaussian i.i.d.
random variable (white noise).

In this model, the parameters to be optimized are the coefficients of both, the covariates
and the variables of interest, having as optimization criteria the minimization of the MSE,
or which is the same, the minimization of the square of the module of ε.

To do so, we must first substitute each variable in equation 2.3 with its observations. This
gives N expressions, that can be rewritten in vector form as:

yNx1 = CNxm∆mx1 +XNxnβnx1 + εNx1

∆mx1 =


δ1
...

δm

 ;βnx1 =


β1
...

βn

 (2.4)
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We can then proceed to define a new matrix ANx(m+n), denoted design matrix (a.k.a.
model matrix), and a new vector Γ(m+n)x1, and express equation 2.4 in terms of such
variables:

ANx(m+n) = (CNxm|XNxn) ; Γ(m+n)x1 =


∆mx1

−−−

βnx1


yNx1 = ANx(m+n)Γ(m+n)x1 + εNx1

(2.5)

Finally, we minimize the square of the module of ε by differentiating it w.r.t the ΓT vector
and equaling the resulting expression to zero (this is an Ordinary Least Squares – OLS -
problem). The demonstration of this equality has been attached in appendix C.1.

∂

∂ΓT
‖ε‖2 = 0 ⇐⇒ Γ =

(
ATA

)−1
AT y (2.6)

If we interpret these results geometrically, we will observe that AΓ is actually a vector
in the subspace defined by the independent variables (variables of interest and covariates,
the columns of A), and what the solution is trying to do is minimize the distance between
this vector and the observations of the target variable y, which is accomplished when AΓ
is the projection of y in the mentioned subspace, i.e., when ε ⊥ AΓ (see figure 2.4).

Figure 2.4: Geometrical interpretation of GLM fitting

GLM with correlated error

Until now, we have assumed that the error of each sample had a gaussian distribution
and was uncorrelated with the error of the other samples. However, the General Linear
Model can also treat the case in which the error is correlated among samples. Having
a covariance matrix of the form CovNxN = σ2VNxN , where VNxN =

∑
i λiQ

i
NxN , and

being QiNxN the matrix corresponding to the ith covariance component of the model, the
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optimization problem becomes a Weighted Least Square (WLS) problem, whose solution
is:

Γ =
(
ATV −1A

)−1
ATV −1y (2.7)

If we make V −1 = W TW , the solution transforms to:

Γ =
(

(WA)TWA
)−1

(WA)TWy =
(
Aw

TAw
)−1

Aw
T yw (2.8)

where Aw = WA; yw = Wy.

That is, the result is the same as in the case of i.i.d. error, but substituting the design
matrix and the observations with their whitened versions.

The General Linear Model as a fitter

This fitter assumes that the data has already been whitened and the variables of interest
have been orthogonalized w.r.t. the covariates (refer to equation 2.2 in section 2.5.3 to see
what each of these functions means).

• Q (a, b) = −‖b− a‖2 (negative of MSE)

• fp1,...,pk (x1, . . . , xn) = p1x1 + . . .+ pkxn (k = n)

• g (y, c1, . . . , cm) = y − fδ̂1,...,δ̂m (c1, . . . , cm), where

– δ̂1, . . . , δ̂m = argδ1,...,δmmax [Q (fδ1,...,δm (c1, . . . , cm) , y)]

The corresponding class, called GLM, has been implemented as a wrapper of the Linear-
Regression class from the scikit-learn11 python library.

It is important to notice that, as stated, the GLM class implements the fitter for the
General Linear Model, not to be confused with the Generalized Linear Model, which is
a generalization of the former, that can fit non-normal distributions of the exponential
family. A more detailed description has been included in appendix D.

2.6.2 Generalized Additive Model: GAM

Although attractively simple, the traditional linear model discussed earlier is often not
optimal, since most inter-variable dependencies in real-world gathered data are not linear.
Here a more automatic and flexible statistical method that may be used to identify and
characterize nonlinear regression effects is described.

