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Abstract

Neural Networks (NNs) have undergone a remarkable evolution, transitioning from
academic labs to key technologies across various domains. This proliferation underscores
their capability and versatility. As these models become integral to critical decision-
making processes, the demand for methods to understand their inner workings likewise
becomes more pronounced. This thesis addresses the challenge of understanding NNs
through the lens of their most fundamental component: the weights, which encapsulate
the learned information and determine the model behavior.

The NN weight space contains complex local and global structures which makes
it a challenging domain. Addressing these challenges, this thesis develops innovative
representation learning methods for the domain of weight spaces. The proposed methods
embed and disentangle model weights in a representation space. The representation
space allows not only to analyze existing models but also to generate new models with
specified characteristics. Such an analysis builds on populations of models, to develop a
nuanced understanding of the structure of NN weights.

At the core of this thesis is a fundamental question: Can we learn general, task-
agnostic representations from populations of Neural Network models? The key contri-
bution of this thesis to answer that question are hyper-representations, a self-supervised
method to learn representations of NN weights. Work in this thesis finds that trained
NN models indeed occupy meaningful structures in the weight space, that can be
learned and used. Through extensive experiments, this thesis demonstrates that hyper-
representations uncover model properties, such as their performance, state of training,
or hyperparameters.

Moreover, the identification of regions with specific properties in hyper-representation
space allows to sample and generate model weights with targeted properties. This thesis
demonstrates applications for fine-tuning, and transfer learning to great success. Lastly,
it presents methods that allow hyper-representations to generalize beyond model sizes,
architectures, and tasks. The practical implications of that are profound, as it opens
the door to foundation models of Neural Networks, which aggregate and instantiate
their knowledge across models and architectures.

Ultimately, this thesis contributes to the deeper understanding of Neural Networks
by investigating structures in their weights which leads to more interpretable, efficient,
and adaptable models. By laying the groundwork for representation learning of NN
weights, this research demonstrates the potential to change the way Neural Networks
are developed, analyzed, and used.
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Zusammenfassung

Neuronale Netze (NNs) haben eine bemerkenswerte Evolution durchlaufen, von akademis-
chen Laboren zu Schlüsseltechnologien in verschiedenen Bereichen. Diese Ausbreitung
unterstreicht ihre Vielseitigkeit und Fähigkeiten. Da diese Modelle integraler Bestandteil
kritischer Prozesse werden, wird auch die Nachfrage nach Methoden, ihre inneren Abläufe
zu verstehen, immer ausgeprägter. Diese Dissertation adressiert die Herausforderung,
NNs durch die Linse ihrer grundlegendsten Komponente zu verstehen: die Gewichte,
welche die gelernte Information beinhalten und das Modellverhalten bestimmen.

Angesichts der hohen Informationsmenge und der herausfordernden Struktur der
NN-Gewichte entwickelt diese Arbeit innovative Methoden des Repräsentationslernens
für diesen Domäne. Diese Methoden betten Modellgewichte in einen aussagekräftigen
Repräsentationsraum ein. Solchhe Repräsentationen ermöglichen nicht nur die Analyse
bestehender Modelle, sondern auch die Generierung neuer Modelle mit spezifizierten
Eigenschaften. Eine solche Analyse baut auf Populationen von Modellen auf, um ein
nuanciertes Verständnis der Gewichtsstruktur zu entwickeln.

Im Kern dieser Dissertation steht eine grundlegende Frage: Können allgemeine, auf-
gabenagnostische Repräsentationen aus Populationen von neuronalen Netzwerkmod-
ellen gelernt werden? Der Schlüsselbeitrag dieser Dissertation zur Beantwortung dieser
Frage sind hyper-representations, eine selbstüberwachte Methode, um Strukturen inner-
halb der NN-Gewichte zu lernen. Beiträge in dieser Dissertation finden heraus, dass
trainierte NN-Modelle tatsächlich bedeutungsvolle Strukturen im Gewichtsraum beset-
zen, die gelernt und genutzt werden können. Durch umfangreiche Experimente demon-
striert diese Dissertation, dass hyper-representations Modellcharakteristiken, wie ihre
Leistung, ihren Lernfortschritt oder Hyperparameter, aufdecken.

Darüber hinaus ermöglicht die Identifikation von Regionen mit spezifischen Eigen-
schaften im hyper-representations Raum das Generieren von Modellgewichten mit
gezielten Eigenschaften. Diese Dissertation zeigt erfolgreiche Anwendungen für Fein-
abstimmung und Transferlernen auf. Zuletzt präsentiert sie Methoden, die es hyper-
representations ermöglichen, über Modellgrößen, Architekturen und Aufgaben hinaus
zu generalisieren. Dadurch sind erstmals Grundlagenmodellen von NNs möglich, die
Wissen über Modelle und Architekturen aggregieren und instanziieren können.

Letztendlich trägt diese Dissertation zum tieferen Verständnis Neuronaler Netze
bei, indem sie Strukturen in ihren Gewichten untersucht, was zu interpretierbareren,
effizienteren und anpassungsfähigeren Modellen führt. Indem sie die Grundlage für das
Repräsentationslernen von NN-Gewichten legt, zeigt diese Forschung das Potenzial, die
Art zu verändern, wie Neuronale Netze entwickelt, analysiert und genutzt werden.
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Chapter 1

Introduction

Over the past years, Neural Networks (NNs) have transitioned from experimental tools
in laboratory environments to cornerstone technologies in production systems across
the globe. Their applications range from enabling autonomous vehicles to detect and
navigate through complex environments to curating personalized news feeds in tradi-
tional and social media platforms. NNs can digest and generate content across various
mediums—text, audio, images, and video—and even determine insurance policies. As
NNs become increasingly integrated into applications with significant societal impact,
the demand for their trustworthiness and safety becomes paramount.

Trustworthiness in NNs is multifaceted. It is not solely about achieving high
performance and making accurate decisions in challenging conditions. Trustworthiness
also hinges on transparency and explainability. A core part of this is understanding
how and why decisions are made, especially in high-stakes applications. Furthermore,
accountability is integral to trust. This requires implementing robust mechanisms for
identity and version control of models, ensuring that modifications and deployments
are traceable and justifiable. Fundamentally, achieving this level of trust, transparency,
and accountability necessitates a profound understanding of NN models themselves.

Consequently, there is a need for technical solutions to understand the inner work-
ing of NN models. An improved understanding also helps guide NN training and thus
improve the performance of models. On a high level, improved NN model understand-
ing can serve two purposes: (i) model analysis and (ii) model generation. These two
purposes make up one axis on the landscape considered for this thesis, see Figure 1.1.
For both, different perspectives can be considered, which make up the other axis of the
landscape. Along the machine learning (ML) pipeline, three elements can be used to
operate on models: (a) their behavior when confronted with data; (b) their generating
factors, i.e., their hyperparameters, as proxies for model behavior; and (c) the train-
able weights of NN models.

1
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Figure 1.1: Overview of the landscape spanned by applications for and perspectives on Neural
Network models. Due to the rich information and application potential, the focus of this thesis
lies on NN weights for model analysis and generation.

Data is used for model generation in regular gradient-based training to minimize
the loss. More complex hyper-networks generate weights but likewise use gradient
signals from data [61]. Data-based analysis is realized by evaluating model behavior
on holdout and test data. The advantage of using data is that it is close to real-world
usage. On the other hand, it can be limited by the availability and expressiveness of
data as well as suitable evaluation metrics. Hyperparameter analysis predicts model
performance based on hyperparameters. For model generation, hyperparameters are
used as inputs in hyperparameter optimization[75]. These techniques implicitly connect
hyperparameters with model behavior for both analysis and generation. While widely
used, the connection between hyperparameters and behavior is indirect and nonlinear,
which makes modeling and using it a challenging task. Lastly, weight initialization, fine-
tuning, or transfer learning from pre-trained models are an inherent part of NN training.
The weights can also be used directly as inputs for model analysis [43, 119, 159] or
model generation [1, 168]. NN model weights are the immediate outcome of NN training,
and as such determine model behavior. However, they also encode training information
like model accuracy, epoch, and hyperparameters. Therefore, this thesis focuses on
using weights of trained NNs for both model analysis and model generation.

The relation between behavior and weights has complex local and global structures.
To make statements beyond one model and improve understanding of NN models more
broadly therefore requires sufficient coverage of these structures. Hence, research in
this domain requires analyzing not just single models, but a broad spectrum of trained
NNs. By varying the generating factors such as hyperparameters, datasets, and archi-
tectures and training multiple models, diverse populations of trained NN models can
be generated. Studying diverse populations of models allows the findings to generalize
to real-world models. Therefore, the scope of this thesis is on model populations.
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Prior to the work on this thesis, a unified, task-agnostic representation learning
method on populations of NN weights that is suitable for both model analysis and
model generation did not exist.

The goal of this thesis is therefore to develop suitable repre-
sentation learning methods for Neural Network weight spaces,
which can be used to analyze models in a model representation

space, as well as generate new weights with targeted properties.

The following paragraphs discuss the complexities in NN training, structures, and
challenges in NN weight spaces to identify the research gap and research questions.
Subsequently, the contribution of this thesis to address these questions is summarized.

Neural Network Weight Spaces

The Unreasonable Success of Neural Networks Over the past decade, Neural Net-
works (NNs) have been improved tremendously, and are the state of the art across many
domains, such as computer vision [40, 65], natural language processing [15, 37, 158], text-
to-speech systems [138], or even video generation [13]. The success of NNs is impressive,
considering that the training of NNs is a hard optimization problem. NN training is NP-
complete [11]. Further, the loss surface and optimization problem are highly non-convex
[32, 57, 101]. This makes navigating the loss surface to a global minimum a more chal-
lenging task. Due to the non-convexity, NN models with different random initialization
or hyperparameters may end up in different local minima on the loss surface and therefore
also have different model weights. With recent growing model sizes, NN training is also
increasingly high dimensional, which requires the tuning of ever more optimization pa-
rameters. These properties of the optimization problem not only make training difficult.
The trained model as the outcome of the optimization is also sensitive to hyperparameter
choices [62, 103, 174]. Recent work investigates the mode connectivity of different train-
ing outcomes [1, 6, 41, 50, 51, 131]. Nonetheless, it remains an open question, whether
trained models with different model weights learn qualitatively different representations.
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Introduction

The gaps in understanding the relation between the trained NN weights and the
model behavior create the two major challenges for NNs identified earlier: (i) predict-
ing model behavior to diagnose trained models [26, 117, 174], for hyperparameter
optimization [8, 22], or neural architecture search[44]; and (ii) generating weights
with desirable properties as initializations [30, 54, 64, 187], for fine-tuning or transfer-
learning [122, 176].

Structures in Neural Network Weights This thesis attempts to address both
challenges by using the weights only. This assumes sufficient structure in the weights of
populations of NN models, and that such structure encodes latent factors of the mod-
els. From an information theory standpoint, NNs learn structured information in the
data, during which the weights also become structured. Indeed, weight matrix entropy
as a proxy for disorder is reduced during training [117].

Formally, NN training is a combination of a dataset D, architecture A, task T ,
loss L and training hyperparameters λ, all of which are structured. Concretely, the
dataset D contains samples x which are structured, i.e. images. Datasets for super-
vised learning tasks further contain labels y for each sample. The training task T and
corresponding loss L determine what signal from the data is learned. The NN architec-
ture A with training hyperparameters λ imposes structure in how data and weights
are processed. NN training finds optimal weights W∗ by minimizing the training loss
as W∗ = argminW L(W,D,A, λ). Through this optimization, the information from
the data is encoded in the model weights W, imposing structure on W. Consequently,
the structure in the weights W∗ reflects their latent generating factors D, L, λ and
A. Since model behavior and performance are also a consequence of {D,L, λ,A}, they,
too, are reflected in the NN weights. The perspective on structure in a single model
can be extended to structure in the weight space, the space spanned by the individual
weight dimensions, in which a single model is one point. Extending the earlier thoughts,
by induction, the notion of structure in weights of individual models also implies struc-
ture in populations of trained models.

This leads to the main hypothesis for this thesis:

(i) Neural Network models populate a structure in weight space;

(ii) These structures encode properties and generating factors of models.

(iii) Such structures can be exploited for discriminative and generative tasks.
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Challenges, Thesis Objectives, and Contributions

Challenges of Neural Network Weight Spaces Operating in weight space to
identify such structure poses several challenges. First, with growing models, the size of
the parameter space also grows. The larger space requires more samples to have sufficient
coverage. The correspondingly increasing cost of training those models exacerbates
the curse of dimensionality of weight spaces. Secondly, changes to the architecture
affect the parameter count and thus the dimensionality of the space, complicating the
comparison of models. In addition, NN weights contain invariances and equivariances
that translate to symmetries in weight space. For example, changing the order of
two neurons in a layer with all ingoing and outgoing connections does not change the
underlying function of the model, but it does change the position in weight space [67].
Similarly, piece-wise linear activation functions allow for linear up and down scaling in
subsequent layers which results in unchanged model behavior[39]. Further symmetries
can arise if a model has excess capacity [58]. Due to these symmetries, there is a large
finite number of equivalent versions of every model in weight space. The number of
equivalent versions grows with the factorial of layer width, and can even be infinite for
continuous equivalence classes. This property of the NN weight space forms complex
local and global structures which complicate working with weights to identify structure
and renders notions of neighborhood or distance murky.

Learning Representations of Neural Network Weights To address these chal-
lenges, previous work extracts robust features [43, 119, 159], aligns models in weight
space [1], uses permutation invariant or equivariant architectures [2, 128, 184, 185], or
prioritizes single modes in weight generation [61, 88, 89, 168, 169, 179, 182]. These in-
dividual approaches are designed to either a) extract features for model analysis, or to
b) generate weights. However, there may be synergies between the two. Generating
weights may profit from an understanding of beneficial structures. Likewise, generative
capabilities may provide more generalizing features to use for analysis. Similar syn-
ergies have been demonstrated on other domains [18, 137, 181] Prior to the work in
this thesis, no general representations of NN models existed that are suitable for both
model analysis and model generation downstream tasks.
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Therefore, work in this thesis fundamentally is concerned with the following question.

Can general, task-agnostic representations be learned
from populations of Neural Network models?

This overarching question can be broken down into smaller parts:

(i) Do trained NN models populate a structure in weight space?

(ii) How can diverse populations of neural networks be created?

(iii) What are suitable methods to learn model structures in weight space?

(iv) Are model structures in weight space predictive of model properties, such as
model performance or latent generating factors?

(v) Can models be generated by sampling from structures in weight space?

(vi) What are suitable specific downstream tasks to test discriminative (iv) and
generative (v) applications?

Contributions of this Thesis

The work collected in this thesis addresses these questions directly as outlined in Figure
1.2. Fundamentally, it establishes that trained NN models populate meaningful struc-
tures in weight space. It proposes hyper-representations as a self-supervised method to
learn these structures from NN weights. Experiments demonstrate that such representa-
tions of structure in weight space encode information on latent model properties, such as
performance, or hyper-parameters. Further, sampling hyper-representations generates
model weights that are competitive in fine-tuning and transfer-learning, and generalize
to new architectures and tasks. The individual contributions are organized as follows.
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Figure 1.2: Overview of the contribution of the thesis. (a): Chapter 2 investigates local and
global structure in weight spaces as well the potential and challenges of operations on NN
weights. (b): Chapter 3 proposes a blueprint for diverse populations of NNs as a dataset for
the work in this thesis. (c): Chapter 4 introduces hyper-representations as a self-supervised
representation learning method on NN weights, as well as NN weight augmentation methods.
(d): Chapter 5 extends hyper-representations for model generation. (e): Chapter 6 proposes
methods to scale hyper-representations to large models and diverse architectures.

Chapter 2 Challenges in Neural Network Weight Spaces

The contributions of Chapter 2 are centered around establishing properties of the
domain of NN weight spaces. It builds on existing work, it describes the complex global
and local structure in NN weight spaces. For this work, the primary task is to evaluate
the impact of these global and local structures on operations in weight space.

