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Abstract

Speech recognition is the task aiming to identify words in spoken language and convert them
into text. This bachelor’s thesis focuses on using deep learning techniques to build an end-to-end
Speech Recognition system. As a preliminary step, we overview the most relevant methods carried
out over the last several years. Then, we study one of the latest proposals for this end-to-end
approach that uses a sequence to sequence model with attention-based mechanisms. Next, we
successfully reproduce the model and test it over the TIMIT database. We analyze the similarities
and differences between the current implementation proposal and the original theoretical work.
And finally, we experiment and contrast using different parameters (e.g. number of layer units,
learning rates and batch sizes) and reduce the Phoneme Error Rate in almost 12% relative.
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Resum

Speech Recognition (reconeixement de veu) és la tasca que pretén indentificar paraules del
llenguatge parlat i convertir-les a text. Aquest treball de fi de grau es centra en utilitzar tècniques
de deep learning per construir un sistema d’Speech Recognition entrenant-lo end-to-end. Com
a pas preliminar, fem un resum dels mètodes més rellevants duts a terme els últims anys. A
continuació, estudiem un dels treballs més recents en aquesta àrea que proposa un model se-
quence to sequence amb l’atenció entrenat end-to-end. Després, reproduim satisfactòriament
el model i l’avaluem amb la base de dades TIMIT. Analitzem les semblances i diferències entre
l’implementació proposada i el treball teòric original. I finalment, experimentem i contrastem el
model utilitzant diferents paràmetres (e.g. nombre de neurones per capa, la taxa d’aprenentatge
-learning rate- i els batch sizes) i reduim el Phoneme Error Rate gairebé un 12% relatiu.
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Resumen

Speech Recognition (reconocimiento de voz) es la tarea que pretende indentificar palabras
habladas y convertirlas a texto. Este trabajo de fin de grado se centra en utilizar técnicas de
deep learning para construir un sistema de Speech Recognition entrenándolo end-to-end. Como
paso preliminar, hacemos un resumen de los métodos más relevantes llevados a cabo los últimos
años. A continuación estudiamos uno de los trabajos más recientes en este área que propone
un modelo sequence to sequence con atención entrenado end-to-end. Después, reproducimos
satisfactoriamente el modelo y lo avaluamos con la base de datos TIMIT. Analizamos los parecidos
y diferencias entre la implementación propuesta y el trabajo teórico original. Y finalmente,
experimentamos y contrastamos el modelo utilizando diferentes parámetros (e.g. numero de
neuronas por capa, la tasa de aprendizaje -learning rate y los batch sizes) y reducimos el Phoneme
Error Rate cerca del 12% relativo.
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Chapter 1

Introduction

1.1 Motivation

1.2 Speech to signs

The motivation of training an end-to-end system for Speech Recognition is the project Speech2Signs
at UPC, awarded with a Facebook Caffe2 grant, which aims to synthesize a sign language inter-
preter from speech.

The final goal of this project is to build a translation system that generates a interpreter video
to translate the speech signal input (extracted from a video) into American Sign Language. It
will be an end-to-end neural network, but there is not any proper database to train it, so the first
step of the project is to generate the data needed by combining existing intermediate systems.
To obtain this, the system has been split in three different blocks:

Figure 1.1: Speech2Signs blocks architecture

1. An Automatic Speech Recognition (ASR) system that transcribes the audio (it can be
extracted from a video) to text. This module is the contribution of this thesis.

2. A Neural Machine Translation (NMT) module translating from English to American Sign
Language[30], developed in parallel by Daniel Moreno using a model based on attention[23].

3. A Video Generator that creates the interpreter avatar[4], under development by PhD student
Amanda Duarte.

Every block input is the previous step output. Concatenating this systems it will be able to
generate ad much data as needed to train the whole system end-to-end. Therefore, the ASR is
a segment of a complete system prototype in the data generation purpose.
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1.3 Statement of purpose

Speech recognition is the ability of a device or program to identify words in spoken language
and convert them into text. The most frequent applications of speech recognition include speech-
to-text processing, voice dialing and voice search. Even if some of these applications work properly
for the consumer, there is still a room for improvement: sometimes it is hard to recognize the
speech due to variations of pronunciation, it is not well performed for most languages beyond
English, and it is necessary to keep fighting against background noise. All these factors can lead
to inaccuracies and that is why it is still an interesting research area.