11http://scikit-learn.org/
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The Generalized Additive Model is a generalization of the Generalized Linear Model, in
which the observations depend linearly on unknown smooth functions of the prediction
variables. Introduced in [Hastie and Tibshirani, 1990], this model blends properties of
the GLM with the benefits of additive models, allowing non-parametric fits with relaxed
assumptions on the relationship between independent and dependent variables at the cost
of loosing some interpretability in the results.

The GAM model relates an outcome Y to various prediction variables Xi through un-
specified smooth functions fj . If these functions were a basis expansion of some kind,
the problem would be easily solved by ordinary least-squares. However, this approach
is different: we use non-parametric functions fitted using scatter-plot smoothers (splines,
kernel smoother, etc.). The model assumes that the observations vector Y is sampled from
an exponential family distribution (gaussian, binomial, ...) and that its conditional mean
E [Y |X] = µ (X) is related to the prediction variables through a link function g (µ (X))
defined as the sum of several weighted functions, as shown next:

g (µ (X)) = α+ f1 (X1) + f2 (X2) + . . .+ fN (Xp) = α+
P∑
j=1

fj (Xj) ,

where p is the number of predictors.

Each function fj can be defined by specifying their parametric form (for example, poly-
nomials of a given degree), or in a non-parametric way, by indicating the type of smooth
function to which they correspond. As a result, we can easily combine linear functions
with nonlinear ones assuming that the dependence of the observations on the prediction
variables is of the form g(µ) = X>Aβ+α+

∑N
j=|A| fj (Xj), where XA is the set of predictors

to be modeled linearly and XB = {Xj | j ≥ |XA|} is the set of predictors whose effect in
the observations is hypothesized to be potentially nonlinear.

The functions fi are estimated iteratively by means of an algorithm called backfitting,
whose main block is a scatter-plot smoothing. However, a few restrictions must be applied
and/or fulfilled to ensure that the algorithm converges ([Hastie et al., 2009, chap. 9.1]):

• α = mean(Y ). The constant α is not uniquely identifiable, since each function in
the model may have its own mean. Therefore, the standard convention is to assume
that for any given function fj , the mean over the images of the predictors for the

function is zero, i.e.,
∑N

i=1 fj(xij) = 0 ∀j.

• The feature matrix X, which comprises all the prediction vectors Xj as columns, is
not singular.

If those conditions are fulfilled, the problem is strictly convex and the solution is unique.
As a result, the backfitting algorithm (described in algorithm 1) will yield the optimal
functions for this model.
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Algorithm 1 Backfitting algorithm

1: α̂← 1
N

∑N
i=1 yi . Initialize elements

2: for j = 1 . . . P do
3: f̂j ← 0
4: end for
5: while f̂j has not converged for some j do
6: for j = 1 . . . P do

7: f̂j ← Sj

[
y − α̂−

∑
k 6=j f̂k (Xk)

]
. Smooth function

8: f̂j ← f̂j − 1
N

∑N
i=1 f̂j(xij)

9: end for
10: end while

Moreover, this procedure can accommodate several fitting methods in exactly the same
way, by specifying the appropriate smoothing operator Sj:

• Other univariate regression smoothers such as local polynomial regression and kernel
methods.

• Linear regression operators yielding polynomial fits, piecewise constant fits, para-
metric spline fits, series and Fourier fits.

• More complicated operators such as surface smoothers for second or higher-order
interactions or periodic smoothers for seasonal effects.