Proposed Methods: The research presented in Chapter 2 is based on the proposi-
tion, implementation, and evaluation of the following methods:

1. Augmentations of NN models to explore local and global structure in weight spaces.

2. Similarity of Behavior to assess similarity in weight space.

3. Analysis and Generation to evaluate the robustness of weight operations.

The empirical evaluation of the NN weight spaces validates the notion of structure
through training. It demonstrates the existence of local and global structures. Further,
it is shown that the operations on weights can become unstable when these complex
relations are not considered.

Conclusion: This chapter establishes fundamental properties of the NN weight
space domain for this thesis. It shows the potential for analysis and generation of NN
weights, but also the need for feature extractors that consider the complex local and
global structure of NN weights.

The work in this chapter has originally appeared as Konstantin Schürholt; Chal-
lenges in Neural Network Weight Spaces ; 2024.
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Chapter 3: Model Zoos

The contributions of Chapter 3 are centered around the generation of diverse datasets
of trained NN models. In the absence of suitable model populations, this chapter
proposes a blueprint for model zoo creation, as well as different diversity metrics. For
this work, the primary task is to identify generating factors of model zoos that result in
sufficient diverse model populations.

Proposed Methods: The research presented in Chapter 3 is based on the proposi-
tion, implementation, and evaluation of the following methods:

1. Supervised Training for populations of NN models.

2. Diversity Metrics to assess the spread of populations in different spaces.

3. Application Examples and Baselines for model zoos.

The empirical evaluation of the model zoo approach demonstrates the ability to
control different aspects of diversity in model populations. It is shown that the diversity
properties of model zoos generalize to different tasks and architectures. The established
baselines in model analysis indicate nontrivial structures in the model zoos.

Conclusion: This chapter contributes the model zoo datasets for all other work in
this thesis. It also outlines the potential for applications of model zoos beyond hyper-
representations and provides a starting point for future research in this domain.

The work in this chapter has originally appeared as Konstantin Schürholt, Diyar
Taskiran, Boris Knyazev, Xavier Giró-i-Nieto, Damian Borth; Model Zoo: A Dataset
of Diverse Populations of Neural Network Models ; Conference on Neural Information
Processing Systems (NeurIPS), Datasets and Benchmarks Track, 2022.

Chapter 4: Hyper-Representations

The contributions of Chapter 4 are centered around method development and ap-
plication of self-supervised representation learning on weights of trained NNs. Going
beyond previous supervised work with hand-crafted feature extractors, this chapter pro-
poses hyper-representations with corresponding self-supervised learning task, architec-
ture, and augmentations for NN weights. For this work, the primary task is to establish
structure in NN weights and uncover latent generating factors of the NN models.

Proposed Methods: The research presented in Chapter 4 is based on the proposi-
tion, implementation, and evaluation of the following methods:
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1. Self-Supervised Learning Task for representation learning on NN weights.
2. Data Augmentation to increase sample efficiency and include inductive biases.
3. Transformer Architecture with tokenization scheme for NN Weights.

The empirical evaluation of the implemented hyper-representation approach demon-
strates the ability to learn task-agnostic, lower-dimensional representations of NN
weights. It is shown that these representations are highly predictive of model properties
such as accuracy or hyperparameters, and generalize to new tasks and models. Further-
more, the proposed augmentations for NN weights improve generalization.

Conclusion: This chapter contributes to the core of this thesis by demonstrating
the feasibility, utility, and effectiveness of Representation Learning on NN weights.
It also outlines the potential for applications of hyper-representations and lays the
groundwork for future research in this domain.

The work in this chapter has originally appeared as Konstantin Schürholt, Dimche
Kostadinov, Damian Borth; Self-Supervised Representation Learning on Neural Net-
work Weights for Model Characteristic Prediction; Conference on Neural Information
Processing Systems (NeurIPS), 2021.

Chapter 5: Generative Hyper-Representations

The contributions of Chapter 5 extends hyper-representations for generative tasks
to allow for NN weight generation. Compared to previous hyper-representations, this
chapter adjusts the self-supervised learning task to improve reconstruction quality,
robustness, and smoothness. Further, it proposes sampling methods to target specific
model properties. For this work, the primary task is to identify the distribution of
targeted models in latent space.

Proposed Methods: The research presented in Chapter 5 is based on the proposi-
tion, implementation, and evaluation of the following methods:

1. Layer-Wise Normalization of NN weights to improve reconstruction.
2. Sampling Schemes to identify distributions of targeted properties.
3. Fine-tuning and Transfer Learning of sampled models.

The empirical evaluation of the generative hyper-representation approach demon-
strates the ability to improve reconstruction quality. It is shown that sampling meth-
ods can target the distributions of specific properties in latent space. Furthermore, the
sampled models match or outperform baselines in fine-tuning and transfer learning.
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Conclusion: This chapter builds on previous work by demonstrating the feasibil-
ity, utility, and effectiveness of generative models on NN weights. It shows that a task-
agnostic representation learning method is suitable for analysis and generation tasks.

The work in this chapter has originally appeared as Konstantin Schürholt, Boris
Knyazev, Xavier Giró-i-Nieto, Damian Borth; Hyper-Representations as Generative
Models: Sampling Unseen Neural Network Weights ; Conference on Neural Information
Processing Systems (NeurIPS), 2022.

Chapter 6: Scalable Hyper-Representations

The contributions of Chapter 6 proposes methods for scaling hyper-representations
to much larger models of varying architectures. This work extends previous hyper-
representations in data pre-processing and representation, representation learning
architecture, and sampling methods. For this work, the primary task is to decouple the
representation learning model from the architecture and size of the model population
by consistent tokenization of models.

Proposed Methods: The research presented in Chapter 6 is based on the proposi-
tion, implementation, and evaluation of the following methods:

1. Representation Learning on sequences to scale to large and varying architectures.
2. Model Pre-pocessing by aligning, standardization and sequentialization.
3. Unified Models for discriminative and generative tasks on large models.
4. Novel Sampling Schemes to target new architectures and tasks.

The empirical evaluation of the scalable hyper-representation approach demonstrates
the ability to extend representation learning on NN weights to large models and new
architectures. It is shown that significant trends in models are preserved in embedding
space. Furthermore, the predictive power as well as model sampling generalizes to large
models and unseen architectures.

Conclusion: This chapter builds on previous work by demonstrating the feasibility,
utility, and effectiveness of hyper-representations on ResNet-18 models and beyond. It
shows that a task-agnostic representation learning method is suitable across model sizes
for both analysis and generation tasks.

The work in this chapter has originally appeared as Konstantin Schürholt, Michael
Mahoney, Damian Borth; Towards Scalable and Versatile Hyper-Representation Learn-
ing ; 2024.
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Relevance and Potential Future Impact

Over the past years, weight space learning has become a dynamic research topic and
has been recognized by the Machine Learning community. The project that this thesis
is part of has received a Google Research Scholar Award and a HSG Impact Award.
In the context of this thesis, work on populations of models has continued, extending
populations towards sparsified models [71] and models on remote sensing data [72]. Re-
cently, work done in another lab extends hyper-representations to detect backdoors [95].
In parallel, other groups, too, have begun to work on weight space learning similar to
the work presented in this thesis. Berardi et al. [7] train auto-encoders on weights of
CNN models. Peebles et al. [136] propose a conditional diffusion approach to generate
weights. Several approaches have been proposed to encode implicit neural representa-
tions or neural radiance field models [2, 3, 33, 128, 180, 184] or on RNNs [68].

Work on weight space learning contributes to a deeper understanding of Neural
Networks. Understanding and identifying structure in NN weight spaces can help
analyze models to select ideal candidates and reveal weaknesses or backdoors in models.
It may lead to meaningful notions of provenance for model versioning and intellectual
property protection, and a meaningful similarity metric for model governance and
certification. The general trend of large foundation models for individual domains can
arguably be extended to the domain of NN weights. With the work in Chapter 6, Hyper-
representations trained on the corpus of publicly available models can become foundation
models of Neural Networks that incorporate their collective knowledge. Such models
could be used to generate initializations for new datasets or tasks, meta-learn in latent
space, or manipulate model properties like robustness or sparsity. The future holds the
promise of advancements in this area which may change the way NNs are trained and
used. I hope that the research provided in this thesis can spark new and exciting work
in this direction and provide a foundation in the promising area of weight space learning.
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Chapter 2

Challenges in
Neural Network Weight Spaces

Abstract

The success of Neural Networks (NNs) raises the demand for robustness and analysis of
models. Among the available perspectives on trained models, their weights are especially
interesting as they contain the information the models have learned. We argue, summa-
rizing previous work, that the weights become structured during training, and that this
structure encodes latent information of the models. However, we also identify challenges
of operating in NN weight spaces. Their high dimensionality, lack of interoperability, and
symmetries form complex local and global relations between weights and model behavior.
We perform experiments to evaluate the effect of these challenges and demonstrate that
they affect model analysis and generation in weight space so much that it can render re-
sults random. These results indicate that operating directly in weight space is inadvisable.
Instead, we call for robust methods that consider the properties of NN weight spaces.

2.1 Introduction

In recent years, Neural Networks have become state of the art for complex challenges
across a multitude of fields, demonstrating remarkable success in areas such as natu-
ral language processing with advancements like GPT-3 [15], computer vision through
breakthroughs in image recognition [40, 65] and generative models [28], and reinforce-
ment learning [42, 83, 154].

As the deployment of Neural Networks increases, the need to understand their inner
workings intensifies. Achieving a better understanding of these models is necessary for
ensuring their reliability, improving their interpretability, and thus enabling trust in their
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applications. To this end, there are three principal avenues through which we can gain
insights into Neural Network models: (i) examining their behavior, e.g, by computing
the prediction error on test data; (ii) understanding their generating factors, e.g., by op-
timizing the training hyperparameters; and (iii) analyzing the weights as the outcome of
their training, e.g., evaluating the distribution of weights to determine overfitting. These
perspectives offer a holistic framework for navigating the intricacies of Neural Networks,
providing a structured approach to dissecting and comprehending their functionality.

Model Behavior: Exploring model behavior offers direct insights into how a Neu-
ral Network interacts with data, revealing its strengths and predictive capabilities across
diverse scenarios. Formally, model behavior describes the output y = f(x) of a model
f confronted with data x, but can extend to intermediate internal representations of
the data within the model. Using model behavior is grounded in empirical evidence,
as it assesses the model’s outputs against real-world or synthetic data. However, this
perspective is inherently limited by the quality and diversity of the data used for eval-
uation. If the datasets do not fully represent the complexity of real-world applications
or omit critical edge cases, the analysis cannot uncover significant model limitations.

Training Hyperparameters: There is abundant work trying to connect the gen-
erating factors of models, i.e. their hyperparameters, to model behavior [23, 75]. How-
ever, the relationship between hyperparameters, architectural choices, and model per-
formance is complex. The search space is vast and often requires substantial compu-
tational resources to navigate effectively. Moreover, the relation between generating
factors and the performance of models is highly non-linear, indirect, and incomplete,
which makes modeling the relation a challenging task.

Neural Network Weights: The weights of a Neural Network are the outcome of the
learning process. As such, they encode information on the generating factors, learned fea-
tures, and training progress [43, 119, 147, 159]. Despite their informative potential, the
weight space of Neural Networks poses significant challenges. Navigating the weight space
of Neural Networks presents a difficult challenge due to its inherent high dimensionality,
architectural incompatibilities, as well as complex local and global structures within.

In this work, we explore the potential and pitfalls of working directly with weights.
We begin by establishing that Neural Network weight spaces become structured during
training via the entropy of weight matrices in Section 2.3. Given that weights are
structured and contain latent information on models, we then identify specific challenges
of weight spaces in Section 2.4. Subsequently, we investigate the impact of these
challenges on the relation between similarity in weights and behavior, the usefulness
of weights as inputs to predict model properties, and on aggregation of weights in
Sections 2.5 and 2.6. Our experiments demonstrate that there are complex local and
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global relations between weights and model behavior, which can lead to unintended
behavior in downstream tasks. Consequently, we argue against direct operations in the
raw weight space. Our results highlight the need for robust methods that consider the
global and local structure of weight spaces.

2.2 Related Work

Structure in Neural Network Weights. Different strands of work explicitly or
implicitly identify structure in the weights of trained Neural Networks. Fort and
Jastrzebski [49] identify wedge-shaped substructures, while Benton et al. [6], Draxler
et al. [41], Garipov et al. [51] identify simplexes of connected low-loss regions. Along
similar lines, other work identifies local or global connected substructures in weight
space with homogeneous properties [167, 174]. Martin and Mahoney [117] investigate
the eigenvalue spectrum of weight matrices from a random matrix theory perspective.
They describe the evolution from random to heavy-tailed spectra and apply matrix
entropy to describe increasing order in weights. Different work generates weights for
Neural Network from some latent factors, which implies structure in those weights [61,
88, 89, 136, 148, 163, 182].

Symmetries in Neural Network Weights. Permutation and sign symmetries in
Neural Networks have been known for a long time [10, 63]. Later work added more
continuous equivariances caused by piece-wise linear activation functions [39, 58] Meth-
ods have been proposed to align models in weight space and map Neural Network to a
pseudo-canonical form [1]. Some of these symmetries have also been used as data aug-
mentation and as inductive bias [136, 147].

Feature extractors. Several approaches have been proposed to extract features from
trained weights. Corneanu et al. [26], Eilertsen et al. [43], Unterthiner et al. [159] use
weights, weight-statistics, or derived features to predict properties, the last of which
are invariant to permutation symmetries. Martin et al. [119] extract norm-based and
eigenvalue-based features from the weight matrices, which are likewise invariant to
weight permutations. Another line of work learns representations of weights, which are
either equivariant or invariant by architecture [128, 180, 185] or approximately invariant
via contrastive learning [147].
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2.3 Structure in Neural Network Weights

Using the weights of trained Neural Networks as inputs for downstream tasks implies
that there is information in the weights of converged models. In this context, a necessary
condition for information is some degree of order in these weights. In this section, we
argue that during training, models become structured. Subsequently, we empirically
evaluate the order in weights during training using matrix entropy.

Training a Neural Network involves iteratively adjusting its weights, θ, to minimize
a loss function L(y, fθ(x)), where fθ(x) denotes the network’s output for input x, and
y is the true output. This process inherently imposes a structure on the weights θ,
reflecting the patterns in the training data.

One way of thinking about the structuring of weights during training is the evolution
of weight entropy. Entropy, represented as H(Θ), quantifies the level of disorder within
the weight distribution of a network, where Θ is the distribution of weights. Entropy is
defined as H(Θ) = −

∑
i P (θi) logP (θi), with P (θi) being the probability of a specific

weight configuration θi. However, in the context of Neural Networks, directly computing
H(Θ) is impractical since modeling P (θi) is challenging.

Figure 2.1: Weight entropy over training epochs for populations of CNNs (with ∼ 12k pa-
rameters), AlexNet and ResNet-18 models trained on CIFAR10. Weight entropy is approxi-
mated via the empirical spectral density of the weight matrices. During training, the entropy
of weight matrices decreases as order is induced in the weights.

However, the evolution of the eigenvalue spectrum of weight matrices offers another
perspective on order in weights. Specifically, analyzing the eigenvalue distribution ρ(λ)
of a weight matrix offers insights into the network’s internal structure. A structured
weight matrix will have a characteristic spectral density that differs significantly from
that of a random matrix. For instance, a more sharply peaked ρ(λ) suggests a higher
degree of organization within the weights, acting as a proxy for lower entropy. This
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spectral analysis serves as an indirect measure of the weight space’s organization,
reflecting how training imprints structure on the network’s parameters. We follow
Martin and Mahoney [117] in computing the matrix entropy S which we use as a proxy
for the model’s entropy. To get a strong signal, we considered the largest fully connected
layer, which is usually the (pen-) ultimate layer. The empirical evaluation of that
approach indeed shows decreasing entropy during training, see Figure 2.1. The effect
varies between model sizes. Models with higher capacity relative to the task appear to
go through more entropy reduction than smaller models.