Over the last several years, the number of research projects related to Machine Learning
has increased exponentially, both in the academic and industrial worlds. Such growth has been
boosted by the success of deep learning models in tasks that were considered especially challeng-
ing, such as computer vision or natural language processing. Solutions have been found to many
tasks obtaining outstanding performances, leading to more complex tasks derived from these
ones. Speech recognition is not an exception, even though in the beginning other models were
used (Hidden Markov Models)[13]. Over the years, HMM have been combined with Deep Neural
Networks and it led to improvements in various components of speech recognition. However, it
was necessary to train different models separately (acoustic, pronunciation and language models).

Recent work in this area attempts to rectify this disjoint training issue by designing models
that are trained end-to-end: from speech directly to transcripts. In my work I will focus on
sequence to sequence models with attention trained end-to-end[7].

1.4 Main Contribution

This degree’s thesis is developed in the broader context of the Speech2Signs, a project at
UPC funded by Facebook, in which a module of Speech Recognition is required. The main
contributions of this thesis is providing a speech recognition system trained end-to-end available
for integration. This thesis has been written thinking that could be used for other students or
developers in the future to participate in upcoming challenges1.

1.5 Requirements and specifications

The requirements of this project are the following:

• Understand Listen, Attend and Spell (LAS) model [6], a deep-learning architecture that
learns to transcribe speech utterances to characters. It was submitted on 2015 by William
Chan, Navdeep Jaitly, Quoc V. Le and Oriol Vinyals.

• As it is very challenging to build from scratch a whole system for Speech Recognition, find
the implementation that better achieves the system described on this paper.

• Be able to train the model so it could be used in the Speech2Signs project

1The project can be found in imatge-upc Github: https://github.com/imatge-upc/speech-2018-janna
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• Have the first deep Speech Recognition model trained end-to-end at GPI and TALP groups
of UPC.

The specifications are the following:

• Use Python as a programming language

• Develop the project using the Tensorflow framework for deep learning

• Use Tensorboard to visualize the results

1.6 Methods and procedures

No deep learning model for speech recognition had been trained end-to-end by the students or
research groups in the UPC before. In order to do that, it was necessary to find an implementa-
tion, and we found Nabu[26], an Automatic Speech Recognizer (ASR) framework for end-to-end
networks built on Tensorflow, implementing Listen, Attend and Spell paper.

1.7 Work Plan

This project has been developed as a joint effort between the GPI and the TALP research
groups at Universitat Politècnica de Catalunya, having a regular weekly meeting to discuss de-
cisions to be made. This meeting has been complemented with a weekly seminar with other
students developing their bachelor, master or Phd thesis at GPI to present our research and share
our knowledge.

The work plan is described in the following work packages and Gantt diagram, as well as the
modifications introduced since the first version.

1.7.1 Work Packages

• WP 1: Project management.

• WP 2: Introduction to ASR tasks and TensorFlow

• WP 3: Critical Review of the project

• WP 4: Software development

• WP 6: Dissemination

12



1.7.2 Gantt Diagram

Figure 1.2: Gantt Diagram of the Degree Thesis

1.8 Incidents and Modifications

The first incident I had to face that I was not expecting was that the selected implementation
was under development yet, so there were some changes quite often, and it was not working
completely well. Therefore, the original plans targeting the datasets used in the Speech2Signs
project had to change: most of the work has been understanding the whole code and fix the
errors. Some of them were due to the new version of Tensorflow that was updated the 5th of
October (when the environment was already created), so it was necessary to create another one.

Another problem was that to start running the implementation of Listen, Attend and Spell(LAS),
it was necessary to have the data prepared in the same format as Kaldi, before being able to
train the system. This took a lot of time since Kaldi is a complex tool. This toolkit is explained
in section 3.2.2

I have been in contact with the Nabu developer trying to share all the issues and fix them
during all these months. Vincent Renkens is pursuing a PhD degree at KULeuven.2 At the same

2Vincent Renkens Github page: https://github.com/vrenkens
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time, working with the whole team of Speech2Signs project, we have been searching datasets
from speech to sign language but it has been challenging. We finally end up deciding to split
the whole project into modules and the train all the separated parts (speech recognition model
is one of them).

Due to the mentioned difficulties in the previous section, running the model took more time
than expected. That is why the phase of testing on other datasets has not been accomplished,
and the task became understanding the whole code to be able to solve the issues. But it has
been motivating and enriching to have been working in a project under development, getting
deep into the code and understanding how it really works to be able to solve the errors.

1.9 Organization

The following chapters include a description of the background information related to speech
recognition (Chapter 2), the methodology followed, including the baseline and the description of
implementation used, as well as the toolkits needed (Chapter3), the results obtained (Chapter4),
approximated cost of the project (Chapter5), and finally the conclusions and possible future
development (Chapter6).
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Chapter 2

State of the art

Automatic speech recognition (ASR), which identify words in spoken language and convert
them into text, has many potential applications including command and control, dictation, tran-
scription of recorded speech, searching audio documents and interactive spoken dialogues. This
chapter presents an overview of the main different approaches to speech recognition.