The Generalized Additive Model as a fitter

• Q (a, b) = −‖b− a‖2 (negative of MSE)

– Alternatively, Q (a, b) = −‖b− a‖2 − λ ∗
∫
a′′(x)∂x (negative of PRSS)

• fp0,p1,...,pk (x1, . . . , xn) = p0 + p1f1 (x1) + . . .+ pkfn (xn)

• g (y, c1, . . . , cm) = y − fδ̂1,...,δ̂m (c1, . . . , cm), where

– δ̂1, . . . , δ̂m = argδ1,...,δmmax [Q (fδ1,...,δm (c1, . . . , cm) , y)]

The integration of this model into the toolbox is being performed by Adrià Casamitjana
Dı́az, a PhD student at the Image Processing Group.

2.6.3 Support Vector Regression: SVR

The Support Vector Regression is a variant of the Support Vector Machine for regression.
In this model, a potentially infinite set of basis functions whose values do not need to be

23



Dynamics of gray matter reduction in AD Asier Aduriz Berasategi

known, hm (x) for m = 1, . . . ,M , is defined through the inner product in the transformed
space, also known as kernel function:

K (x, y) = 〈h (x) , h (y)〉 =
M∑
m=1

hm (x)hm (y) (2.9)

The dependent variable in this case is assumed to be a linear transformation of the inde-
pendent variable in the transformed space, i.e.:

f (x) =
M∑
m=1

βmhm (x) + β0 (2.10)

where the βm coefficients (for m = 0 . . .M) are estimated by minimizing the expression:

H (β) =

N∑
i=1

V (yi − f (xi)) +
λ

2

M∑
m=0

β2m (2.11)

for some general error measure V (r). For any choice of such measure, the solution can be
shown to have the form ([Hastie et al., 2009, chap. 12.3]:

f̂ (x) =

M∑
m=1

β̂mhm (x) + β̂0 =

N∑
i=1

α̂iK (x, xi) (2.12)

where α̂i also depends on the basis functions through the kernel function alone. A demon-
stration for the particular case of V (r) = r2 has been included in appendix C.2. Moreover,
due to the nature of the optimization problem, typically only some of the solution coeffi-
cients α̂i are nonzero, and the associated data values (xi) are called the support vectors.

A frequently used error function is depicted in figure 2.5, together with its mathematical
expression (on the left).

Vε (r) =

{
0, if ‖r‖ < ε

‖r‖ − ε, otherwise.

Figure 2.5: ε-insensitive error function Vε (r)
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This error function does not penalize the predictions that fall within the tube of radius ε
around the real observations, and the penalization for the rest of the predictions is linear
on the distance to the hyperplane defined to a distance ε from the observations. The role
of ε is to set the error-tolerance of the prediction, i.e., a higher value for this parameter
will lead to a more flexible model, and thus to a higher error (in general). Meanwhile, the
λ parameter works as a regularization parameter to penalize the complexity of the model
and avoid overfitting.

Three typical choices for the kernel functions in the literature ([Hastie et al., 2009, chap.
12.3]) are also listed below:

dth-Degree polynomial: K (x, x′) = (1 + 〈x, x′〉)d,

Radial basis: K (x, x′) = exp
(
−γ‖x− x′‖2

)
,

Neural network: K (x, x′) = tanh (κ1 〈x, x′〉+ κ2).

The Support Vector Regression Machine as a fitter

• Q (a, b) = −
(∑N

i=1 V (bi − ai) + λ
2

∑K
l=0 p

2
l

)
(negative of the aforementioned H func-

tion)

• fp0,p1,...,pk (x1, . . . , xn) =
{∑k

l=1 plhl (xj) + p0

}n
j=1

=
{∑N

i=1 α̂iK (xj , xi)
}n
j=1

• g (y, c1, . . . , cm) = y − fδ̂1,...,δ̂m (c1, . . . , cm), where

– δ̂1, . . . , δ̂m = argδ1,...,δmmax [Q (fδ1,...,δm (c1, . . . , cm) , y)]

The integration of this model into the toolbox is being performed by Santi Puch Giner, a
bachelor’s degree student at the Image Processing Group.