The experiments show that indeed the weights of models become more structured
during training. By induction, the weights of populations of models are also structured,
and shaped by the individual generating factors. That structure can be used to analyze
models or generate new weights. However, the weight space also poses challenges, to
which we turn in the next section.

2.4 Challenges in Neural Network Weight Spaces

In the previous section, we argue that training imposes structure on Neural Network
weights, which contains information on latent generating factors of the models and
encodes their properties. However, using that structure by analyzing and manipulating
Neural Network weights presents significant challenges. The following paragraphs
discuss some of these challenges, the impact of which we experimentally evaluate in the
following section.

Weight Space Dimension. The dimensionality and size of Neural Network weight
spaces grow with network complexity. To reasonably identify structures in that space,
more and more samples are required - a "curse of dimensionality" situation. Beyond the
sheer vastness of this space, larger models incur higher computational costs for training
and evaluation, exacerbating the challenge. This dual issue of increased dimensionality
and computational expense makes optimizing and even comprehensively understanding
the weight space increasingly difficult as models scale. Higher dimensional spaces also
defeat the intuition of lower dimensional spaces [32]. By the law of large numbers,
samples from Gaussian distributions focus almost all of their probability mass on the
shell of a high-dimensional sphere. Further, the distance between points drawn from
Gaussian distributions is almost all equally large [12]. Since Neural Networks are
commonly initialized with Gaussian distributions, these findings carry over to high
dimensional weight spaces and challenge the concept of distance between weights.
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Architectural Incompatibility. The specificity of weights to their network archi-
tectures complicates the direct transfer of learned weights between models. For two
architectures, A and B, with their respective weight spaces ΘA and ΘB, and a weight
vector θA ∈ ΘA, attempting to apply θA directly to B without addressing architectural
disparities usually fails. Even if that is not the case, the mismatch affects the interpre-
tation. Confronted with the same input x, the output f(x) generally varies between pa-
rameters θA and θB: fθA(x) ̸= fθB(x). This limitation highlights the challenge of lever-
aging knowledge across different models, necessitating architecture-invariant strategies
for weight analysis and transfer.

Weight Space Symmetries. In addition to their scale, weight spaces exhibit multiple
forms of symmetries and invariances, which complicate their interpretation. First, most
layers contain permutation invariances: For any layer l, swapping the order of neurons
(and their corresponding weights) does not change the network’s output [63]. If P is a
permutation matrix, then for weight matrix W, W′ = PW (or W′ = WPT ) maintains
the same function: fW(x) = fW′(x). If P is of shape dp × dp, there are dp! unique
permutation matrices. That is, the number of distinct symmetric versions of the same
function grows with the factorial of a model’s width. These multitudes of replications
of the loss landscape over weight space make identifying any structure a very hard
problem, as they introduce a complex global relation between distance and behavior.
Point-symmetric activations like the Sigmoid function introduce additional sign-change
symmetries. In networks with piece-wise linear or point-symmetric activations (e.g.,
ReLU), there are further, continuous invariances. Scaling the weights and biases in one
layer can be compensated by inverse scaling in the subsequent layer, leaving the overall
network function unchanged [39]. Lastly, in highly complex networks, certain weights or
combinations thereof may not significantly contribute to the network’s function, leading
to redundancy. This excess capacity means that multiple, significantly different weight
configurations can produce the same output, obscuring the direct relationship between
specific weights and network behavior [58]. These symmetries in weight space create a
global structure and cause highly nontrivial relations between distance and behavior.

Sensitivity to Perturbations. Training of Neural Network is an inherently noisy
process, where noise can be contributed from the data, the parameter updates, or explic-
itly as regularization [115, 174]. From a weight space perspective, adding perturbations
to weights explores the local relation between weight and behavior. The effect of per-
turbations on the weight has been studied as the shape of the Neural Network loss land-
scape [103]. It is characterized by the function L(θ) and illustrates the model’s sensitivity
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to weight perturbations. This landscape features regions with sharp minima, where small
deviations in weights can lead to substantial increases in loss, indicating high sensitivity
to noise. Conversely, flat minima represent regions where the model exhibits greater ro-
bustness to changes in weights [39]. The presence of these diverse topological features in
the loss landscape underlines the variable impact of noise on model performance and sta-
bility, making the identification of structure and relating it to properties a difficult task.

2.5 Experiments

In the previous sections, we argued that the weight space contains latent information
on the models, but also complex local and global structure that poses challenges for
operations in weight space. Here, we test how these challenges affect applications in
weight space in a set of experiments. With these experiments, we test the underlying
properties of weight space and evaluate how suitable operations in a local or global scope
are. Further, we perform experiments as proxies for two general types of applications
in weight space introduced in the introduction: (i) predicting model properties from
weights as one way of model analysis, and (ii) aggregating the weights of several pre-
trained models into one to evaluate generative applications of weights.

Correlating Weight Similarity and Behavioral Similarity. To perform opera-
tions in weight space, there is often an implicit or explicit assumption on the relation
between changes in weight space and changes in behavior of models, e.g. [76]. In task
arithmetic and model souping, changes in weights are expected to translate to propor-
tional changes in behavior [169]. We test this assumption by examining how similarities
in model behavior correlate with their similarities in weight space. We measure behav-
ioral similarity using Centered Kernel Alignment (CKA) [91] and weight space similar-
ity through cosine or l2 similarity metrics. CKA correlates the activations of models
at intermediate layers and is permutation invariant, which makes it ideal to compare
the behavior of Neural Networks processing the same data. The cosine similarity is
computed on the vectorized weights θA and θB as simcos =

θAθB
∥θA∥∥θB∥ . We compute l2

similarity as siml2 = exp(−∥θA − θB∥22).

Predicting Neural Network Accuracy from Weights. As a second experiment,
we evaluate the suitability of raw weights as input to infer model properties. Previous
work has demonstrated that such weights can be used to predict model properties like
test accuracy, generalization gap, or hyperparameters [43, 119, 147, 159]. To evaluate
the usefulness and sensitivity of weights for model analysis, we linear probe from weights
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for model test-accuracy following previous work [43, 147, 159]. In these experiments,
we fit the linear probe to a train set of aligned models and evaluate how performance
varies under changes to the test set.

Merging Weights of Pretrained Models. In the last set of experiments, we eval-
uate the sensitivity of methods that merge weights of models. Re-using weights of pre-
trained models for continued training is a common strategy. In conventional fine-tuning
or transfer learning, the weights of one model are re-used directly [176]. Various factors
affect the success of transfer learning, such as the domain overlap, dataset and model
size, and complexity [122]. Recently, several methods have attempted to break up the
1-to-1 match between models and combine the weights of several source models into
one target model. Among those, there are learned re-combinations of weights such as
zoo-tuning [153] or knowledge flow [108], but also much simpler interpolating or aver-
aging of weights [167, 168, 169]. Averaging model weights, often called model soup, has
been successfully applied to improve model performance, robustness or combine task
knowledge [1, 24, 76]. With similar goals in mind, other work learns latent represen-
tations of Neural Network weights [148]. Experimental evaluation shows sampling from
latent distributions of models generates weights with high zero-shot performance. That
raises the question if learning latent representations is necessary, or if similar methods
cannot be employed in weight space directly. We therefore experiment with weight av-
eraging (model soup) and weight sampling similar to [148] and evaluate the sensitivity
of both methods to variations in weights. Following Schürholt et al. [148], weight sam-
pling models the weight distribution per weight dimension via the Kernel Density Esti-
mation of base models, and then draws samples from the estimated weight distribution.

Base Models and Weight Variations. In all three experiments, we evaluate sets of
trained models as a proxy for real-world models. These models are taken from the mod-
elzoo repository [150]. We use models of small and medium CNNs as well as ResNet18
trained on common computer vision datasets. Within architecture and task, the mod-
els are varied only in seed, which causes them to have similar performance but dif-
ferent weights. We evaluate how the results of the experiments change under specific
changes in the weights of the models. Specifically, we i) change the number of base
models, which extends the global coverage of the weight space; ii) align or permute
models as proposed by Ainsworth et al. [1] following the methodology of [147], which
explores local or global structure of the weight space; iii) add noise to the weights
W̃ = W + r ∗ N (0, 1) where r denotes relative noise ratio; adding noise explores the
local structure around models; and iv) change in model and task complexity to the im-
pact of weight space dimensionality and its relation to the shape of the loss surface.
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2.6 Results

In this section, the results of the three sets of experiments are presented and discussed.

2.6.1 Relation Between Weight Distance and Behavior

Figure 2.2: Absolute correlation coefficient between pair-
wise CKA and l2 similarity scores over number of per-
mutations of 15 models. Increasing the number of per-
mutations increases the number of pairs and the global
coverage of the weight space.

In the first set of experiments, we
compute pairwise similarities in
weights and behavior for sets of
trained models. We compute the
correlation between weight sim-
ilarity and behavioral similarity
to evaluate how much changes in
weights correspond to changes in
behavior. We vary the number
of permutations, the number of
models, and the amount of noise
added. Due to the nonlinear in-
teraction of weights and behav-
ior, an increasing number of pairs that mix local and global relationships through more
models, permutations, or noise, the correlation between similarities should decrease.
Vice-versa, aligning models should simplify global relations and thus increase the corre-
lation between weight and behavior similarity.

Figure 2.3: Correlation between pairwise CKA and cos
similarity over the number of models. Increasing the
number of models increases the global coverage of the
weight space.

Empirical evaluations largely
support these expectations. In
populations of fully aligned mod-
els, we observe absolute corre-
lation coefficients in the range
of 0.1 and 0.78 between behav-
ioral similarity and l2 similarity,
see Figure 2.2. This correlation
strength diminishes as model and
task complexity increase. Intro-
ducing more permutations signif-
icantly lowers the absolute corre-
lation between behavioral and Euclidean similarities to near zero. These results demon-
strate the complex global structures in unaligned weight space.
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Figure 2.4: Correlation between pairwise CKA and cos
similarity over relative noise added to model weights.
Increasing the noise increases the local coverage of the
weight space.

Similar patterns are observed
with an increasing number of
models (Figure 2.3), which like-
wise affects the global relation be-
tween models. Aligning models
generally leads to stronger corre-
lations. Local changes by adding
noise to the weights have a sim-
ilar decreasing effect on correla-
tion, but it is less abrupt than
increasing permutations (Figure
2.4). These findings highlight the
complex global and local relation-
ship between models in weight space and their behavior, emphasizing the need for care-
ful consideration of underlying weight structures and changes. Specifically, proportional
relations between weight changes and behavior changes only seem to be supported in
local neighborhoods around models, while global relations are far more complex.

2.6.2 Weights for Model Anlaysis

Figure 2.5: Linear probing for model accuracy perfor-
mance in R2 for different model and task complexities.
The linear probes are fitted to aligned train sets and eval-
uated on different test sets. Deviations to aligned test
sets increase global coverage of the weight space.

In the second set of experiments,
we predict model accuracy using
linear probes from the weights.
We fit linear probes to aligned
train sets and evaluate on dif-
ferent test sets to test the ef-
fects of variations. As a base-
line, the linear probe is evalu-
ated on aligned test sets, where
linear probes achieve regression-
R2 of above 90%, see Figure 2.5.
Harder tasks and larger models
reduce the performance. However, if the test sets are not aligned or if linear probes are
evaluated on permuted versions of the train set, both of which increase the global cover-
age of the weight space, the performance is significantly reduced, in many cases to R2 far
below zero. These results again indicate the complex global structure in weight space.
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Figure 2.6: Linear probing for model accuracy perfor-
mance in R2 for different model and task complexities
over relative noise added to model weights. The linear
probes are fitted to aligned train sets and evaluated on
aligned test sets. Noise increases the local coverage of
the weight space.

Adding noise to models ex-
plores the local neighborhood in
weight space. Experimental eval-
uations show that predicting ac-
curacy for such models collapses
at a certain threshold for r, see
Figure 2.6. While the collapse
happens at relatively large levels
of relative noise, it decreases with
model and task complexity.

Fitting predictors on rela-
tively homogeneous, fully aligned
populations is not implausible in
practice. Such settings can occur if random seeds are shared, or models are fine-tuned
from only a few pre-trained models. The experiments show that making predictions on
weights based on such populations breaks very quickly for models that are not aligned
or explore local regions, which can not always be ruled out. On the other hand, meth-
ods that are more robust to changes, such as weight statistics [43, 159], the eigenvalue
spectrum [119] or learned representations [147] are also more reliable for downstream
predictions of model properties, see Table 2.1.

Table 2.1: R2 of linear probing for test accuracy using layer-wise weight statistics. Using
aligned trainsets and variations of the testset. Weight statistics are invariant to permutations
and therefore robust to lack of alignment or random permutations, but are sensitive to noise.

Testset

aligend not aligned permuted noise r = 0.1 noise r = 0.3

MNIST - CNN(s) 0.989 0.989 0.988 0.972 -0.119
SVHN - CNN(s) 0.988 0.988 0.988 0.955 -2.302
CIFAR10 - CNN(m) 0.970 0.970 0.970 0.546 -9.811
CIFAR10 - ResNet18 0.970 0.970 0.963 0.546 -9.811
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2.6.3 Combining Model Weights

Figure 2.7: Model soup test accuracy over number of
averaged models. Increasing the number of models in-
creases the global coverage of the weight space.

In this last set of experiments, we
evaluate the sensitivity of weight
averaging and weight sampling
to variations in weights. Specif-
ically, we evaluate the effects of
alignment, permutations, and the
number of base models. Since
both methods operate in raw
weight space to achieve a specific
behavior, we expect effects simi-
lar to those of the previous exper-
iments. That is, combining mod-
els with a clearer signal improves performance; with more models and permutations the
signal in weights becomes less clear and performance decreases.

Figure 2.8: Test accuracy of soup of 5 models over number
of permutations. Increasing the number of permutations
increases the global coverage of the weight space.

Experimental evaluations on
model soups with averaged
weights largely support those ex-
pectations, see Figure 2.7 and
2.10. The performance of indi-
vidual models is demonstrated as
the performance of soups with 1
model. Combining more than one
model decreases the performance
in all our experiments. Align-
ing models improves performance
over non-aligned source models,
adding permutations decreases performance. Similarly, using more source models to
combine into a single target model generally hurts performance, more base models seem
to make the target weights noisier. Further, performance decreases with task and model
complexity. Notably, even averaging aligned models decreases performance over the
base population. This indicates that averaging weights of models that are not very
close to each other does not generally improve performance.
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Figure 2.9: Test accuracy for sampled models over num-
ber of base models. Increasing the number of base mod-
els increases the global coverage of the weight space.

Interestingly, experiments sam-
pling in weight space directly
shows quite different behavior,
see Figures 2.9 and 2.10. On
the simpler MNIST and SVHN
datasets, performance is higher
than that of comparable model
soups. On the other hand,
with increasing task and model
complexity (CIFAR10 CNN or
ResNet-18), sampled models de-
fault to random guessing. Further, there does not appear to be any significant impact
of aligning, permutations, or number of base models. More work is necessary to gain a
better understanding of the mechanics, as the sampling method and hyper-parameters
may overshadow the source model impact. Also, the overall performance of models sam-
pled in weight space is significantly lower than models sampled in a learned representa-
tion space [148], which indicates again that the weight space may not be suitable for
such operations, and they instead may benefit from an abstract (learned) feature space.

Figure 2.10: Test accuracy for sampled models over number permutations of the base models
used to model the weight distribution. Increasing the number of permutations increases the
global coverage of the weight space.
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2.7 Discussion

The weights of Neural Networks are not only the byproduct of training but can be used
for model analysis, control training, or the generation of new models. The training pro-
cess structures the weights and embeds information of the model, which makes them
suitable for model evaluation and the exploration of novel training strategies.