2.1 Hidden Markov Model in Speech Recognition

Historically, most speech recognition systems have been based on a set of statistical models
representing the various sounds of the language to be recognized. The hidden Markov model
(HMM) is a good framework for constructing such models because speech has temporal structure
and can be encoded as a sequence of spectral vectors inside the audio frequency range [13].

The principal components of a continuous speech recognizer when using the hidden Markov
model are shown in Figure 2.1:

Figure 2.1: Components of a Speech Recognizer using HMM

The language model has the word sequences probabilities, while the acoustic model is gener-
ated from HMM. Then, the acoustic model is synthesized by concatenating phonemes to make
words as defined by a pronunciation dictionary.

The first part of this process is extracting the features of a fixed size acoustic vectors Y=
y1,...,yT obtained by the input audio waveform from a microphone. Then the decoder attempts
to find the sequence of words W = w1,...,wL which is most likely to have generated Y , i.e. the
decoder tries to find

w = argmax{P (W |Y )} (2.1)
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It is used the Bayes’ Rule since P(W/Y) is difficult to model directly, so the previous step it
is transformed into the equivalent problem of finding:

w = argmax{P (Y |W )P (W )} (2.2)

The acoustic model is used to determine the he likelihood p(Y/W) and the language model
to determine the prior p(W). The basic unit of sound represented by the acoustic model is the
phonemes. For example, the word “bat” is composed of three phonemes /b/ /ae/ /t/. About
40 such phonemes are required for English. Each base phoneme is represented by a continuous
density HMM[11]:

Figure 2.2: HMM applied to each phoneme. The output Y is the acoustic vector sequence

where aij are the transition probability parameters and bj() the output observation distributions.
At every time step HMM makes a transition from its current state to one of its connected states:
it can be itself or the next one. The probability of making a particular transition from state
si to state sj is given by the transition probability aij. On entering a state, a feature vector is
generated using the distribution associated with the state being entered, bj(). This way, each
phoneme will have a different output distribution. To obtain a hidden Markov model for a
sequence of phonemes the individual trained hidden Markov models for the separate phonemes
are concatenated.

Finally, to determine how well each state of each HMM fits a frame or a short window of
frames of coefficients that represents the acoustic input, Gaussian mixture models (GMMs) are
used[14]. A mixture model is a probabilistic model which assumes the underlying data to belong
to a mixture distribution. In this case, it is used the Gaussian distribution.

2.2 Deep Neural Network - Hidden Markov Model (DNN-HMM)

Instead of HMM models combined with the Gaussian mixture model, the architecture Deep
Neural Network - Hidden Markov Model (DNN-HMM) showed better results and has been widely
used in speech recognition[19].
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DNN is a feed-forward artificial neural network that has more than one hidden layers. Each
hidden unit uses a nonlinear function to map the feature input from the layer below to the current
unit. In DNN-HMM models the output of the DNN are fed to the HMM.

Figure 2.3: DNN-HMM model structure

2.3 End-to-end ASR

The previous approaches (traditional phonetic-based like all HMM-based models) required
separate components and training for the pronunciation, acoustic and language model. Acoustic
models take acoustic features and predict a set of subword units (phonemes). Then the pronun-
ciation model, which is a hand-designed lexicon, maps a sequence of phonemes produced by the
acoustic model to words. Finally, the language model is in charge of assigning probabilities to
word sequences.

Training independent components is complex and suboptimal compared to training all compo-
nents jointly. That is why there has been a growing popularity in developing end-to-end systems
over the last several years, which attempt to learn these separate components jointly as a sin-
gle system[5]. This is valuable since it simplifies the training process and deployment process.
Two main approaches for this are Connectionist Temporal Classification (CTC) and sequence to
sequence (seq2seq) models with attention.

2.3.1 Connectionist Temporal Classification

This first method uses Recurrent Neural Networks (RNN). In a traditional neural network
we assume that all inputs (and outputs) are independent of each other, but RNN make use of
sequential information[18].