2.7 Fit evaluation methods

As previously stated, several evaluation methods have been included in the toolbox to
assess the quality of the fitted curves for each voxel and be able to compare different
models among each other.
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2.7.1 Mean Squared Error: MSE

The Mean Squared Error is likely the simplest measure in the toolbox, and is computed
as follows:

MSE =
1

N
‖yc − ŷ‖2 =

1

N

N∑
i=1

(yci − ŷi)
2 (2.13)

where yc is the corrected observations vector and ŷ is the prediction vector (both of length
N).

The main disadvantage of this method is that, if the fitted model is sufficiently flexible or
complex, the overfitting problem may arise, since this measure does not penalize neither
the complexity of the model nor the abruptness of the resulting curves. However, this is
still an appropriate indicator of the quality of the fit for cases in which the models are
very simple or a huge amount of data is available (i.e., when we can ensure that there will
not be overfitting).

2.7.2 R-squared

This method is basically a range-adjusted version of the MSE method, and it is computed
as follows:

R2 = 1− MSE
1
N

∑N
i=1 (yci − ȳc)

2
(2.14)

where yc denotes the corrected observations vector and ȳc = 1
N

∑N
i=1 y

c
i is the mean value

of such vector.

This method suffers from the same disadvantage as the MSE; however, the R-squared
measure is ensured to be in the range [0, 1], which can be useful when applying the filtering,
clustering and visualization transformation blocks.

2.7.3 F-test

An F-test is any statistical hypothesis test in which the test statistic follows an F-distri-
bution under the null hypothesis. For instance, the ratio of two appropriately scaled chi-
squared distributed variables follows an F-distribution that is determined by the degrees of
freedom (df) of each of those variables F (dfnumerator, dfdenominator). This test can be used
in regression problems to determine whether a particular part of a model is significantly
improving the overall performance of the rest of the model.

Consider two models, Mrestricted and Mfull, such that Mrestricted is nested within Mfull,
that is, Mrestricted is a submodel of Mfull, namely the restricted model. Then, we can
measure how much the inclusion of Mfull −Mrestricted in the model is enhancing the fit
by comparing the variance of the fitting error when using the complete model, Mfull, as
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opposed to using the restricted model, Mrestricted. Typically, model Mfull will yield better
results (a smaller error) than Mrestricted, but what we want to measure is whether the
difference is significant or not (we want to test whether the submodel Mfull −Mrestricted

is relevant or not). Thus, we will perform an F-test where the null hypothesis states that
the variances of both errors are equal, while the alternative hypothesis claims that the
variance of the error when using the complete model (Mfull) is smaller than when using
the partial model (Mrestricted):

• H0: V ar (MSEMrestricted
) = V ar

(
MSEMfull

)
• HA: V ar (MSEMrestricted

) > V ar
(
MSEMfull

)
The F-statistic is then computed as follows:

F =

(
RSSrestricted−RSSfull

dfrestricted−dffull

)
(
RSSfull

dffull

) (2.15)

where RSSx = N ∗MSEx =
∑N

i=1 (yi − ŷxi )2 is the Residual Sum of Squares of model Mx -
being ŷx the prediction obtained by using such model and y the vector of observations– and
dfx is the number of degrees of freedom of the error signal of model Mx. The computation
of the degrees of freedom of a model is generally non-trivial and model-dependent; as a
consequence, it must be implemented inside each fitter separately12.

On the other hand, if the fitting has been performed in a weighted fashion, the expression
remains the same except for the fact that the residual sum of squares for model Mx is
computed as follows: RSSx =

∑N
i=1wi (yi − ŷxi )2, where wi is the weight given to the ith

sample in the fitting process.

Under the null hypothesis, F will follow an F (dfrestricted − dffull, dffull) distribution.

The toolbox provides two methods based on this measure: the fstat method returns the
value of the F-statistic itself, whereas the ftest function returns the corresponding p-value,
that is, the value of the cumulative density function of the mentioned distribution evaluated
in the value of the F-statistic.