This work confirms that under ideal circumstances, weights are a good input for
model analysis and model generation. Yet, we also identify challenges in dealing with
Neural Network weights rooted in local and global relations between weights and be-
havior of models. We observe that even minor deviations from optimal conditions can
introduce instability. Effects are noticeable for lack of model alignment, varying model
size, and local variations similar to training noise. In real-world scenarios, such devi-
ations cannot be ruled out and can make operations in weight space hard to control.

Our results highlight the need for methods that focus on extracting robust features
from weights like weight statistics or learned abstract representations. These features
should be resilient to the inherent local and global structure within weight spaces, en-
suring stable and reliable outcomes.
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Chapter 3

Model Zoos: A Dataset of Diverse
Populations of Neural Network Models

Abstract

In the last years, neural networks (NN) have evolved from laboratory environments to
the state-of-the-art for many real-world problems. It was shown that NN models (i.e.,
their weights and biases) evolve on unique trajectories in weight space during training.
Following, a population of such neural network models (referred to as model zoo) would
form structures in weight space. We think that the geometry, curvature and smoothness
of these structures contain information about the state of training and can reveal latent
properties of individual models. With such model zoos, one could investigate novel ap-
proaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich
representations of such populations, or (iv) exploit the model zoos for generative mod-
elling of NN weights and biases. Unfortunately, the lack of standardized model zoos
and available benchmarks significantly increases the friction for further research about
populations of NNs. With this work, we publish a novel dataset of model zoos contain-
ing systematically generated and diverse populations of NN models for further research.
In total the proposed model zoo dataset is based on eight image datasets, consists of
27 model zoos trained with varying hyperparameter combinations and includes 50’360
unique NN models as well as their sparsified twins, resulting in over 3’844’360 collected
model states. Additionally, to the model zoo data we provide an in-depth analysis of
the zoos and provide benchmarks for multiple downstream tasks. The dataset can be
found at www.modelzoos.cc.

This work originally was accepted for publication at NeurIPS 2022 [150]
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3.1 Introduction

The success of Neural Networks (NN) is surprising, considering the hard optimiza-
tion problem to be solved during training of NNs. Specifically, NN training is NP-
complete [11], the loss surface and optimization problem are non-convex [32, 57, 101]
and the parameter space to fit during training is high dimensional [15]. Additionally,
NN training is sensitive to random initialization and hyperparameter selection [62, 103].
Together, this leads to an interesting characteristic of NN training: given a dataset
and an architecture, different random initializations or hyperparameters lead to differ-
ent minima on the loss surface and therefore result in different model parameters (i.e.,
weights and biases). Consequently, multiple training results in different NN models.
The resulting population of NN (referred to as model zoo) is an interesting object to
study: Do individual models of the model zoo have something in common? Do they
form structures in weight space? What can we infer from such structures? Can we
learn representations of them? Lastly, can such structures be exploited to generate new
models with controllable properties?

These questions have been partially answered in prior work. Theoretical and
empirical work demonstrates increasingly well-behaved loss surfaces for growing number
of parameters [31, 57, 103]. The shape of the loss surface and the starting point is
determined by hyperparameters and the initialization, respectively [103]. NN training
navigates the loss surface with iterative, gradient-based update schemes smoothed by
momentum. The step length along a trajectory as well as the curvature are determined
by the change of the loss as well as how aligned the subsequent updates are [17, 146].
Together, these findings suggest that populations of NN models evolve on unique
and smooth trajectories in weight space. Related work has empirically confirmed
the existence of such structures in NNs [35], demonstrated the feasibility to learn
representations of them, showed that they encode information on model properties
[43, 147, 159] and can be used to generate unseen models with desirable properties [88,
148, 149, 182] To thoroughly answer the questions above, a large and systematically
created dataset of model weights is necessary.

Unfortunately, so far only few model zoos with specific properties have been pub-
lished [43, 147, 156, 159]. While many machine learning domains have standardized
datasets, there is no model zoo nor a benchmark to evaluate and compare against.
The lack of a standardized model zoos has three significant disadvantages: (i), exist-
ing model zoos are usually designed for a specific purpose and of limited general utility.
Their design space is rather sparse, covering only small portions of all available hyper-
parameter combinations. Moreover, some existing zoos are generated on synthetic tasks
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Figure 3.1: The proposed dataset of model zoos is trained on several image datasets with two
CNN architectures and multiple configurations of hyperparameters. The resulting population
of neural network models is vectorized and made available with all meta-data such as the gen-
erating factors of the model zoo as well as the model properties such as accuracy, generaliza-
tion gap, and others. Potential use cases are (a) model property prediction, (b) inference of
learning dynamics, (c) representation learning, or (d) model generation.

and are small, containing only a small population of models; (ii), researchers have to
choose between using an existing zoo or generating a new one for each new experiment,
weighing the disadvantages of existing zoos against the effort and computational re-
sources required to generate a new zoo; (iii), a new model zoo causes subsequent work
to lose comparability to existing research. Therefore, the lack of a benchmark model
zoo significantly increases the friction for new research.

Our contributions: To study the behaviour of populations of NNs, we publish a
large-scale model zoo of diverse populations of neural network models with controlled
generating factors of model training. Special care has been taken in their design and
the used protocols for training. To do so, we have defined and restricted the generating
factors of model zoo training to achieve desired zoo characteristics.

The zoos are trained on eight standard image classification datasets, with a broad
range of hyperparameters and contain thousands of configurations. Further, we add
sparsified model zoo twins to each of these zoos. Alltogether, the zoos include a total of
50’360 unique image classification NNs, resulting in over 3’844’360 collected model states.

Potential use cases for the model zoo include (a) model analysis for reliability, bias,
fairness, or adversarial vulnerability, (b) inference of learning dynamics for efficiency
gain, model selection or early stopping, (c) representation learning of such populations,
or (d) model generation. Additionally, we present an analysis of the model zoos and
a set of experimental setups for benchmarks on these use cases and initial results as
foundation for evaluation and comparison.
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With this work we provide a standardized dataset of diverse model zoos connected
to popular image datasets, its corresponding meta-data and performance evaluations
to the machine learning research community. All data is made publicly available to
foster community building around the topic and to provide a ground for use beyond
the defined benchmark tasks. An overview of the proposed dataset and benchmark as
well as potential use cases can be found in Fig. 3.1

3.2 Existing Populations of Neural Networks Models

With the increase in usage of neural networks, requirements for evaluation, testing and
certification have grown. Methods to analyze NN models may attempt to visualize salient
features for a given class [84, 177, 178], investigate the robustness of models to specific
types of noise [27, 189], predict model properties from model features [26, 80, 172] or
compare models based on their activations [126, 132, 139] However, while most of these
methods rely on common (image) datasets to train and evaluate their models, there is no
common dataset of neural network models to compare the evaluation methods on. Model
zoos as common evaluation datasets can be a step up to evaluate the evaluation methods.

There are only few publications who use model zoos. In [108], zoos of pre-trained
models are used as teacher models to train a target model. Similarly, [153] propose
a method to learn a combination of the weights of models from a zoo for a new task.
[186] uses a zoo of GAN models trained with different methods to accelerate GAN train-
ing. To facilitate continual learning, [140] propose to generate zoos of models trained
on different tasks or experiences, and to ensemble them for future tasks.

Larger model zoos containing a few thousand models are used in [159] to predict
the accuracy of the models from their weights. Similarly, [43] use zoos of larger models
to predict hyperparameters from the weights. In [52], a large collection of 3x3 convo-
lutional filters trained on different datasets is presented and analysed. Other work iden-
tifies structures in the form of subspaces with beneficial properties [6, 111, 167]. [147]
use zoos to learn self-supervised representations on the weights of the models in the
zoo. The authors demonstrate that the learned representations have high predictive
capabilities for model properties such as accuracy, generalization gap, epoch and var-
ious hyperparameters. Further, they investigate the impact of the generating factors
of model zoos on their properties. [148, 149] demonstrate that learned representations
can be instantiated in new models, as initialization for fine-tuning or transfer learning.
This work systematically extends their zoos to more datasets and architectures.
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3.3 Model Zoo Generation

The proposed model zoo datasets contain systematically generated and diverse pop-
ulations of neural networks. Since the applicability of the model zoos for downstream
tasks largely depends on the composition and properties of the zoos, special care has to
be taken in their design and the used protocol for training. The entire procedure can be
considered as defining and restricting the generating factors of model zoo training with
respect to their latent relation of desired zoo characteristics. The described procedure
and protocol could be also used as a general blueprint for the generation of model zoos.

In our paper, the term architecture means the structure of an NN, i.e., a set of op-
erations and their connectivity. We use ’model’ to denote an instantiating of an archi-
tecture with weights over all stages of training, ’model state’ to denote the model with
the specific state of weights at a specific training epoch, and the weights w to denote
all trainable parameters (weights and biases).

3.3.1 Model Zoo Design

Generating Factors Following [159], we define the tuple {D, λ,A} as a configuration
of a model zoo’s generating factors. We denote the dataset of image samples with their
corresponding labels as D. The NN architecture is denoted by A. We denote the set of
hyperparameters used for training, (e.g., loss function, optimizer, learning rate, weight
initialization, seed, batch-size, epochs) as λ. While dataset D and architecture A are
fixed for a model zoo, λ provides not only the set of hyperparameters but also configures
the ranges for individual hyperparameter such as learning rate for model zoo generation.
Training with such differing configurations {D, λ,A} results in a population of NN mod-
els i.e., the model zoo. We convert the weights and biases of each model to a vectorized
form. In the resulting model zoo W = {w1, ....,wM}, wi denotes the flattened vector
of the weights and biases of one trained NN model from the set of M models of the zoo.

Configurations & Diversity The model zoos have to be representative of real-world
models, but also diverse and span an interesting range of properties. The definition of
the diversity of model zoos, as well as the choice of how much diversity to include, is as
difficult as in image datasets, e.g. [34, 45]. Model zoos can be diverse in their proper-
ties (i.e., performance) as well as in their generating factors λ, or in their weights w.
We aim to generate model zoos with a rich set of models and diversity in these aspects.
As these zoo properties are effects of the generating factors, we tune the diversity of
the generating factors and evaluate the diversity in Section 3.4.
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Table 3.1: Generating factors of the model zoos. Several values for each parameter define the
grid. Arch denotes the architecture: CNN (s) - small CNN architecture, CNN (m) - medium
CNN architecture, RN-18 - ResNet-18. Init denotes the initialization methods: U - uniform,
N - normal, KU - Kaiming Uniform, KN - Kaiming Normal. Activation denotes the activation
function: T - Tanh, S - Sigmoid, R - ReLU, G - GeLU. Optim denotes the optimizer: AD -
Adam, SGD - Stochastic Gradient Descent. Models with learning rates denoted with * have
been trained with a one-cycle LR scheduler, the listed LR is the maximum value.

Dataset Arch Config Init Activation Otpim LR WD Dropout Seed

MNIST
CNN (s) Seed U T AD 3e-4 0 0 1-1000
CNN (s) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-3, 1e-4 0, 0.5 ∼ 10
CNN (s) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-3, 1e-4 0, 0.5 1-10

F-MNIST
CNN (s) Seed U T AD 3e-4 0 0 1-1000
CNN (s) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-3, 1e-4 0, 0.5 ∼ 10
CNN (s) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-3, 1e-4 0, 0.5 1-10

SVHN
CNN (s) Seed U T AD 3e-3 0 0 1-1000
CNN (s) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-3, 1e-4, 0 0, 0.3, 0.5 ∼ 10
CNN (s) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-3, 1e-4, 0 0, 0.3, 0.5 1-10

USPS
CNN (s) Seed U T AD 3e-4 1e-3 0 1-1000
CNN (s) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-2, 1e-3 0, 0.5 ∼ 10
CNN (s) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-2, 1e-3 0, 0.5 1-10

CIFAR10
CNN (s) Seed KU G AD 1e-4 1e-2 0 1-1000
CNN (s) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3 1e-2, 1e-3 0, 0.5 ∼ 10
CNN (s) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3 1e-2, 1e-3 0, 0.5 1-10

CIFAR10
CNN (m) Seed KU G AD 1e-4 1e-2 0 1-1000
CNN (m) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3 1e-2, 1e-3 0, 0.5 ∼ 10
CNN (m) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3 1e-2, 1e-3 0, 0.5 1-10

STL (s)
CNN (s) Seed KU T AD 1e-4 1e-3 0 1-1000
CNN (s) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-2, 1e-3 0, 0.5 ∼ 10
CNN (s) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-2, 1e-3 0, 0.5 1-10

STL
CNN (m) Seed KU T AD 1e-4 1e-3 0 1-1000
CNN (m) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-2, 1e-3 0, 0.5 ∼ 10
CNN (m) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-2, 1e-3 0, 0.5 1-10

CIFAR10 RN-18 Seed KU R SGD 1e-4* 5e-4 0 1-1000
CIFAR100 RN-18 Seed KU R SGD 1e-4* 5e-4 0 1-1000
t-Imagenet RN-18 Seed KU R SGD 1e-4* 5e-4 0 1-1000

Prior work discusses the impact of random seeds on the properties of model zoos.
While [172] use multiple random seeds for the same hyperparameter configuration, [159]
explicitly argues against that to prevent information leakage between models from train
to test set. To achieve diverse model zoos and disentangle the generating factors (seeds
and hyperparameters), we train model zoos in three different configurations, some with
random seeds, others with fixed seeds.

Random Seeds: The first configuration, denoted as Hyp-10-rand, varies a broad
range of hyperparameters to define a grid of hyperparameters. To include the effect
of different random initializations, each of the hyperparameter nodes in the grid is
repeated with ten randomly drawn seeds. One model is configured with the combination

34



3.3 Model Zoo Generation

of hyperparameters and seed, with a total of ten models per hyperparameter node. It
is very unlikely for two models in the zoo share the same random seed. With this, we
achieve the highest amount of diversity in properties, generating factors and weights.

Fixed Seeds: The second configuration, denoted as Hyp-10-fix, uses the same
hyperparameter grid as but repeats each node with ten fixed seeds [1, 2, ..., 10]. Fixing
the seeds allows evaluation methods to control for the seed, isolate the influence of
hyperparameter choices, and still get robust results over 10 repetitions. A side effect of
the (desired) isolation of factors of influence is, that fixing the seeds leads to repetitions
of the starting point in weight space for models with the same seed and initialization
methods. At the beginning of the training, these models may have similar trajectories.

Fixed Hyperparameters: For the third configuration, denoted as Seed, we fix one
set of hyperparameters and repeat that with 1000 different seeds. With that, we achieve
zoos that are very diverse in weights and covers a broad range in weight space. These
zoos can be used to evaluate the impact of weights and their starting point on model
performance. The hyperparameters for the Seed zoos are chosen such that there is still
a level of diversity in model performance.

3.3.2 Specification of Generating Factors for Model Zoos

This section describes the systematic specification of the trained model zoos. Multiple
generating factors define a configuration {D, λ,A} for the model zoo generation, detailed
in Table 3.1.

Datasets D: We generate model zoos for the following image classification datasets:
MNIST [98], Fashion-MNIST [171], SVHN [129], CIFAR-10 [92], STL-10 [25], USPS [74],
CIFAR-100 [92] and Tiny Imagenet [96].

Hyperparameter λ: varied hyperparameters to train models in zoos are: (1) seed, (2)
initialization method, (3) activation function, (4) dropout, (4) optimization
algorithm, (5) learning rate, and (6) weight decay. The batch size and number
of training epochs are kept constant within zoos.

Architecture A: To preserve the comparability within a model zoo, each zoo is
generated using a single neural network architecture. One of three standard architectures
is used to generate each zoo. Our intention with this dataset is similar to research
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Figure 3.2: Accuracy distribution over epochs for the F-MNIST Hyp-rand, USPS Hyp-rand, and
CIFAR Hyp-rand zoos. All zoos show training progress and considerable performance diversity.

communities such as Neural Architecture Search (NAS), Meta-Learning or Continual
Learning (CL), where initial work started small scale [140, 182]. Hence, the first two
architectures are a small and a slightly larger Convolutional Neural Network (CNN),
both have three convolutional and two fully-connected layers, but different numbers
of channels (details in Appendix 3.A). The third architecture is a standard ResNet-18
[65]. The (1) small CNN has a total of 2′464-2′864 parameters, the (2) medium CNN has
10′853 parameters, the (3) ResNet-18 has 11.2M-11.3M parameters.