This kind of networks are used in Language Modelling, Machine Translation or Speech Recog-
nition, for example. RNN are typically trained as frame-level classifiers in speech recognition.
That means that a separate training target is required for every frame, which in turn requires the
alignment between the audio and transcription sequences to be determined by the HMM. How-
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ever, the alignments are irrelevant to most speech recognition tasks, where only the word-level
transcriptions matter. Connectionist Temporal Classification (CTC) is a function that allows an
RNN to be trained for sequence transcription tasks without requiring any prior alignment between
the input and target sequences[15]. Using CTC, the output layer of the RNN contains a single
unit for each of the transcription labels (characters, phonemes etc.), plus an extra unit referred
to as the ‘blank’ which corresponds to a null emission.

For a given transcription sequence, there are as many possible alignments as there different
ways of separating the labels with blanks. If using ’/’ to denote blanks, the alignments (/, a, /,
b, c, /) and (a, /, b, /, /, c) both correspond to the same transcription (a, b, c). Also, when the
same label appears on successive time-steps in an alignment, the repeats are removed: therefore
(a, b, b, b, c, c) and (a, /, b, /, c, c) also correspond to (a, b, c). Intuitively the network decides
whether to emit any label, or no label, at every timestep. Considering these decisions together
define a distribution over alignments between the input and target sequences[16]. CTC then uses
a forward-backward algorithm to sum over all possible alignments and determine the normalized
probability of the target sequence given the input sequence.

CTC assumes that the label outputs are conditionally independent from each others. Jointly,
the RNN-CTC model learns the pronunciation and acoustic model together, however it is inca-
pable of learning the language model due to conditional independence assumptions similar to a
HMM.

2.3.2 Sequence to sequence learning with attention mechanism

Attention Mechanisms in Neural Networks are based on the visual attention mechanism found
in humans. Human visual attention models focus on a certain region of an image with “high
resolution” while perceiving the surrounding image in “low resolution”, and then adjusting the
focal point over time. This visual attention can be applied also to speech recognition models.

Unlike CTC-based models, attention-based models do not have conditional-independence as-
sumptions and can learn all the components of a speech recognizer including the pronunciation,
acoustic and language model directly

• Sequence to sequence learning

Attempts to address the problem of learning variable-length input and output sequences
using an encoder RNN to map the sequential variable-length input into a fixed-length vector.
A decoder RNN then uses this vector to produce the variable-length output sequence.

• Attention mechanism

Sequence to sequence models can be improved by the use of an attention mechanism that
provides the decoder RNN more information when it produces the output[8][9]. At each
output step, the last hidden state of the decoder RNN is used to generate an attention
vector over the input sequence of the encoder. The attention vector is used to propagate
information from the encoder (which encodes the input sequence to an internal represen-
tation) to the decoder (which generate the output sequence) at every time step, instead
of just once, as with the original sequence to sequence model.
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Chapter 3

Methodology

This chapter presents the methodology used to develop this project and the process followed
to be able to get our final results.

3.1 Baseline

The TALP group of UPC had never trained before an end-to-end speech recognition system
as it is quite new. We found it interesting to have a model trained end-to-end that could be
used in the future, and the one proposed in ”Listen, Attend and Spell” (LAS) paper[6] was a
popular approach in speech recognition community during the last years. This system combines a
seq2seq model with an attention mechanism, but it had never been applied to speech recognition
before. Very recently(January 2018), new approaches have been proposed, exploring a variety
of structural and optimization improvements to the LAS model, which significantly improve
performance[7].

Listen, Attend and Spell is a neural network that learns to transcribe an audio sequence signal
to a word or phoneme sequence, depending on the dataset used. It is not a HMM based model,
and it learns all the components of a speech recognizer jointly. It consists of an encoder (called
listener) and a decoder (called speller), both recurrent neural Networks. While the listener is
a pyramidal RNN that converts low level speech signals into higher level features, the speller
converts theses high level features into output characters using the attention mechanism. The
listener and the speller are trained together.

If x = (x1;...;xT) is the input sequence of filter bank spectra features, and y = (<sos>; y1;....;
yS; <eos>) the output sequence of characters (where yi are all the numbers and characters of the
alphabet), the Listen function transforms the original signal x into a high level representation h =
(h1;...; hU) with U<T, while the AttendAndSpell function consumes h and produces a probability
distribution over character sequences:

Figure 3.1: Listen, Attend and Spell model
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• Encoder (Listener)

The Recurrent Neural Network used in the listener it is a Bidirectional Long Short Term
Memory (BLSTM)[27]. In order to reduce the length T of the input sequence x to the
length U of h, it has a pyramid structure. It is quite common in speech because the signals
can be hundreds to thousands of frames long. This helps to the next step (Attend and
Spell) because otherwise it would take a lot of time extracting the relevant information
from a large number of input time steps.