2.7.4 Akaike Information Criterion: AIC

The Akaike Information Criterion is yet another measure to evaluate the quality of the
fit for a regression problem. However, this one is oriented to the comparison of different
models. The formula to compute it is shown below:

12The computation of the degrees of freedom for the GAM fitter has been implemented by Adrià Casamit-
jana Dı́az (see section 2.6.2), whereas such implementation for the SVR fitter has been performed by Santi
Puch Giner (see section 2.6.3)
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AIC = 2k − 2ln (L) (2.16)

where k is the number of estimated parameters in the model, and L is the maximum value
of the likelihood function for such model.

When comparing different models with this method, the ones with the minimum resulting
values are the ones that best fit the data.

2.7.5 Corrected Akaike Information Criterion: AICc

The corrected AIC is a variant of the AIC that adds a higher penalization to the complexity
of the model. The formula for this measure is model-specific. The explicit expression for
univariate linear models with normally-distributed residuals is shown below.

AICc = AIC +
2k (k + 1)

n− k − 1
(2.17)

Again, lower values are preferred over higher ones.

2.7.6 Penalized Residual Sum of Squares: PRSS

The Penalized Residual Sum of Squares ([Hastie et al., 2009, chap. 2.8]) is the only method
in the toolbox that directly penalizes the roughness of the predicted curve itself instead of
the model complexity. The expression of such measure is described next:

PRSS = N ∗MSE + λ

∫ [
f ′′ (x)

]2
∂x (2.18)

where f ′′ is the second derivative of the prediction function, and the integral is limited to
the range of the input predictors.

The second derivative indicates how rapidly the slope of the prediction function changes,
being thus an indicator of the abruptness of the curve. A variant of this measure is also
proposed for the toolbox, in which the integral is replaced by the maximum value of the
square of the second derivative in the region of interest (the range of the input predictors).

28



Chapter 3

Results

3.1 Experiments

As explained in section 2.4.1, all the experiments have been performed so that the results
can be comparable to those of [Gispert et al., 2015] and among themselves. In particular,
the gray matter data has always been corrected with the GLM fitter, having the linear
term of the patients’ sex and the linear and quadratic terms of their age as correctors, and
then predicted with the AD-CSF index as the only predictor.

The first experiment consists in testing the overall dependence of the corrected gray mat-
ter volume on the AD-CSF index in order to identify the regions of the brain in which
such dependence is strong. This will allow us to check which parts of the brain are ac-
tually affected during the progression of the disease. We do this by following the same
methodology as in [Gispert et al., 2015], where a 3rd order polynomial of the AD-CSF
index is introduced in the GLM, to then apply an F-test and keep only the values whose
p-value is lower than 0.001. The results (after clusterization of >100 voxels and visual-
ization transformation) are shown in appendix E.1, where we can observe that both, the
relevant regions detected by our software and their shapes match closely the ones found
by [Gispert et al., 2015].

The second experiment also reproduces the result of such paper. In this case, we compare
the effect of the nonlinear (quadratic and cubic) terms of the AD-CSF index as opposed
to the linear term, applying the RGB paradigm of fit comparison (section 2.5.5) on the
values of the f-statistic for the linear and the nonlinear models, being both of them General
Linear Models. Once again, we can observe that the results are coherent with those
of [Gispert et al., 2015], showing strong nonlinear tendencies in the gray matter volume
throughout the AD continuum expressed in terms of the AD-CSF index (see appendix E.2).

The third experiment shows a comparison between the three terms of the 3rd order poly-
nomial of the AD-CSF index, i.e., all of the linear, quadratic and cubic terms are fed to

29



Dynamics of gray matter reduction in AD Asier Aduriz Berasategi

three different GLM instances, being in each case two of them correctors and the other
one the predictor. This way, each model expresses the additional information given by
each of the terms with respect to the other two. Then, the resulting fitting-scores are
compared with the BEST paradigm described in section 2.5.5. The results are filtered to
show only the regions that are relevant (with p-value < 0.01). In this case, we can observe
(appendix E.3) that both of the nonlinear terms are clearly dominant over the linear one,
with no significant difference in relevance between the quadratic and the linear terms.