Compared to (1), the medium architecture (2) provides additional diversity to the
collection of model zoos and performs significantly better on more complex datasets
CIFAR-10 and STL-10. These architectures are similar to the one used in [148]. The
ResNet-18 architecture is included to apply the model zoo blueprint to models of the
widely used ResNet family and so facilitate research on populations of real-world-sized
models.

3.3.3 Training of Model Zoos

Neural network models are trained from the previously defined three configurations
{D, λ,A} (Seed, Hyp-10-rand, Hyp-10-fix, see Sec 2.1). With the 8 image datasets
and the three configurations, this results in 27 model zoos. The zoos include a total
of around 50’360 unique neural network models.

Training Protocol: Every model in the collection of zoos is trained according to the
same protocol. We keep the same train, validation, and test splits for each zoo, and
train each model for 50 epochs with gradient descent methods (SGD+momentum or
ADAM). At every epoch, the model checkpoint as well as accuracy and loss of all splits
are recorded. Validation and test performance are also recorded before the first training
epoch. This makes 51 checkpoints per model training trajectory including the starting
checkpoint representing the model initialization before training starts. The ResNet-18
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zoos on CIFAR100 and Tiny Imagenet require more updates and are trained for 60
epochs. In total, this results in a set of 2’585’360 collected model states.

Splits: To enable comparability, this set of models is split into training (70%),
validation (15%), and test (15%) subsets. This split is done such that all individual
checkpoints of one model training (i.e., the 51 checkpoints per training) is entirely in
either training, validation, or test and therefore no information is leaked between
these subsets.

Sparsified Model Zoo Twins: Model sparsification is an effective method to reduce
the computational cost of models. However, methods to sparsify models to a high
degree while preserving the performance are still actively researched [70]. In order
to allow systematic studies of sparsification, we are extending the model zoos with
sparsified model zoo twins serving as counterparts to existing zoos in the dataset. Using
Variational Dropout (VD) [125], we sparsify the trained models from existing model
zoos. VD generates a sparsification trajectory for each model, along which we track the
performance, degree of sparsity, and the sparsified checkpoint. With 25 sparsification
epochs, this yields 1’259’000 sparsification model states.

3.3.4 Data Management and Accessibility of Model Zoos

The model zoos are made publicly available in an accessible, standardized, and well-
documented way to the research community under the Creative Commons Attribution
4.0 license (CC-BY 4.0). We ensure the technical accessibility of the data by hosting it
on Zenodo, where the data will be hosted for at least 20 years. Further, we take steps
to reduce access barriers by providing code for data loading and preprocessing, to re-
duce the friction associated with analyzing the raw zoo files. All code can be found
on the model zoo website www.modelzoos.cc. To ensure conceptional accessibility, we
include detailed insights, visualizations, and the analysis of the model zoo (Sec. 3.4)
with each zoo. Further details can be found in Appendix 3.B.

3.4 Model Zoo Analysis

The model zoos have been created aiming at diversity in generating factors, weights,
and performance. In this section, we analyze the zoos and their properties. Zoo cards
with key values and visualizations are provided along with the zoos online. We consider
models at their last epoch for the analysis. For all later analyses, non-viable checkpoints
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Table 3.2: Analysis of the diversity of our 27 model zoos (one row per zoo). Mean (std) values
in % per zoo, computed on the last epoch. Agreement is computed using samples from the
test split of the image dataset pairwise over the entire zoo. Higher agreement values indicate
more uniform behavior and less behavioral diversity. Distance in weight space are computed
pairwise over the entire zoo. Higher distance values indicate larger diversity in weight space.

Performance Agreement Weights

Dataset Architecture Config Accuracy κaggr κcka w l2-dist cos dist

MNIST
CNN (s) Seed 91.1 (0.9) 88.5 (1.3) 77.2 (5.2) 18.9 (58.4) 124.1 (4.9) 77.1 (4.1)
CNN (s) Hyp-10-r 79.9 (30.7) 67.7 (35.5) 58.6 (25.9) 0.4 (46.5) 150.6 (66.5) 98.8 (7.2)
CNN (s) Hyp-10-f 80.3 (30.3) 68.3 (35.3) 58.8 (25.7) 0.3 (46.7) 149.7 (66.8) 97.7 (10.0)

F-MNIST
CNN (s) Seed 72.7 (1.0) 79.8 (2.6) 82.3 (12.6) 22.6 (55.6) 122.0 (4.9) 74.5 (4.4)
CNN (s) Hyp-10-r 68.4 (23.7) 59.9 (29.1) 64.6 (23.5) 1.0 (46.0) 149.6 (62.2) 99.2 (6.8)
CNN (s) Hyp-10-f 68.7 (23.4) 60.4 (28.7) 64.6 (22.7) 0.9 (46.3) 148.5 (61.9) 97.9 (9.9)

SVHN
CNN (s) Seed 71.1 (8.0) 67.2 (10.3) 67.7 (15.7) 7.1 (113.7) 137.6 (8.3) 94.5 (5.1)
CNN (s) Hyp-10-r 35.9 (24.3) 61.6 (35.9) 17.8 (28.0) 1.4 (42.2) 170.5 (149.4) 83.6 (30.4)
CNN (s) Hyp-10-f 36.0 (24.4) 61.4 (36.0) 18.1 (27.9) 1.3 (42.2) 170.0 (149.0) 83.2 (30.7)

USPS
CNN (s) Seed 87.0 (1.7) 87.3 (2.2) 86.7 (6.3) 8.2 (26.9) 123.1 (5.2) 75.9 (5.0)
CNN (s) Hyp-10-r 64.7 (30.8) 55.3 (31.4) 50.9 (30.5) 2.1 (39.6) 155.5 (92.6) 99.1 (8.9)
CNN (s) Hyp-10-f 65.0 (30.7) 55.4 (31.3) 50.4 (30.4) 1.9 (40.1) 154.2 (93.1) 97.3 (13.7)

CIFAR10
CNN (s) Seed 48.7 (1.4) 65.7 (3.1) 72.9 (11.3) 1.1 (11.0) 138.7 (5.6) 96.3 (5.1)
CNN (s) Hyp-10-r 35.1 (16.3) 33.3 (22.9) 47.5 (34.0) -0.2 (17.0) 155.6 (71.0) 97.5 (10.8)
CNN (s) Hyp-10-f 35.1 (16.2) 33.3 (22.8) 47.3 (34.2) -0.2 (16.9) 155.3 (70.0) 97.2 (11.1)

CIFAR10
CNN (m) Seed 61.5 (0.7) 76.0 (1.6) 92.4 (1.7) 0.1 (18.2) 137.0 (7.9) 94.1 (9.2)
CNN (m) Hyp-10-r 39.6 (21.8) 34.5 (27.1) 43.2 (36.5) -0.4 (23.0) 158.9 (79.9) 98.6 (12.2)
CNN (m) Hyp-10-f 39.6 (21.7) 34.4 (26.7) 42.8 (37.8) -0.4 (22.9) 158.1 (77.2) 98.0 (13.1)

STL
CNN (s) Seed 39.0 (1.0) 48.4 (3.0) 81.5 (3.9) -0.1 (19.1) 141.2 (5.0) 99.8 (4.2)
CNN (s) Hyp-10-r 23.1 (12.3) 23.4 (20.9) 39.0 (30.7) 3.0 (40.0) 158.7 (107.3) 98.7 (10.9)
CNN (s) Hyp-10-f 23.0 (12.2) 23.3 (21.1) 38.1 (30.0) 3.0 (39.8) 157.1 (107.2) 96.8 (16.3)

STL
CNN (m) Seed 47.4 (0.9) 53.9 (2.2) 83.3 (2.3) 0.1 (26.6) 141.3 (6.0) 99.9 (5.8)
CNN (m) Hyp-10-r 24.3 (14.7) 23.2 (24.2) 34.1 (30.0) 2.3 (45.7) 159.3 (103.0) 99.1 (12.5)
CNN (m) Hyp-10-f 24.4 (14.7) 23.7 (24.5) 34.6 (30.3) 2.3 (46.5) 157.4 (104.1) 97.6 (20.1)

CIFAR10 ResNet-18 Seed 92.1 (0.2) 93.4 (0.7) –.- (-.-) -0.01 (1.7) 122.1 (3.9) 72.2 (2.3)
CIFAR100 ResNet-18 Seed 74.2 (0.3) 77.6 (1.2) –.- (-.-) -0.1 (1.6) 130.8 (4.1) 83.1 (2.6)
Tiny ImageNet ResNet-18 Seed 63.9 (0.7) 66.1 (1.9) –.- (-.-) -0.1 (1.9) 125.4 (4.9) 77.1 (3.0)

are excluded from each zoo. This includes the removal of every checkpoint with NaN
values or values beyond a threshold. The threshold value is set for each zoo, such that
it only excludes diverging models.

Performance To investigate the performance diversity, we consider the accuracy of
the models in the zoo, see Table 3.2 and Figure 3.2. As expected, the zoos with vari-
ation only in the seed show the smallest variation in performance. Changing the hyper-
parameters induces a broader range of variation. Changing (Hyper-10-rand) or fixing
(Hyper-10-fix) the seeds does not affect the accuracy distribution.
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Figure 3.3: Visualization of the weights of the large CIFAR model zoos in different configura-
tions. The weights are reduced to 2d using UMAP, preserving both local and global structure.
In the Seed configuration, the UMAP reduction contains little structure. The Hyp-rand is
equally little structured. In contrast, Hyp-fix contains visible clusters of initialization methods.

Model Agreement To get more in-depth insights into the diversity of model behavior,
we investigate their pairwise agreement, see Table 3.2. To that end, we compute the
rate of agreement of class prediction between two models as κaggr = 1

N

∑N
1=1 δyi . Here

yki , y
l
i are the predictions of models k, l for sample i of N samples. Further, δyi = 1

if yki = yli and otherwise δyi = 0. Further, we compute the pairwise centered kernel
alignment (cka) score between intermediate and last layer outputs and denote it as κcka.
The cka score evaluates the correlation of activations, compensating for equivariances
typical for neural networks [132]. In empirical evaluations, we found the cka score
robust for a relatively small number of image samples, and compute the score using
50 images to reduce the computational load. Both agreement metrics confirm the
expectation and performance results. Zoos with higher overall performance naturally
have a higher agreement on average, as there are fewer samples on which to disagree.
Zoos with varying hyperparameters(Hyp-10-rand and Hyp-10-fix) agree less on average
than zoos with changes in seed only (Seed). What is more, the distribution of κaggr and
κcka in the Seed zoos is unimodal and approximately Gaussian. In the Hyp-10 zoos,
the distributions are bi-modal, with one mode around 0.1 (0.0) and the other around
0.9 (0.75) in hard agreement (cka score). In these zoos, models agree to a rather high
degree with some models and disagree with others.

Weights Lastly, we investigate the diversity of the model zoos in weight space, see
again Table 3.2. By design, the mean weight value of the zoos varying only in the
seed is larger than in the other zoos, while the standard deviation does not differ
greatly (Table 3.2, column w). To get a better intuition in the distribution of models in
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weight space, we compute the pairwise ℓ2(wk,wl) =
∥wk−wl∥22

1/N
∑N

n=1 ∥wn∥22
and cosine distance

cos(wk,wl) = 1 − wl
Twk

∥wk∥22∥wl∥22
, and investigate their distribution. Here, too, varying

the hyperparameters introduces higher amounts of diversity, while changing or fixing
the seeds does not affect the weight diversity much. As these values are computed
at the end of model training, repeated starting points due to fixed seeds appear not
to reduce weight diversity significantly. In a more hands-off approach, we compute
2d reductions of the weight over all epochs using UMAP [120]. In the 2d reductions
(see Figure 3.3), the zoos varying in seed only show little to no structure. Zoos with
hyperparameter changes and random seeds are similarly unstructured. Zoos with
varying hyperparameters and fixed seeds show clear clusters with models of the same
initialization method and activation function. These findings are further supported by
the predictability of the initialization method and activation function (Table 3.3). The
structures are unsurprising considering that the activation function is very influential
in shaping the loss surface, while the initialization method and the seed determine the
starting point on it. Depending on the downstream task, this property can be desirable
or should be avoided, which is why we provide both configurations.

Model Property Prediction As a set of benchmark results on the proposed model
zoos and to further evaluate the zoos, we use linear models to predict hyperparameters
or performance values of the individual models. As features, we use the model weights
w or per-layer quintiles of the weights s(w) as in [159]. Linear models are used to eval-
uate the properties of the dataset and the quality of the features. We report these re-
sults in Table 3.3. The layer-wise weight statistics (s(w)) have generally higher predic-
tive performance than the raw weights w. In particular, s(w) are not affected by using
fixed or random seeds and thus generalize well to unseen seeds. For the ResNet-18 zoos,
w becomes too large to be used as a feature and is therefore omitted. Across all zoos,
the accuracy as well as the hyperparameters can be predicted very accurately. The gen-
eralization gap and epoch appear to be more difficult to predict. These findings hold
for all zoos, regardless of the different architectures, model sizes, task complexity, and
performance range. w can be used to predict the initialization method and activation
function to very high accuracy, if the seeds are fixed. The performance drops drasti-
cally if seeds are varied. These results confirm our expectation of diversity in weight
space induced by fixing or varying seed. These results show i) that the model weights
of our zoos contain rich information on their properties; ii) confirm the notions of di-
versity that were design goals for the zoos; and iii) leave room for improvements on
the more difficult properties to predict, in particular the generalization gap.
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Table 3.3: Benchmark results for predicting model properties from the weights (w) and layer-
wise weight statistics (s(w)) using linear models. We report the prediction R2 for accuracy,
generalization gap (GGap), epoch, learning rate (LR) and dropout (Drop), and prediction
accuracy for initialization method (Init) and activation function (Act). Values reported in %,
higher values are better.