Figure 3.2: Listener architecture

The structure of the pyramid BLSTM reduces the time resolution by a factor of 2 in every
layer. In the paper, 3 pyramid BLSTM layers are used, so the time resolution is reduces
23=8 times. Besides, it also reduces the computational complexity.

• Decoder (Speller)

Figure 3.3: Speller architecture

The Attend and Spell function produces a probability distribution over the next character
conditioned on all the characters seen previously. Several parameters are involved. We have
a decoder state, si, which is a function of the previous state si-1, the previous character
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emitted yi-1 and the previous context vector generated by the attention mechanism, ci-1.
The decoder stage is a RNN with 2 layer LSTM.

si = RNN(si-1, yi-1, ci-1) (3.1)

The mentioned context vector ci encapsulates the information in the acoustic signal needed
to generate the next character, and it is a function of si and h. To create the context vector
ci it is necessary to compute the scalar energy for each time step u using vector hu and si,
convert it into a probability distribution over time steps using softmax function and then
linearly blend the listener features hu at different time steps.

ci = AttentionContext(si,h) (3.2)

A multilayer perceptron with softmax outputs over characters produces the probability
distribution.

P (yi|x, y<i) = CharacterDistribution(si, ci) (3.3)

3.2 LAS Implementation

The implementation of LAS network was not provided by the authors, and it was challenging
to find one, although we finally succeed. Nabu [26] is an Automatic Speech Recognizer frame-
work for end-to-end networks built on TensorFlow[1]. It was still under-development during the
development of this thesis, so it was even more challenging. It works in different stages. First of
all the data preparation is needed, then we can train the model and finally test it. At every step
there are some configuration files specifying the parameters of the neural network.

3.2.1 Differences with respect to the paper

There are some differences between the model raised in the LAS paper explained in 3.1 and the
implementation of Nabu. Some of them are related to the model and others to the parameters
used to train it.

The original paper specifies that 3 layers of 256 nodes per direction are used in the encoder
(Listener), but in the Nabu implementation there are 2 layers of 128 units in each layer. There is
also another non-pyramidal layer added during training.The number of timesteps to concatenate
in each pyramidal level is 2 in both cases.

The dropout it is not specifically defined in the paper, in the implementation it is 0.5. This
technique randomly selects neurons that are ignored during training[29]. They are “dropped-
out” randomly. This means that their contribution to the activation of downstream neurons is
temporally removed on the forward pass and any weight updates are not applied to the neuron
on the backward pass. It is also added a Gaussian input noise during training, and its standard
deviation is set to 0.6.
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In the case of the decoder (Speller), the number of layers proposed by the authors are two,
with 512 nodes each one, and Nabu’s has one layer of 128 units. In both cases the weights are
initialized with a uniform distribution U(-0.1, 0.1).

In the training parameters the biggest differences are in the initial learning rate and its decay.
In LAS paper the initial learning rate it is defined as 0.2 with a geometric decay of 0,98, and
in the implementation it is 0.01 with an exponential decay of 0.1. Also the batch size is quite
different. A mini-batch is a subset of the training set that is used to evaluate the gradient of
the loss function and update the weights[20]. In the paper DistBelief framework[10] has been
used, with 32 replicas each with a minibatch of 32 utterances. The size of the minibatch in the
implementation is 128.

Nabu LAS
Encoder

Layers 3 2+1 non-pyramidal during training
Units/layer 256 per direction 128 per direction

Decoder
Layers 2 1

Units/layer 512 128
Beam width 32 16

Training
Initial learning rate 0.2 0.01

Decay Geometric: 0.98 Exponential: 0.1
Batch size 32 utterances 128 utterances

Table 3.1: Differences between Nabu’s implementation and parameters specified in the paper

3.2.2 Kaldi toolkit

Kaldi is a toolkit for speech recognition that has as input any database and outputs some
files with an specific format containing all the dataset content and information[25]. The main
motivation to use Kaldi is that it is easier to work with these generated files rather than with
the downloaded corpus. In fact, many of the speech recognition systems implemented nowadays
assume that the input data is the resulting after using Kaldi toolkit, although it is also necessary
to have the corpus downloaded because some of the Kaldi files refer to the original audio files.
Every file has to be understood in order to use it in any implementation.

The most important files are the following:

1. Text: utterance-by-utterance transcript of the corpus.

2. Segments: contains the start and end time for each utterance in an audio file

3. Wav.scp: contains the location for each of the audio files.

4. Utt2spk: contains the mapping of each utterance to its corresponding speaker

5. Spk2utt: contains the speaker to utterance mapping.

The ones that will be needed for the Nabu implementation are text and wav.scp files.
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3.2.3 Configuration files

The configuration files are called recipes. It is necessary to have a recipe for every model and
corpus to be trained.