The fourth and last experiment consists in generating five fitters: one for the GLM model
with a 3rd degree polynomial on the AD-CSF index, a second one for the polynomial GAM
model of same characteristics, another one for the splines-based GAM model, one more
for the polynomial SVR, and a last one for the gaussian SVR. Then, all the parameters
are optimized for each model, and five curves are displayed for three relevant voxels (ac-
cording to the previous experiments). These curves can be observed in appendix E.4,
being clearly visible, once more, that the results are coherent with those reported in
[Gispert et al., 2015].

3.2 Conclusions

The toolbox has been successfully implemented and is already almost fully operative.
Moreover, thanks to its design, the proposed structure seems to be flexible enough to
support virtually any data-driven learning approach, and apply it in problems of different
fields through the use of the Fitting library, and particularly in experiments related to
neuroimaging through the Processing library.

Proof of it is that two students at the Image Processing Group, namely Santi Puch Giner
and Adrià Casamitjana Dı́az, have already (partially) integrated two quite different fitters
(with two types of submodels each) into the toolbox, and are using them to successfully
obtain consistent results, hence proving the flexibility and usability of the package. Besides,
Santi has also been able to build an automatic hyperparameter look-up and selection
feature into the system (used in the fourth experiment of section 3.1), thus verifying its
extensibility. Finally, we have contrasted the maps yielded by the GLM fitter against the
results published in [Gispert et al., 2015], consequently confirming them and showing the
correctness of the structures and techniques implemented in this project, and have also
been able to generate different curves that seem to faithfully fit the data in each voxel.

As a result, and despite the fact that certain parts of the library have not yet been
completed, we can conclude that the toolbox is already a viable solution to fit nonlinear
patterns over any data that meets the implicit requirements set by the curve fitting block
(see sections 2.4.1 and 2.5.3), and particularly, to analyze the dynamics in gray matter
reduction throughout the Alzheimer’s Disease continuum in a flexible manner.
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Appendix A.

Information table for each subject

Attribute Description

ID Integer value that uniquely identifies the subject in the database.

GM Data A separate NIfTI-1 image file containing a 3-dimensional (121x145x121) ma-
trix that represents the brain of the subject. Each element of the matrix
contains the gray matter volume of the corresponding region of the brain.

Diagnostic An integer representing the diagnostic given to the subject, as follows:
0 = NC (control, no indicators of the disease).
1 = PC (pre-clinical, some indicators but without cognitive decline).
2 = MCI (mild cognitive impairment, with a slight cognitive decline).
3 = AD (Alzheimer’s disease, already having the disease).

Age An integer indicating the age of the subject in years.

Sex A binary value indicating the genre of the subject:
0 = Female.
1 = Male.

APOE4 An integer representing the status of the APOE4 gene for this subject.

Education An integer that indicates the academic level of the subject.

Aβ42 An integer representing the level of Aβ42 protein measured for this subject.

T-tau An integer representing the level of t-tau protein measured for this subject.

P-tau An integer representing the level of p-tau protein measured for this subject.

AD-CSF index A floating point value corresponding to the computed AD-CSF index value
for this subject.

Table A.1: Available information of each subject

For more information on how these measurements were done, please refer to [Gispert et al., 2015].
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Appendix B.

Simplified UML diagram

Figure B.1: Simplified UML diagram
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Appendix C.