Accuracy GGap Epoch Init Act

Dataset Architecture Config w s(w) w s(w) w s(w) w s(w) w s(w)

MNIST
CNN (s) Seed 92.3 98.7 2.1 68.8 87.2 97.8 n/a n/a n/a n/a
CNN (s) Hyp-10-r -11.2 69.4 -49.8 13.7 -95.5 14.3 42.6 77.6 45.5 78.5
CNN (s) Hyp-10-f 66.5 70.1 5.4 12.5 -4.8 14.5 94.3 79.8 81.2 76.8

F-MNIST
CNN (s) Seed 87.5 97.2 20.9 60.5 89.1 97.1 n/a n/a n/a n/a
CNN (s) Hyp-10-r 8.7 76.9 -47.5 13.7 -70.1 18.9 48.4 81.5 47.9 79.6
CNN (s) Hyp-10-f 62.4 75.6 3.9 12.6 -2.0 17.0 95.4 81.6 84.6 77.7

SVHN
CNN (s) Seed 91.0 98.6 -42.8 65.9 66.9 92.5 n/a n/a n/a n/a
CNN (s) Hyp-10-r -8.6 90.3 -55.3 27.6 -30.5 11.1 38.2 58.5 55.7 72.3
CNN (s) Hyp-10-f 64.2 89.9 17.5 27.4 -0.1 11.1 67.3 58.2 76.1 73.6

USPS
CNN (s) Seed 92.5 98.7 44.3 71.8 86.0 98.4 n/a n/a n/a n/a
CNN (s) Hyp-10-r -11.5 70.3 -35.2 13.6 -75.7 21.3 49.2 88.8 43.7 66.2
CNN (s) Hyp-10-f 73.2 70.8 10.8 14.7 18.9 23.0 96.3 88.1 74.5 72.7

CIFAR10
CNN (s) Seed 75.3 96.0 27.0 90.2 68.6 91.1 n/a n/a n/a n/a
CNN (s) Hyp-10-r 50.1 88.0 -4.3 40.5 -2.7 34.2 34.0 50.5 71.5 80.9
CNN (s) Hyp-10-f 67.0 87.9 38.2 42.9 27.0 31.8 72.0 52.2 75.6 80.0

CIFAR10
CNN (l) Seed 83.6 98.2 33.4 92.9 86.5 95.7 n/a n/a n/a n/a
CNN (l) Hyp-10-r 32.6 90.5 -0.9 47 -10.5 35.5 41.6 51.6 69.1 83.1
CNN (l) Hyp-10-f 64.5 91.4 30.4 40.7 29.8 35.3 74.5 54.9 77.7 86.0

STL
CNN (s) Seed 17.8 91.2 2.0 30.2 45.3 95.0 n/a n/a n/a n/a
CNN (s) Hyp-10-r -8.7 77.1 -44.0 9.3 -68.8 19.1 41.3 93.9 46.3 66.8
CNN (s) Hyp-10-f 76.1 76.5 6.7 10.7 21.2 22.4 98.1 91.3 78.1 62.6

STL
CNN (l) Seed -112 94.2 2.8 37.3 5.6 98.7 n/a n/a n/a n/a
CNN (l) Hyp-10-r -79.6 74.1 -118 10.7 -106 18.8 43.8 90.4 49.4 68.3
CNN (l) Hyp-10-f 84.1 77.7 10.4 11.7 14.6 19.1 97.8 92.8 78.8 68.0

CIFAR10 ResNet-18 Seed –.- 96.8 –.- 76.7 –.- 99.6 n/a n/a n/a n/a
CIFAR100 ResNet-18 Seed –.- 97.4 –.- 95.4 –.- 99.9 n/a n/a n/a n/a
t-ImageNet ResNet-18 Seed –.- 96.1 –.- 87.5 –.- 99.9 n/a n/a n/a n/a

3.5 Potential use cases & Applications

While populations of NNs have been used in previous work, they still are relatively novel
as a dataset. As use cases for such datasets may not be obvious, this section presents
potential use cases and applications. For all use cases, we collect related work that uses
model populations. Here, the zoos may be used as data or to evaluate the methods.
For some of the use cases, the analysis above provides support. Lastly, we suggest ideas
for future work that we hope can inspire the community to make use of the model zoos.
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3.5.1 Model Analysis

The analysis of trained models is an important and difficult step in the machine learning
pipeline. Commonly, models are applied on hold-out test sets, which may contain difficult
cases with specific properties [101]. Other approaches identify subsections of input data
that are relevant for a specific output [84, 177, 189]. A third group of methods compares
the activations of models, e.g. the cka method used in Sec. 3.4 to measure diversity [91].

Populations of models have been used to identify commonalities in model weights,
activations, or graph structure which are predictive for model properties. Some methods
use the weights, weight statistics or eigenvalues of the weight matrices as features to
predict a model’s accuracy or hyper-parameters [43, 116, 159]. Recently, [147] have
learned self-supervised representation of the weights and demonstrate their usefulness
for predicting model properties. Other publications use activations to approximate
intermediate margins [80, 172] or graph connectivity features [26] to predict the
generalization gap or test accuracy. Standardized, diverse model zoos may facilitate
the development of new methods, or be used as evaluation datasets for existing model
analysis, interpretability, or comparison methods.

Previous work as well as the experiment results in Sec 3.4 indicate that even more
complex model properties might be predicted from the weights. By studying popula-
tions of models, in-depth diagnostics of models, such as whether a model learned a spe-
cific bias, may be based on the weights or topology of models. Lastly, model properties
as well as the weights may be used to derive a model ’identity’ along the training tra-
jectory, to allow for NN versioning.

3.5.2 Learning Dynamics

Analyzing and utilizing the learning dynamics of models has been a useful practice.
For example, early stopping [48], which determines when to end training at minimal
generalization error based on a cross-validation set has become standard in machine
learning practice.

More recently, methods have exploited zoos of models. Population-based training [78]
evaluates the performance of model candidates in a population, and decides which of the
candidates to pursue further and which to give up. HyperBand evaluates performance
metrics for groups of models to optimize hyperparameters [104, 105]. Research in
Neural Architecture Search was greatly simplified by the NASBench dataset family
[175], which contains performance metrics for varying hyperparameter choices. Our
model zoos extend these datasets by adding models including their weights at states
throughout training, which may open new doors for new approaches.
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The accuracy distribution of our model zoos becomes relatively broad if hyperpa-
rameters are varied (Figure 3.2). For early stopping or population-based methods, iden-
tifying a good range of hyperparameters to try, and then identifying those candidates
that will perform best towards the end of training, is a challenging and relevant task.
Our model zoos may be used to develop and evaluate methods to that end. Beyond
that, diverse model zoos offer the opportunity to make further steps of understanding
and exploiting the learning dynamics of models, i.e., by studying the regularities of
generalizing and overfitting models. The shape and curvature of training trajectories
may contain rich information on the state of model training. Such information could
be used to monitor model training or adjust hyperparameters to achieve better results.
The sparsified model zoos add several potential use cases. They may be used to study
the sparsification performance on a population level, study emerging patterns of pop-
ulations of sparse models, or the relation of full models and their sparse counterparts.

3.5.3 Representation Learning

NN models have grown in recent years and with them the dimensionality of their param-
eter space. Empirically, it is more effective to train large models to high performance
and distill them in a second step, than to directly train the small models [70, 110]. This
and other related problems raise interesting questions. What are useful regularities in
NN weights? How can the weight space be navigated in a more efficient way?

Recent work has attempted to learn lower dimensional representations of the weights
of NNs [61, 88, 142, 147, 148, 149, 179]. Such representations can reveal the latent
structure of NN weights. Other approaches identify subspaces in the weight space that
relate to high performance or generalization [6, 112, 167]. In [147], representations
learned on model zoos achieve higher performance in predicting model properties than
weights or weight statistics. [88] proposes a method to learn from a population of diverse
neural architectures to generate weights for unseen architectures in a single forward pass.

Our model zoos can be either a dataset to train representations on as in [147] or [6],
or as a common dataset to validate such methods. Learned representations may bring
a better understanding of the weight space and thus help to reduce the computational
cost and improve the performance of NNs.

3.5.4 Generating New Models

In conventional machine learning, models are randomly initialized and then trained
on data. As that procedure may require large amounts of data and computational re-
sources, fine-tuning and transfer learning are more efficient training approaches that re-
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use already trained models for a different task or dataset [46, 176]. Other publications
have extended the concept of transfer learning from a one-to-one setup to many-to-one
setups [108, 153]. Both approaches attempt to combine learned knowledge from several
source models into a single target model. Most recently, [148, 149] have generated un-
seen NN models with desirable properties from representations learned on model zoos.
The generated models were able to outperform random initialization and pretraining in
transfer-learning regimes. In [136], a transformer is trained on a population of models
with diffusion to generate model weights.

All these approaches require suitable and diverse models to be available. Further, the
exact properties of models suitable for generative use, transfer learning, or ensembles are
still in discussion [46]. Population-based transfer learning methods such as zoo-tuning
[153], knowledge flow [108] or model-zoo [140] have been demonstrated on populations
with only a few models. Populations for these methods ideally are as diverse as pos-
sible, so that they provide different features. Investigating the models in the proposed
zoos may help identify models that lend themselves to transfer learning or ensembling.

3.6 Conclusion

To enable the investigation of populations of neural network models, we release a
novel dataset of model zoos with this work. These model zoos contain systematically
generated and diverse populations of 50’360 neural network models comprised of
3’844’360 collective model states. The released model zoos come with a comprehensive
analysis and initial benchmarks for multiple downstream tasks and invite further work
in the direction of the following use cases: (i) model analysis, (ii) learning dynamics,
(iii) representation learning and (iv) model generation.
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Appendix

3.A Model Zoo Generation Details

In our model zoos, we use three architectures. Two of them rely on a general CNN
architecture, the third is a common ResNet-18[65]. For the first two architectures, use
the general CNN architecture in two sizes, detailed in Table 3.A.1. By varying different
generating factors listed in Table 3.1, we create a grid of configurations, where each
node represents a model. Each node is instantiated as a model and trained with the
exact same training protocol. We chose the hyperparameters with diversity in mind.
The ranges for each of the generating factors are chosen such that they can lead to
functioning models with a corresponding set of other generating factors. Nonetheless,
that leads to some nodes with uncommon and less-than-promising configurations.

The code to generate the models can be found on www.modelzoos.cc. With that
code, the model zoos can be replicated, changed, or extended. We trained our model
zoos on CPU nodes with up to 64 CPUs. Training a zoo takes between 3h (small models,
small configuration, and small dataset) and 3 days (large models, large configuration,
and large dataset). Overall, the generation of the zoos took around 30’000 CPU hours.

3.B Data Management and Accessibility of Model

Zoos

Data Management and Documentation: To ensure that every zoo is reproducible,
expandable, and understandable, we document each zoo. For each zoo, a Readme file
is generated, displaying basic information about the zoo. The exact search pattern and
the training protocol used to train the zoo are saved in a machine-readable JSON file.
To make the zoos expandable, the dataset used to train the zoo and a file describing the
model architecture are included. The model class definition in pytorch is included with
the zoo. Each model is saved along with a JSON file containing its exact hyperparameter
combination. A second JSON file contains the the performance metrics during training.
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Table 3.A.1: CNN architecture details for the models in model zoos.

Layer Component CNN small CNN large

Conv 1

input channels 1 or 3 3
output channels 8 16
kernel size 5 3
stride 1 1
padding 0 0

Max Pooling kernel size 2 2

Activation

Conv 2

input channels 8 16
output channels 6 32
kernel size 5 3
stride 1 1
padding 0 0

Max Pooling kernel size 2 2

Activation

Conv 3

input channels 6 32
output channels 4 15
kernel size 2 3
stride 1 1
padding 0 0

Activation

Linear 1 input channels 36 60
output channels 20 20

Activation

Linear 2 input channels 20 20
output channels 10 10

Total Parameters 2464 or 2864 10853

Model checkpoints are saved for every epoch. To enable further training of the models
in the zoo, a checkpoint recording the optimizer state is saved for the final epoch of each
model. All data can be found on the model zoo website as well as directly from Zenodo.

Accessibility: We ensure the technical accessibility of the data by hosting it on
Zenodo, where the data will be hosted for at least 20 years. Further, we take steps to
reduce access barriers by providing code for data loading and preprocessing. With that,
we reduce the friction associated with analyzing the raw zoo files. Further, it improves
consistency by reducing errors associated with extracting information from the zoo. To
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that end, we provide a PyTorch dataset class encapsulating all model zoos for easy and
quick access within the PyTorch framework. A Tensorflow counterpart will follow. All
code can be found on the model zoo website as well as a code repository on github. To
ensure conceptional accessibility, we include detailed insights, visualizations, and the
analysis of the model zoo (Sec. 3.4) with each zoo. Mode details can be found on the
dataset website www.modelzoos.cc.

3.C Dataset Documentation and Intended Uses

The main dataset documentation can be found at www.modelzoos.cc and is detailed
in the paper in Section 3.3.4. There, we provide links to the zoos, which are hosted on
Zenodo as well as analysis of the zoos. In the future, the analysis will be systematically
extended. The documentation includes code to reproduce, adapt, or extend the zoos,
code to reproduce the benchmark results, as well as code to load and preprocess the
datasets. Dataset Metadata and DOIs are automatically provided by Zenodo, which
also guarantees the long-term availability of the data. Files are stored as zip, json and
pt (pytorch) files. All libraries to read and use the files are common and open source.
We provide the code necessary to read and interpret the data.

The datasets are synthetic and intended to investigate populations of neural network
models, i.e., to develop or evaluate model analysis methods, progress the understanding
of learning dynamics, serve as datasets for representation learning on neural network
models, or as a basis for new model generation methods. More information regarding
the usage is given in the paper.

3.D Author Statement

The dataset is publicly available under www.modelzoos.cc and licensed under the
Creative Commons Attribution 4.0 International license (CC-BY 4.0). The authors
state that they bear responsibility under the CC-BY 4.0 license.

3.E Hosting, Licensing, and Maintenance Plan

The dataset is publicly available under www.modelzoos.cc and licensed under the
Creative Commons Attribution 4.0 International license (CC-BY 4.0). The landing
page contains documentation, code, and references to the datasets, as detailed in the
paper in Section 3.3.4. The datasets are hosted on Zenodo, to ensure (i) long-term
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availability (at least 20 years), (ii) automatic searchable dataset metadata, (iii) DOIs
for the dataset, and (iv) dataset versioning. The authors will maintain the datasets,
but invite the community to engage. Code to recreate, correct, adapt, or extend the
datasets is provided, and s.t. maintenance can be taken over by the community at need.
The github repository allows the community to discuss, interact, add, or change code.
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Chapter 4

Hyper-Representations:
Self-Supervised Representation
Learning on Neural Network Weights
for Model Characteristic Prediction

Abstract

Self-supervised learning approaches proved to be particularly valuable for extracting task-
relevant, useful, and information-preserving representations. Neural Networks (NNs)
are widely applied, yet their weight space is still not fully understood. Therefore, we
propose self-supervised representation learning on the weights of populations of trained
NNs from which we predict NN characteristics. To that end, we introduce domain-
specific data augmentations and an adapted attention architecture. Our empirical
evaluation demonstrates that self-supervised representation learning in this domain helps
to faithfully recover useful NN model properties. We show that learned representations
for trained NNs outperform prior work for the tasks of hyper-parameter, test accuracy,
and generalization gap prediction and transfer to out-of-distribution settings.

This work was accepted for publication at NeurIPS 2021 [147]

51



Hyper-Representations: Learning Representations on Neural Network Weights

4.1 Introduction

Self-supervised and unsupervised representation learning approaches offer task-relevant,
function-serving, and information-preserving data representations [5, 20]. Such methods
proved to be particularly valuable in helping to gain insights, uncover latent factors, find
grouping, or unveil intrinsic structure within the data. Bengio et al. [4, 5], LeCun et al.
[101], Lee et al. [102], Vincent et al. [162] used them for data exploration, dimensionality
reduction, reconstruction, and prediction tasks in image, video, audio, and text data.

Only recently, researchers scratched the surface on related studies for populations
of trained NNs (referred to as model zoos [43, 120, 159]). Insights about populations
of trained NNs weights and biases might help gain a better understanding of the
fundamental characteristics that make NN successful, their learning dynamics, and
their performance. Thus, we could improve NN hyper-parameters selection, perform
test accuracy prediction without seeing the test data, estimate the generalization gap,
and give a more reliable out-of-distribution estimate [26, 43, 73, 80, 159, 172]. However,
the weight space of NNs is high-dimensional and, does not offer a straightforward
and intuitive understanding of its latent factors. The space of trained NN is not well
understood and little is known about the most valuable characteristic of trained NN
models or how to obtain useful representations for them.

Most of the recent efforts in this direction focused on manually finding a set of
features, carefully designing summaries and measures with discriminative and predictive
power over a) NN activation responses triggered by data, or b) trained NN weights
and biases. Raghu et al. [139], Morcos et al. [126] and Kornblith et al. [91] compared
NN models by correlating their activations. Dinh et al. [39] link model properties to
characteristics of the loss surface around the minimum solution. Such methods provide
insights about the learning process and have their merits, but they are expensive to
compute, and can only compare two NN models at a time. Jiang et al. [80] proposed a
measure based on the concept of margin distribution, manually summarised over data
points and across NN layers. Corneanu et al. [26] used connectivity patterns in the NN
activation, and computed topological summaries. Corneanu et al. [26], Jiang et al. [80]
showed that such measures correlate with the generalization gap, but estimating them
requires data and computation. Eilertsen et al. [43] predicted NN hyper-parameters
using weight statistics or 1D convolutional neural networks (CNN) directly from the
weights. Unterthiner et al. [159] proposed layer-wise statistics derived from the NN
models to predict the test accuracy of the NN model. Unfortunately, such features
are limited by design as they disregard the order of weights and neglect the structural
relations among weights.
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I. Model Zoo Generation II. Representation Learning Approach III. Down. TasksI – Model Zoo Generation
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Figure 4.1.1: An overview of the proposed self-supervised representation learning approach.
I. Populations of trained NNs form model zoos. NNs weights are vectorized. II. Neural
representations are learned from the model zoos. III. Neural representations are evaluated on
downstream tasks.