Figure 3.4: Relation between the configuration files

• database.conf
Contains the paths to wav.scp and text files from Kaldi, the output, and the processors
(feature and text) are set.

• Feature and text processors
The type of processor (audio or text) and some features are defined. In case of the
text processor it is necessary to specify the alphabet of the corpus: all the possible input
characters from the transcriptions.

• model.cfg
Here the structure of the RNNs is defined: The types of inputs (features) and outputs (text)
are set and also the parameters of the encoder (listener) and decoder (speller), for example
the number of layers and the units of each layer. For the decoder, we have to specify the
number of outputs, that corresponds to the number of characters in the alphabet. It will
change depending on the corpus used.

• trainer.cfg
We choose the training parameters: the loss function to be minimized, the number of
epochs (number of passes over the entire database), the initial learning rate, etc.

• Test and validation evaluators
Features for the test and validation steps are set.

3.2.4 Data preparation

When all the network parameters are defined, the features computation and the target nor-
malization for training and testing are done in the stage called data preparation. Features are
extracted by pointing to the feature processor defined before and the audio features are extracted,
while the target normalization points to the text processor and it is used to normalize targets
to make them usable for training. Some examples of normalization steps are replacing unknown
characters with a fixed label or making everything lower case. In this stage two directories for
each division of the dataset (train, test, and validation) are created inside the output defined in
the file database.conf explained at 3.2.3: features and normalized. These directories contain the
necessary files for the next steps.
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3.2.5 Training and testing

In the training step, the model is trained to minimize a loss function (defined in trainer.cfg).
During the training, the model can be evaluated using the validation evaluation file to adjust the
learning rate if necessary. Then, we can run the model with the test subset of data, and obtain
the percentage of incorrect characters.

3.2.6 Decoding

In the decoding stage, the model is used to decode the test set and we can see the resulting
best results written in the output. Although the error it is obtained in the test stage, it can be
useful to have both ground truth transcriptions and the output ones if we want to use another
metric.
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Chapter 4

Results

This chapter presents the results obtained with the implementation presented in Chapter 3.

4.1 Computational requirements

Experiments have been run with the computational resources available at the Image Processing
Group of the Universitat Politecnica de Catalunya. When dealing with deep learning projects,
one of the main concerns is the available computation resources, as you are often working with
large datasets. This is why GPI has a cluster of servers which is shared between all the research
group and in which we ran our experiments. For each experiment, we must ask for the resources
needed (number of GPU’s/CPU’s, reserve RAM) and the task is sent to a queue of processes.
As soon as there is enough resources as you demanded, your process start running. The internal
policy of GPI allows one GPU per BCs student. It was also needed to access to the VEU server
in order to obtain the datasets.

4.2 Dataset

After realizing that the Nabu implementation was under development and a lot of test had
to be done, we ended up choosing a small dataset, TIMIT. Before that, we tried other ones like
AMI and Fisher also available from the VEU server.

The dataset used for training the system, the TIMIT corpus [21], consists in phonemically and
lexically speech transcriptions of American English speakers of both genders and eight different
dialects. It contains a total of 6300 sentences, 10 sentences spoken by each of 630 speakers
in 16-bit, 16kHz waveform files for each utterance, and its phonetic and word transcriptions.
This corpus has been chosen because it is quite smaller than the other datasets used in speech
recognition (AMI, Fisher, etc.) and as the implementation was under-development yet it was
good to be able to test the code without spending so many time on it. The alphabet of this
corpus consists on 48 phonemes, including the silence.

The data is organized in the following way: inside every set (train, test, validation), the data
is separated by the dialect regions mentioned. In the directory of every region, there are all the
speakers speaking that dialect named as: speaker initials (3 characters) plus a number from 0 to
9 to differentiate speakers with identical initials.

Every speaker has 10 sentences spoken, and there are 4 files for each sentence:

• .phn: phonetic transcription file

• .wav: speech waveform file
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• .wrd: word transcription file

• .txt: Associated orthographic transcription of the words the person said.

Depending on the dialect region and the suggested training and testing set, the TIMIT corpus
could be summarized as follows:

dr1 dr2 dr3 dr4 dr5 dr6 dr7 dr8 Total
Train TIMIT 38 76 76 68 70 35 77 22 462

Test TIMIT 11 26 26 32 28 11 23 11 168

Total 49 102 102 100 98 46 100 33 630

Table 4.1: TIMIT corpus split in train and test sets depending on the dialect region

Where the dialect regions are:

• dr1: New England

• dr2: Northern

• dr3: North Midland

• dr4: South Midland

• dr5: Southern

• dr6: New York City

• dr7: Western

• dr8: Army Brat (moved around)

The data provided is already subdivided into portions of training and testing.