Mathematical demonstrations

C.1 Ordinary Least Squares solution

∂

∂ΓT
‖ε‖2 =

∂

∂ΓT
(
εT ε
)

=
∂

∂ΓT

[
(y −AΓ)T (y −AΓ)

]
=

∂

∂ΓT
(
ΓTATAΓ− ΓTAT y − yTAΓ

)
=

∂

∂ΓT
(
ΓTATAΓ− 2yTAΓ

)
=

ATAΓ +
(
ΓTATA

)T − 2
(
yTA

)T
= 2

(
ATAΓ−AT y

) (C.1)

∂

∂ΓT
‖ε‖2 = 2

(
ATAΓ−AT y

)
= 0 ⇐⇒ ATAΓ = AT y

∂

∂ΓT
‖ε‖2 = 0 ⇐⇒ Γ =

(
ATA

)−1
AT y

(C.2)

C.2 Support Vector Regression solution

Please, refer to section 2.6.3 for more information on the Support Vector Regression. For
concreteness, the case V (r) = r2 has been selected. This proof has been extracted from
[Hastie et al., 2009, chap. 12.3].

Let H be the N x M basis matrix in which element (i,m) corresponds to hm(xi), and
suppose that M > N is large. For simplicity, we assume that β0 = 0, or that the constant
is absorbed in h.

We estimate β by minimizing the penalized least squares criterion

H (β) = (y −Hβ)T (y −Hβ) + λ ‖β‖2 . (C.3)

The solution is ŷ = Hβ̂, with β̂ determined by

−HT
(
y −Hβ̂

)
+ λβ̂ = 0 =⇒ β̂ =

(
HTH− λI

)−1
HTy. (C.4)
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From this it appears that we need to evaluate the M x M matrix of inner products in
the transformed space (HTH term in the solution). However, we can pre-multiply the
expression by H to give

−HHT
(
y −Hβ̂

)
+ λHβ̂ = 0 =⇒

(
HHT + λI

)
Hβ̂ = HHTy

Hβ̂ =
(
HHT + λI

)−1
HHTy. (C.5)

The N x N matrix HHT consists of inner products between pairs of observations (i, i′);
that is, the evaluation of an inner product kernel

{
HHT

}
i,i′

= K (xi, xi′).

In this case, the predicted value will be

f̂ (x) = h (x)T β̂ =

N∑
i=1

α̂iK (x, xi), (C.6)

where α̂ =
(
HHT + λI

)−1
y.
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Appendix D.

Generalized Linear Model

The General Linear Model (section 2.6.1) can optimally fit the coefficients of the model
when the error has a normal distribution. However, this is often not the case in data
collected from natural environments, which causes the General Linear Model not to be
suitable for many real-world problems.

Fortunately, if the observations follow a probability density function that pertains to the
exponential family, the Generalized Linear Model can be used to optimally fit the param-
eters of the model to the observations. The exponential family is characterized by the
following parameterized expression:

fy (y|θ, τ) = h (y, τ) exp

(
b (θ)TT (y)−A (θ)

d (τ)

)
(D.1)

In the Generalized Linear Model, the mean of the target variable depends on the indepen-
dent variables through:

E (y) = µ = g−1 (AΓ) (D.2)

where g denotes the link function, whereas the variance is given as a function of the mean:

V ar (y) = V (E (y)) = V (µ) (D.3)

for some function V .

The link function provides the relationship between the linear predictor and the mean of
the distribution function, i.e., it linearizes the dependence of the target variable w.r.t. the
variables of interest and the covariates.

Hopefully, an example will help to clarify these concepts. Let’s imagine we are trying to
predict the number of people that will go to the beach (dependent variable) based uniquely
on the temperature (independent variable). We could try to use a linear model, but we
would see that, although the predictions would be correct for a certain range of temper-
atures, values below a certain threshold would eventually produce negative predictions,
which would be inappropriate for this case (−5 people going to the beach does not make
any sense), that is, this model would not escalate well for small values. Instead, we could
try to fit an exponential model, so that whenever the temperature raises a fixed amount
of degrees, the model doubles the value of the prediction. Obviously, the prediction would
need to be rounded, but this model would never output a prediction below 0 people, no
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matter how much the temperature drops, giving thus a much better performance for small
values. In this case,

E (y) = µ = g−1 (AΓ) = exp (AΓ) = exp (βT )

being T the temperature, and therefore having as the link function:

g (AΓ) = log (AΓ)

The unknown parameters Γ in the Generalized Linear Model are typically estimated with
maximum-likelihood, maximum quasi-likelihood or Bayesian techniques, by substituting
the mean (µ) with the observations.
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Appendix E.