In this paper, we introduce a novel approach. Instead of using hand-crafted fea-
tures, or summaries, we propose self-supervised representation learning on populations
of trained NN weights and biases and predict the NN properties from its learned repre-
sentation. We hypothesize that learned representations over populations of NNs can
faithfully unveil properties about the NNs and the data on which they were trained. It
is reasonable to assume that a self-supervised method can find latent variables com-
mon for diverse populations of NNs given sufficient capacity and efficient training of
the learning model. Also, similarly to image, video, or audio data, a self-supervised ap-
proach could capture the relevant correlations in the populations of trained NNs with
very little inductive bias while robust to variations and having task-agnostic utility
[100]. We adapt and examine different NN architectures focusing on an attention-based
module to model associations between the different weights in a single NN. We apply
self-supervised learning with reconstruction [56] and contrastive losses [20]. So that we
can preserve the distinctive information about trained NNs and compactly relate to
their common properties without relying on supervisory feedback from weak labels. To
enable efficient training, we further propose novel augmentation methods. We intro-
duce structure-preserving permutations as augmentations, which take into account the
structural symmetries within the NN weights that we find necessary and crucial for
learning. We also adapt erasing [183] and noise [56] as augmentations for NN weights.
We give an overview of our learning approach in Figure 4.1.1.

To validate our hypothesis, we perform extensive numerical experiments over different
populations of trained NN models. To do so, we use publicly available as well as generate
and publish NN model zoos. In contrast to [43, 159], our zoos contain models with
different initialization points and diverse configurations, and include dense number of
check-points, i.e., model versions for its evolving points during training. Our ablation
study confirms that the various factors for generating a population of trained NNs
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Figure 4.1.2: Trained NN weights are the
input sequence to a transformer. Left. Each
element in the sequence represents the weight
that connects two neurons at two different
layers. Right. Each element in the sequence
represents the set of weights related to one
neuron.

z zAtt Att

Figure 4.1.3: Multi-head attention-based en-
coder. Left. Regular sequence-to-sequence
translation, each element of the output se-
quence is used. Right. An additional com-
pression token is added to the sequence. From
the output sequence, only the compression to-
ken is taken.

play a vital role in how and which properties are recoverable for trained NNs [159]. In
addition, the relation between generating factors and model zoo diversity reveals that
seed variation for the trained NNs in the zoos is beneficial and adds another perspective
when recovering NNs’ properties.

Similarly, as in the common representation learning setups [5], we use linear probing
[59] and evaluate multiple downstream tasks to see the potential of our approach.
We find that not only learned NNs but also their neural representations1 contain the
latent footprint of their training data [145]. We show that our task-agnostic neural
representations have high utility on tasks like hyper-parameters, test accuracy, and
generalization gap prediction. Furthermore, we demonstrate improved performance
compared to the state-of-the-art on the previously mentioned tasks and outlay the
advantages in an out-of-distribution prediction.

4.2 Model Zoos and Augmentations

Model Zoo. We denote by D a data set that contains data samples with their
corresponding labels. We denote as λ the set of hyper-parameters used for training
(e.g. loss function, optimizer, learning rate, weight initialization, batch-size, epochs).
We define with A the specific NN architecture and with l(.) the learning procedure.
Training under different prescribed configurations {D, λ, A, l(.)} results in a population
of NNs which we refer to as model zoo. We convert the weights and biases of all NNs
in the model zoo into a vectorized form. In the resulting set W = {w1, ....,wM}, wi

denotes the flattened vector of dimension N , representing the weights and biases for
one trained NN model.

1By neural representation, we refer to a learned representation from a population of NNs given a
model zoo.
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Augmentations. In many machine learning tasks, data augmentation helps to learn
robust models, both by increasing the number of training samples and preventing overfit-
ting of strong features [152]. We propose three methods to augment individual instances
of our model zoos to support our self-supervised representation learning approach.

Neurons in dense layers can change position without changing the overall mapping
of the network if in-going and out-going connections are changed accordingly [10]. The
relation between equivalent versions of the same network translates to permutations
of incoming weights with matrix P and transposed permutation PT of the outgoing
weights (PTP = I). Considering the output at layer l + 1, with weight matrices W,
biases b, activations a and activation function σ, we have

zl+1 = Wl+1σ(Wlal−1 + bl) + bl+1 = Ŵl+1σ(Ŵlal−1 + b̂l) + bl+1,

where

Ŵl+1 = Wl+1(Pl)T,

Ŵl = PlWl,

b̂l = Plbl

are the permuted weight matrices and bias vector, respectively. The equivalences hold not
only for the forward pass, but also for the backward pass and weight update2. The per-
mutation can be applied also to kernels of convolution layers. While the permutation aug-
mentation differs significantly from existing augmentation techniques, flips for images are
similar, but specific instances from the set of possible permutations in the image domain.
Empirically, we found the permutation augmentation crucial for our learning approach.

In computer vision and natural language processing, masking parts of the input
has proven to be helpful for generalization [37]. We adopt an approach of random
erasing of sections in the vectorized forms of trained NN weights. Similarly, as in [183],
we apply the erasing augmentation with a probability p to an area that is randomly
chosen with lower and upper bounds blow and bup. In our experiments, we set p = 0.5,
blow = 0.03, bup = 0.3 and erase with zeros. Adding noise augmentation is another way
of altering the exact values of NN weights without overly affecting their mapping, and
has long been used in other domains [56]. We note that noise and erasing as weight
augmentations previously were not explored in this domain.

2Details, formal statements and proofs can be found in the Appendix
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4.3 Neural Representation Learning

Commonly, self-supervised representation learning employs a discriminative or generative
approach Grill et al. [59]. We follow a discriminative modeling principle such as
contrastive learning and borrow ideas from generative approaches such as auto-encoding
to learn representations in a self-supervised fashion. We adopt an encoder-decoder
setup where we use different losses.

Architectures and Self-Supervised Losses. We denote the encoder as gθ(wi) its
parameters as θ, and the neural representation with dimension L as zi = gθ(wi). We
denote the decoder as hψ(zi), its parameters as ψ, and the reconstructed NN weights
as ŵi = hψ(zi) = hψ(gθ(wi)). To learn the encoder and decoder parameters, we use
a loss L = LMSE + Lc composed of MSE reconstruction term LMSE = 1

M

∑M
i=1 ∥wi −

hψ(gθ(wi))∥22 and the NT_Xent loss Chen et al. [20] term Lc. We denote this architecture
with its loss as EcD. In contrastive learning, many methods prevented mode collapse
by using negative samples. Our loss L = LMSE + Lc, contains a reconstruction term
LMSE, which can be seen as a regularizer that prevents mode collapse. Therefore, we
also experiment with replacing Lc in our loss with a modified contrastive term

Lc+ =
∑
i

− log
(
exp(sim(zji , z

k
i )/τ

)
,

where each zi is randomly augmented twice and forms the two views zji and zki , while
sim(zi, zj) = zTi zj/||zi||||zj|| is the cosine similarity. We denote the encoder-decoder
with the loss L = LMSE + Lc+ as Ec+D. We also experiment with encoder-decoder and
a reconstruction loss L = LMSE and denote it as ED, and consider only an encoder
with a contrastive loss L = Lc and denote it as Ec. In all of the architectures, we embed
the neural representation zi in a low dimensional space, L < N . We would like to point
out that Eilertsen et al. [43] and Unterthiner et al. [159] manually selected statistics
and summaries. In our approach, zi can also be seen as a summary, which is learned to
compactly extract the relevant and meaningful information from the weights.

Attention Module. Our encoder and decoder pairs are symmetrical and of the same
type. We apply fully connected feed-forward networks (FFN) as baselines. As there is
no intuition on good inductive biases in the weight space, we further use multi-head
self-attention modules (Att) [160] as an architecture with very little inductive bias. In
the multi-head self-attention module, we apply learned position encodings to preserve
structural information [40]. We propose two methods to encode the weights into a
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sequence (Figure 4.1.2). In the first method, we encode each weight as a token in
the input sequence. In the second method, we linearly transform the weights of one
neuron or kernel and use it as a token. Further, we apply two variants to compress
representations in the latent space (Figure 4.1.3). In the first variant, we aggregate the
output sequence of the transformer and linearly compress it to a neural representation
zi. In the second variant, similarly to Devlin et al. [37], Zhong et al. [183], we add a
learned token to the input sequence that we dub compression token. After passing the
input sequence through the transformer, only the compression token from the output
sequence is linearly compressed to a neural representation zi. Without the compression
token, the information is distributed across the output sequence. The compression
token aggregates information while the input sequence passes through the transformer.
Its dimension is directly tied to the dimension of the value tokens and so its capacity
affects the overall memory consumption.

Downstream Tasks. We use linear probing [59] as a proxy to evaluate the utility of
the learned neural representations. As downstream tasks, we use accuracy prediction
(Acc), generalization gap (GGap), epoch prediction (Eph) as proxy to model versioning,
F-Score [56] prediction (Fc), learning rate (LR), ℓ2-regularization (ℓ2-reg), dropout
(Drop) and training data fraction (TF). Using such targets, we solve a regression problem
and measure the R2 score [170]. We also evaluate for hyper-parameters prediction tasks,
like the activation function (Act), optimizer (Opt), and initialization method (Init).
Here, we train a linear perceptron by minimizing a cross-entropy loss [56] and measure
the prediction accuracy.

4.4 Empirical Evaluation

4.4.1 Model Zoos

Publicly Available Model Zoos. Unterthiner et al. [159] introduced model zoos of
CNNs with 4970 parameters trained on MNIST [99], Fashion-MNIST [171], CIFAR10
[93] and SVHN [129], and made them available under CC BY 4.0. We refer to these
as MNIST-HYP, FASHION-HYP, CIFAR10-HYP and SVHN-HYP. We categorize these zoos
as large due to their number of parameters. In their model zoo creation, the CNN
architecture and seed were fixed, while the activation function, initialization method,
optimizer, learning rate, ℓ2 regularization, dropout and the train data fraction were
varied between the models.
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TETRIS-SEED
Rec. Eph Acc FC0 FC1 FC2 FC3

Ec - 40.3 42.4 38.2 27.3 46.5 33.4
ED 93.5 94.4 81.2 59.8 63.5 55.6 59.2
EcD 76.8 92.1 85.7 66.0 70.0 66.3 81.7
Ec+D 94.3 91.7 71.6 52.3 58.9 42.5 54.2

Table 4.4.1: Ablation results over self-
supervised learning losses. All models are im-
plemented with attention-based reference ar-
chitecture. All values are given in %.

TETRIS-SEED
Rec. Eph Acc FC0 FC1 FC2 FC3

FF 11.7 73.8 69.6 51.5 52.2 52.4 59.4
AttW 64.1 93.6 79.6 63.5 70.0 53.7 65.8

AttW+t 20.8 56.9 52.8 44.5 46.9 43.8 41.8
AttN 82.2 87.3 80.5 63.5 65.1 63.0 66.5

AttN+t 76.8 92.1 85.7 66.0 70.0 66.3 81.7

Table 4.4.2: Ablation results in % under EcD
setup. We use feed-forward FF and attention-
based variants with weight and neuron encod-
ing AttW and AttN each with +t and without
compress. token.

Our Model Zoos. We hypothesize that using only one fixed seed may limit the
variation in characteristics of a zoo. To address that, we train zoos where we also vary
the seed and perform an ablation study below. As a toy example, we first create 4x4
grey-scaled image data set that we call tetris by using four tetris shapes.

TETRIS-SEED

- P E N P,E P,N E,N P,E,N

ED 79.4 93.8 75.1 79.7 93.5 93.8 75.3 93.5
EcD 38.3 48.2 53.9 19.7 79.1 52.6 42.9 81.1
Ec+D 81.0 93.8 83.2 82.0 94.3 94.0 83.8 94.3

Table 4.4.3: R2 reconstruction score given in % in the
augmentation ablation for different attention-based
architectures. We use: permutation (P), erasing (E),
and noise (N) augmentation.

We introduce two zoos, which
we call TETRIS-SEED and TETRIS-

HYP, which we group under small.
Both zoos contain FFN with two
layers and have a total number of
100 learnable parameters. In the
TETRIS-SEED zoo, we fix all hyper-
parameters and vary only the seed
to cover a broad range of the weight
space. The TETRIS-SEED zoo con-
tains 1000 models that are trained

for 75 epochs. To enrich the diversity of the models, the TETRIS-HYP zoo contains FFNs,
which vary in activation function [tanh, relu], the initialization method [uniform,
normal, kaiming normal, kaiming uniform, xavier normal, xavier uniform] and
the learning rate [1e-3, 1e-4, 1e-5]. In addition, each combination is trained with 100
different seeds. Out of the 3600 models in total, we have successfully trained 2900 for
75 epochs - the remainder crashed and are disregarded. Similarly to TETRIS-SEED, we
further create zoos of CNN models with 2464 parameters, each using the MNIST and
Fashion-MNIST data sets, called MNIST-SEED and FASHION-seed and grouped them as
medium. To maximize the coverage of the weight space, we again initialize models with
seeds 1-1000 3.

3Full details on the generation of the zoos can be found in the Appendix
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Figure 4.4.1: UMAP dimensionality reduction for NN model zoos are created with different
generating factors. Colors represent initialization methods. Compare numerical results in
Table 4.4.4.

Model Zoo Generating Factors. Prior work discusses the impact of random seeds
on the properties of model zoos. While Yak et al. [172] use multiple random seeds
for the same hyper-parameter configuration, Unterthiner et al. [159] explicitly argue
against that to prevent information leakage between samples. To disentangle the
generating factors (seeds and hyper-parameters) and model properties, we have created
five zoos with approximately the same number of CNN models trained on MNIST 3.
MNIST-SEED varies only the random seed (1-1000), MNIST-HYP-1-FIX-SEED varies the
hyper-parameters with one fixed seed per configuration (similarly to [159]). To decouple
the hyper-parameter configuration from one specific seed, MNIST-HYP-1-RAND-SEED
draws 1 random seed for each hyper-parameter configuration. To investigate the influence
of repeated configurations, in MNIST-HYP-5-FIX-SEED and MNIST-HYP-5-RAND-SEED

for each hyper-parameter configurations we add 5 models with different fixed and
random seeds, respectively.

4.4.2 Training and Testing Setup

Architectures. We evaluate our approach under different types of architectures,
including Ec, ED, EcD and Ec+D, see Section 4.3. As encoders E and decoders D, we
experimented with the architectures introduced in Section 4.3. The encoder E and
decoders D in the FFN baseline are symmetrical 10 [FC-ReLU]-layers each and linearly
reduce dimensionality for the input to the latent space. Considering the attention-
based encoder and decoder, on the TETRIS-SEED and TETRIS-HYP zoos, we used 2
attention blocks with 1 attention head each, token dimensions of 128 and FC layers in
the attention module of dimension 512. On the larger zoos, we use up to 4 attention
heads in 4 attention blocks, token dimensions of up to size 800, and FC layers in the
attention module of dimension 1000.
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MNIST-HYP- MNIST-HYP- MNIST-HYP- MNIST-HYP-
MNIST-SEED 1-FIX-SEED 1-RAND-SEED 5-FIX-SEED 5-RAND-SEED

var .234 .155 .152 .091 .092
varc .234 .101 .164 .094 .100
Rtr 78.5 90.9 78.5 86.5 81.4
Rtes 59.5 79.0 57.9 78.8 63.7

W s(W)Ec+D W s(W)Ec+D W s(W)Ec+D W s(W)Ec+D W s(W)Ec+D

Eph 54.9 97.7 95.9 03.1 06.2 06.8 -67 04.2 -14 01.1 12.4 03.4 -20 07.8 -03.
Acc 82.8 98.4 98.1 07.7 74.4 87.0 <κ 56.6 55.5 21.5 66.1 78.7 <κ 69.1 58.1

GGap <κ 45.3 40.4 -72 35.8 49.4 <κ 24.7 01.8 <κ 33.9 35.7 <κ 41.5 10.8
Init – – – 88.5 67.3 85.6 39.2 58.2 44.8 82.5 61.3 76.9 37.6 55.4 40.1

Table 4.4.4: R2 score in %. Results about the impact of the generating factors for the model
zoos. VAR is the variance of the weights. VARc denotes the mean of the variances for groups
of samples with shared initialization method and activation function. Rtr and Rtes are the
reconstruction R2 of train and test split on a reference architecture after 1750 epochs. κ = −170.