Some of the criteria for this division are using 20-30% of the corpus for testing and 70-80%
for training, no speaker should appear in both the training and testing portions, all the dialect
regions should be represented in both subsets, with at least 1 male and 1 female speaker from
each dialect...

With these conditions, two test sets are proposed: the core test set, and the complete test
set. For these experiments, the smaller one has been used. The resulting amount of data used
is the following:

• Train: 462 speakers, 8 sentences per speaker.

• Validation: 50 speakers, 8 sentences per speaker.

• Test: 24 speakers, 8 sentences per speaker.
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4.3 Evaluation metric

The evaluation of Speech recognition models, as well as machine translation ones, is usually
done with WER metric: Word Error Rate. The main difficulty when measuring performance is
that the recognized sequence can have a different length from the reference one. That is why it
is not possible to evaluate the models only looking at the mistakes: it is also necessary to know
the insertions or the deletions. It is defined like this:

WER =
Sw +Dw + Iw

Nw
(4.1)

Where,

• Sw: number of substitutions

• Dw: number of deletions

• Iw: number of insertions

• Nw: number of words in the reference sentence.

This metric is used working at the word level, but as TIMIT uses phonemes, the proper metric
to be used is PER: Phoneme Error Rate. The way to compute it is quite similar, but using the
total number N of phonemes and the minimal number of character insertions I, substitutions S
and deletions D required to transform the reference text into the output.

Since the number of mistakes can be larger than the length of the reference text and lead to
rates large than 100% (for example, a ground-truth sentence with 100 phonemes and an output
which contains 120 wrong phonemes give a 120% error rate), sometimes the number of mistakes
is divided by the sum (I + S + D + C ): the number of edit operations (I + S + D) and the
number C of correct symbols, which is always larger than the numerator.

Another way to evaluate this kind of datasets is computing the accuracy. In this case we just
need to substract 100-PER:

Accuracy = 100− PER =
Nw − S −D − I

Nw
x100% (4.2)

4.4 Experiment analysis

The model was only trained with the TIMIT corpus, but different setups have been tried.

Apart from the differences between the Nabu’s parameters and the paper ones (Section 3.2.1,
two different trainers (Section 3.2.3) have been tried: the standard one and the fisher one. The
fisher trainer uses the Fisher Information Matrix, which essentially determines the asymptotic
behavior of the estimator[12][22]
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In all the experiments, the frequency of evaluating the validation set is every 500 steps, and
the number of times the validation performance can be worse before terminating the training is
five. If after a worse validation comes a better one, the the number of tries (5) is reset.

To have a baseline of the error, we decided to solve the task by predicting always the phoneme
with most probability of appearance in the test set. In the figure below (3.4) we can see the
number of times every phoneme appears. The most probable is the phoneme ”cl” which we can
find it 611 times of a total of 7407 phonemes in the test set. This is a 8.2490% probability of
appearance. If we always assign this phoneme, we would get a PER of 100-8.2490 = 91.7510%

Figure 4.1: Frequency of the phonemes appearance

Now we will revise the training and validation loss curves for the different experiments we
made:

• Fisher trainer with Nabu’s parameters

Figure 4.2: Training (left) and validation (right) losses of the model trained with Fisher trainer
and Nabu’s parameters

PER = 39,21%

As expected, both training and validation loss curves descend, until the validation loss value
does not get smaller. With this configuration, the model stops training after 4.400 steps.
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• Fisher trainer with LAS parameters

Figure 4.3: Training (left) and validation (right) losses of the model trained with Fisher trainer
and LAS parameters

PER = 31.54%

In this case, the behavior is quite similar, but the validation loss does not get stuck until
5.000 steps.

These results are not the best because the fisher trainer was created thinking about transfer
learning: the idea is to store the knowledge gained and apply it to a different but related
problem. This method can lead to a problem called catastrophic forgetting, which means
that the neural network forgets all that was learned previously. It is possible to solve this
using Elastic Weight Consolidation, which constrains important parameters to stay close
to their old values using the Fisher information matrix.