Results of the experiments

E.1 Heat map of brain regions affected by AD

Figure E.1: Brain areas showing gray matter attrophy in association with AD-CSF index.
Results for GLM from our toolbox. Only the axial view is available.

Figure E.2: Brain areas showing gray matter attrophy in association with AD-CSF index.
Results from [Gispert et al., 2015]. Please, notice that all scans are flipped horizontally
with respect to figure E.1.
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Figure E.3: Sagittal, coronal, and axial view of relevant regions centered in two voxels that
maximize the fitting-score for their respective cluster. The first and third rows correspond
to heatmaps showing the value of the fitting-scores, whereas the second and fourth regions
correspond to masked versions of such maps, in which the different colors indicate the
cluster to which each voxel pertains.
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E.2 Linear vs. Nonlinear fit comparison

Figure E.4: Additive fusion of the F-
maps associated to linear (red) and
nonlinear (green) components of the
regression against the AD-CSF in-
dex. Results from our toolbox.

Figure E.5: Additive fusion of the F-maps associ-
ated to linear (red) and nonlinear (green) compo-
nents of the regression against the AD-CSF index.
Results from [Gispert et al., 2015]. Please, notice
that all axial and coronal scans are flipped horizon-
tally w.r.t. figure E.4
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E.3 Single term fit comparison

Figure E.6: Best model selection between linear (green), quadratic (purple) and cubic
(blue) terms of the AD-CSF index after having accounted for the other two terms.

Figure E.7: Sagittal, coronal and axial view of the left Hippocampus. Notice the clear
dominance of the nonlinear terms (purple and blue) over the linear one (green).
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Figure E.8: Sagittal, coronal and axial view of the largest cluster where the linear term
provides more additional information than any of the nonlinear terms separately.

Figure E.9: Sagittal, coronal and axial view of the right ParaHippocampal. Once again,
the nonlinear fittings are clearly dominant over the linear one.
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E.4 Curve generation and visualization

Note: The curve obtained from the GLM fitter does not seem to be present in any
of the graphs generated by our toolbox. This is because the curve produced by the
polynomial GAM fitter is actually the same, which is logical given that the Gener-
alized Additive Model is indeed a generalization of the General Linear Model, and
its polynomial version is identical to the GLM except for the way in which they are
fitted (they produce exactly the same output).

Figure E.10: Nonlinear fit of different models by
using our toolbox for a voxel in the left Hippocam-
pus (brain region).

Figure E.11: Nonlinear fit using Mat-
lab’s lowess function for a voxel in the
left Hippocampus (brain region). Ex-
tracted from [Gispert et al., 2015].

Figure E.12: Nonlinear fit of different models by
using our toolbox for a voxel in the right ParaHip-
pocampal (brain region).

Figure E.13: Nonlinear fit using Mat-
lab’s lowess function for a voxel in the
right ParaHippocampal (brain region).
Extracted from [Gispert et al., 2015].
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Figure E.14: Nonlinear fit of different models by
using our toolbox for a voxel in the right Precuneus
(brain region).

Figure E.15: Nonlinear fit using Mat-
lab’s lowess function for a voxel in the
right Precuneus (brain region). Ex-
tracted from [Gispert et al., 2015].
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Appendix F.

Gantt Chart

Figure F.1: Gantt chart that illustrates the schedule followed during the project.
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