• Standard trainer with Nabu’s parameters

Figure 4.4: Training (left) and validation (right) losses of the model trained with the standard
trainer and Nabu’s parameters

PER = 31,94%

When training with the standard trainer and Nabu’s parameters, we can observe that the
PER is better than when training with the same parameters but the Fisher trainer. The
result is quite similar to the previous experiment, were both trainer and parameters are
changed. It took a little bit more to train the model, since we can see the validation loss
converges after 5.500 steps.
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• Standard trainer with LAS parameters

Figure 4.5: Training (left) and validation (right) losses of the model trained with standard trainer
and LAS parameters

PER = 27.29%

This is our best result and it is obtained using the standard trainer and the parameters
defined in the paper.

The behavior of both models trained with the standard trainer is quite similar. We can see
that the main difference is that with LAS parameters the validation loss does not converge
until 7.500 steps, while with Nabu’s parameters it stops at 5.000 steps.

Model DEV TEST
Fisher trainer and Nabu’s parameters 36.36% 39.21%

Fisher trainer and LAS parameters 29.92% 31.54%
Standard trainer and Nabu’s parameters 30.20% 31.94%

Standard trainer and LAS parameters 25.12% 27.29%

Table 4.2: Phoneme error rates of evaluated models

As in the TIMIT corpus it is defined the train and test sets (Section 4.2) we can compare
the results to other experiments that have been carried out with the Core Test Set (the one we
used).

Model DEV TEST
Large margin GMM[28] -% 33%

CTC end to end training[17] 19.05% 21.97%
DBLSTM hybrid training[17] 17.44% 19.34%

CNN limited weight sharing[2] - 20.50%
Bayesian triphone HMM[24] - 25.6%

CNN 3hidden layer (no pre-training)[3] - 20.07%
RNN seq2seq with attention end-to-end training(our work) 25.12% 27.29%

Table 4.3: Reported results on TIMIT Core Test Set
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Chapter 5

Budget

This thesis has been developed without any aim to create any kind of product to be sold,
so there will not be any analysis on this matters. As we have used the resources available at
the Image Processing Group (GPI) at UPC there has been no real cost for the hardware needed.
However, we can make an approximation about the cost we would have had if those resources
were not provided by the research group.

The amount of hours of CPU and GPU that I have used along the last months when developing
the thesis is:

• cpu: 202h

• gres/gpu: 98h

For the gpu, taking the lower prize (0.5e/h), the amount spent would be 49e. But looking
at cloud computing service of Amazon Web Services (AWS) and searching for the most similar
gpu, the prize per hour goes up to 0.9e/h, so the expense is around 88e.

The other cost that may be considered is the wage of the engineers working on the project, as
all the software used is open-source and don’t suppose any cost. I consider that my position was
of junior engineer, while the two professors who were advising me had a wage/hour of a senior
engineer. The salary costs, considering that the length of the project has been of 20 weeks,
as depicted in the Gantt diagram in Figure 1.2, amounts to 6.000efor the junior engineer and
4.800etaking in count both senior engineer.

Amount Wage/hour Dedication Total

Junior engineer 1 10,00 e/h 30 h/week 6,000 e

Senior engineer 2 30,00 e/h 4 h/week 4,800 e

Computation 1 0.9 e/h 98h 88 e

Total 10.888 e

Table 5.1: Budget of the project
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Chapter 6

Conclusions

This project’s main goal has been to train an end-to-end speech recognition system so it can
be used in the Speech2Signs project or in any future work of the TALP research group at UPC. As
shown in the current manuscript, we have successfully accomplished this main goal. To achieve
such objective, we have reached a better understanding of the techniques used to process speech
in the deep learning framework through the process of running the speech recognition system.

This has not been an easy journey and we are not saying that there is no space for improve-
ments, but we had the chance to learn about one of the most trendy approaches in speech
recognition from the very last years.

After facing with an under-development implementation, it took more time than expected
to have the system working, so it let us few time to make the experiments (like trying other
datasets). However, we finally have trained an end-to-end model with sequence to sequence
learning improved with the attention mechanism, and tried it with different configurations in
order to obtain the lowest Phoneme Error Rate.

The system we have been working on was proposed in Listen, Attend and Spell (LAS)[6].
LAS is trained end-to-end and has two main components. The first component, the listener, is
a pyramidal acoustic RNN encoder that transforms the input sequence into a high level feature
representation. The second component, the speller, is an RNN decoder that attends to this high
level features and spells out one character at a time. The main difference in the implemented
system is that we have trained it with a phoneme-based dataset (TIMIT) instead of using word-
based datasets.

As a future work, we want to change the dataset to another one not containing phonemes but
words, and then the system will be ready to be used as the first module of Speech2Signs. Also,
we want to reproduce fresh new research (from 18th January 2018) that furhter extends the LAS
architecture by using an improved attention mechanism (i.e. based on multi-heads) [7].
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