Neural Representation Learning and Downstream Tasks. We apply the pro-
posed data augmentation methods for representation learning (see Section 4.2). We run
our representation learning algorithms for up to 2500 epochs, using the adam optimizer
[86], a learning rate of 1e-4, weight decay of 1e-9, dropout of 0.1 percent, and batch-sizes
of 500. In all of our experiments, we use 85% of the model zoos for training and 15% for
testing. We use checkpoints of all epochs but ensure that samples from the same models
are either in the train or in the test split of the zoo. As a quality metric for self-supervised
learning, we track the reconstruction R2 on the test split of the zoo. As a proxy for how
much useful information is contained in the neural representation, we evaluate on down-
stream tasks as described in Section 4.3. To ensure numerical stability of the solution to
the linear probing, we apply Tikhonov regularization [157] with regularization parame-
ter α in the range [1e-5, 1e3] (we choose α by cross-validating over the R2 score for the
training split of the zoo) and report the R2 score of the test split of the zoo. To mini-
mize the cross entropy loss for the categorical hyper-parameter prediction, we use adam
optimizer [86] with a learning rate of 1e-4 and weight-decay of 1e-6. The linear probing
is applied to the same train-test splits as it is in our representation learning setup.

Out-of-Distribution Experiments. We follow a setup for out-of-distribution exper-
iments similar to [159]. We investigate how well the linear probing estimator computed
over neural representations generalizes to yet unseen data. Therefore, we use the zoos
MNIST-HYP, FASHION-HYP, CIFAR10-HYP and SVHN-HYP. On each zoo, we apply our self-
supervised approach to learn their corresponding neural representations and fit a linear
probing estimator to each of them (in-distribution). We then apply both the neural
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representation mapper and the linear probing estimator of one zoo on the weights of
the other zoos (out-of-distribution). The target ranges and distributions vary between
the zoos. Linear probe prediction may preserve the relation between predictions but
include a bias. Therefore, we use Kendall’s τ coefficient as a performance metric, which
is a measure of rank correlation. It measures the ordinal association between two mea-
sured quantities [85].

Baselines, Computing Infrastructure and Run Time. As a baseline, we use
the model zoos (W). In addition, we also consider linear PCA (PCAl), cosine similarity
PCA (PCAc), radial basis kernel PCA (PCAr), and UMAP (Um) [120]. We further
compare to layer-wise weight-statistics (mean, var, quintiles) s(W) as in [159]. Similar
features are used in [43]. As computing hardware, we use half of the available resources
from NVIDIA DGX2 station with 3.3GHz CPU and 1.5TB RAM memory, which has a
total of 16 1.75GHz GPUs, each with 32GB memory. To create one small and medium
zoo, it takes 1 to 2 days and 10 to 12 days, respectively. For one experiment over the
small zoo, it takes around 3 hours to learn the neural representation on a single GPU
and evaluate on the downstream tasks. It takes approximately 1 day for the medium
zoos and 2 to 3 days for the large-scale zoos for the same experiment.
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TETRIS-SEED
W PCAl PCAc PCAr Um s(W) EcD

Eph 59.8 49.3 78.5 93.7 65.7 96.4 95.2

Acc 53.5 28.7 76.5 75.7 76.0 86.6 87.0

FC0 30.6 11.9 54.8 50.7 50.3 62.2 67.3
FC1 45.3 31.2 50.7 59.9 39.2 62.1 68.2
FC2 47.3 12.5 42.6 40.3 46.9 60.9 66.4
FC3 57.8 47.3 75.2 73.5 72.9 71.8 60.3

TETRIS-HYP
W PCAl PCAc PCAr Um s(W) EcD

Rec – 79.7 43.4 -30 – – 91.0

Eph 02.8 02.9 01.9 13.2 0.* 16.2 17.2
Acc 21.5 22.1 25.6 32.4 0.* 48.5 60.8

LR 00.0 00.0 00.2 44.0 00.0 53.1 49.0
Act 75.0 73.5 79.6 80.4 46.7 73.8 87.6
Init 38.0 36.9 36.1 36.5 29.6 48.1 48.6

Table 4.4.5: R2 given in %. Left. Reconstruction, epoch, accuracy, and class-wise F-scores
prediction. Right. Epoch, accuracy, learning rate, seed, activation function, and initialization
prediction.

4.4.3 Results

Augmentation Ablation. To evaluate the impact of the proposed augmentations
(Section 4.2) for our representation learning method, we present an ablation analysis, in
which we measure R2 for ED, EcD, and Ec+D4. We use 120 permutations, a probability
of 0.5 for erasing the weights, and zero-mean noise with a standard deviation 0.05 (see
Table 4.4.3). We find the permutation augmentation to be necessary for generalization -
particularly under higher compression ratios. The additional samples generated with the
permutation appear to effectively prevent overfitting of the training set. Without the
permutation augmentation, the test performance diverges after a few training epochs.
Erasing further improves test performance and allows for extended training without
overfitting. The addition of noise yields inconsistent results and is difficult to tune, so,
we omit it in our further experiments.

Architecture Ablation. The different architectures are compared in Table 4.4.1.
The results show that within the set of used NN architectures for neural representation
learning, the attention-based architectures learn considerably faster, yield lower recon-
struction error, and have the highest performance on the downstream tasks compared
to the FFN-based architectures. We attribute this to the attention modules, which are
able to reliably capture long-range relations on complex data. While tokenizing each
weight individually (AttW ) is able to learn, the computational load is significant, even
for a small zoo, due to the large number of tokens in the sequences. The memory load
prevents the application of that encoding on larger zoos. We find that embedding all
weights of one neuron (or convolutional kernel) to one token combined with compression

4We leave out Ec as it does not use a reconstruction loss
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MNIST-HYP FASHION-HYP CIFAR10-HYP SVHN-HYP
W s(W) Ec+D W s(W) Ec+D W s(W) Ec+D W s(W) Ec+D

Eph 21.6 32.1 33.4 21.0 32.8 40.7 18.7 29.4 35.6 14.6 37.2 39.7
Acc 72.7 81.9 90.0 66.4 79.4 90.2 73.5 83.2 90.9 79.5 82.1 89.9

GGap 15.3 24.8 32.9 41.0 42.1 53.7 32.7 41.1 55.4 30.2 38.0 48.9

LR 08.4 32.5 36.4 29.4 35.6 43.0 20.8 30.5 40.2 20.3 33.0 40.0
ℓ2-reg 08.4 15.6 18.1 06.9 16.4 24.0 02.0 13.6 24.6 04.8 12.4 18.2
Drop 23.3 18.8 34.2 21.9 21.9 39.1 10.2 15.7 28.2 04.4 14.0 20.8
TF -1.2 07.4 11.1 -0.3 07.5 13.0 02.2 06.6 17.0 -3.9 08.3 13.0

Act 89.0 83.7 86.9 90.3 83.4 87.8 88.8 80.3 86.1 87.7 79.7 84.0
Init 94.5 72.8 93.1 95.7 77.5 94.9 93.4 75.3 92.8 91.0 72.8 88.4
Opt 76.8 67.0 72.1 79.8 68.8 76.0 74.0 67.6 72.1 72.0 69.4 69.9

Table 4.4.6: Top 7 Rows. R2 score in % for Eph, Acc, GGap, LR ℓ2-reg, Drop and TF
prediction. Bottom 3 Rows. Accuracy score for Act, Init, and Opt prediction.

tokens (AttNt) shows the overall best performance and scales to larger architectures.
Compression tokens achieve higher performance. The dedicated token gathers informa-
tion from all other tokens of the sequence in several attention layers. This appears to en-
able the neural representation to grasp more relevant information than linearly compress-
ing the entire sequence. On the other hand, compression tokens are only an advantage,
if their capacity is high enough, in particular higher than the bottleneck. On the large
zoos, compression tokens could not be applied successfully. High-capacity compression
tokens required overall high token dimensions, which exceeded the available memory.

Self-Supervised Learning Ablation. In Table 4.4.2, we evaluate the usefulness of
the self-supervised learning tasks (Section 4.3). The application of purely contrastive
loss in Ec, appears not to provide useful representations for the downstream tasks.
Among our losses, the combination of reconstruction with contrastive loss as in EcD,
provides neural representations z that have the best performance on the downstream
tasks. The variation Ec+D, has the highest reconstruction accuracy. The addition of a
contrastive loss helps to pronounce distinctiveness so that the neural representations are
both better at reconstructing the NN weights, as well as revealing properties about the
NNs. When analyzing the impact of the compression ratio N/L in EcD, we found that
very high compression ratios hurt performance. EcD could not be trained to satisfactory
results on the medium and large model zoos. We therefore apply EcD on the small,
and Ec+D on the medium and large model zoos, which is less demanding and shows
superior performance to ED on those zoos.
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Zoo Generating Factors Ablation. Figure 4.4.1 visualizes the weight of the zoos,
which contain models of all epochs5. In table 4.4.4, we report numerical properties.
Only changing the seeds appears to result in homogeneous development with a very high
correlation between s(W ) and the properties of the samples in the zoo. Varying the
hyper-parameters reduces the correlation. With fixed seeds, visually, we observe clusters
of models with shared initialization method and activation function. Quantitatively
we obtain lower VARc and high predictive value of W for the initialization method.
That seems a plausible outcome, given that the architecture and activation function
determine the shape of the loss surface, while the seed and initialization method decide
the starting point. Such clustering appears to facilitate representation learning, with
high R2 for reconstruction and high performance on downstream tasks. We observe
similar properties in the zoos of [159], see Appendix. Initializing models with random
seeds visually and numerically disperses the clusters. While VAR between 1 fixed and 1
random seed is comparable, VARc is considerably smaller with fixed seed, the predictive
value of W for the initialization methods drops significantly. Random seeds also appear
to make both the reconstruction as well as NN property prediction more difficult. On
the other hand, the results show that sharing the same hyper-parameter configuration
across five seeds helps the representation learning and NN property prediction. Thus,
we conclude that changing only the seeds results in models with very similar evolution
during learning while using one seed shared across models might create shortcuts in
the weight space. Zoos that vary both appear to be the most diverse and hardest for
learning and NN property prediction.

Downstream Tasks. We learn and evaluate our neural representations on 11 differ-
ent zoos: TETRIS-SEED, TETRIS-HYP, 5 variants of MNIST, MNIST-HYP, FASHION-HYP,
CIFAR10-HYP and SVHN-HYP. We compare with multiple baselines and s(W). The re-
sults are shown in Tables 4.4.4, 4.4.5 and and 4.4.6. On all model zoos, neural represen-
tations learn useful features for the downstream tasks, which outperform the actual
NN weights and biases, all of the baseline dimensionality reduction methods as well as
s(W) on the small and large zoos. On the medium-sized zoos, neural representations
are on par with s(W). Our approach demonstrates that we can faithfully recover useful
information. On the TETRIS-SEED, and MNIST-SEED model zoos, s(W) achieves high
R2 scores on all downstream tasks (see Table 4.4.5 left). As discussed above, these zoos
contain a strong correlation between s(W ) and sample properties. Nonetheless, learned
neural representations achieve higher R2 scores on Acc, FC0−C3 and are competitive
on Eph. On the TETRIS-SEED model zoo, we outperform the baseline methods. On

5Further visualizations can be found in the Appendix
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MNIST-HYP FASHION-HYP SVHN-HYP CIFAR10-HYP
W s(W) Ec+D W s(W) Ec+D W s(W) Ec+D W s(W) Ec+D

MNIST-HYP .36 .29 .35 .20 .10 .32 .13 .24 .19 -.02 -.05 .05

FASHION-HYP -.03 .07 .04 .54 .48 .55 .06 .14 -.03 .08 .09 .20

SVHN-HYP -.03 .16 .16 -.03 .21 .05 .44 .35 .46 -.02 .07 .08

CIFAR10-HYP .11 .10 .12 .35 .35 .45 .14 .17 .19 .41 .30 .41

Table 4.4.7: Kendall’s τ score for the generalization gap (GGap) prediction. We train estimators
for each zoo (rows) and evaluate on all zoos (columns). The block diagonal elements contain the
in-distribution prediction values. The remaining values are for out-of-distribution prediction.

TETRIS-HYP, the overall performance of all methods is the lowest across the downstream
tasks compared to the other zoos (see Table 4.4.5 right). Here, too, neural representa-
tions have the highest R2 score on all downstream tasks, except for the LR prediction.
On MNIST-HYP, FASHION-HYP, CIFAR10-HYP and SVHN-HYP, neural representations out-
perform s(W) on all downstream tasks. They achieve a higher R2 score compared to W
on the prediction of continuous hyper-parameters. On the categorical hyper-parameters,
like activation, initialization method, and optimizer, the weight space achieves the high-
est R2 scores, see Table 4.4.6. We explain this with the small amount of variation in the
model zoo, see Section 4.4.1, which allows to separate these properties in weight space.

Out-of-Distribution Prediction. Table 4.4.7 shows the out-of-distribution results
for generalization gap prediction6, which is a very challenging task. Neural representa-
tions outperform the baselines for Kendall’s τ measure in the majority of the results. Sur-
prisingly, W and s(W ) in this setup have similar performance across the used model zoos.
Our approach has better scores in the 7 out of 12 results (the off-diagonal elements in Ta-
ble 4.4.7) and has 1 tie in the comparisons with W and s(W ). This verifies that our ap-
proach indeed preserves the distinctive information about trained NNs while compactly
relating to their common properties, including the characteristics of the training data.

6In the Appendix, we also give results for other tasks, including epoch id and test accuracy prediction

65



Hyper-Representations: Learning Representations on Neural Network Weights

4.5 Related Work

There is ample research evaluating the structures of NNs by visualizing activations, e.g.
[178], which allow some insights in the patterns of, e.g. the kernels of CNNs. Other
research evaluated networks by computing a degree of similarity between networks.
Laakso and Cottrell [94] compared the activations of NNs by a measure of "sameness".
Li et al. [106] computed correlations between the activations of different nets. Wang et al.
[166] tried to match the subspaces of the activation spaces in different networks [82],
which showed to be unreliable. Kornblith et al. [91], Morcos et al. [126], Raghu et al.
[139] applied correlation metrics to NN activations in order to study the learning
dynamics. Jia et al. [79] approximated the space of DNN activations with a convex
hull. Jiang et al. [80] also used activations to approximate the margin distribution and
predict the generalization gap. Corneanu et al. [26] proposed persistent homology by
using connectivity patterns in the NN activation, and computed topological summaries.

While previously mentioned related work studied measures defined on the activations
for insights about the NN characteristics, the methods applied on populations of NN
weights have not received much attention for the same purpose. Only recently, two
publications attempted to exploit populations of NNs. Instead of classifying a classifier
for hyper-parameters prediction [43], we learn a general-purpose neural representations
in self-supervised fashion. Unterthiner et al. [159] proposed layer-wise statistics derived
from the NN models to predict the test accuracy of NN model. In our work, we model
associations between the different weights in NN using an attention-based module.
This helps us to learn representations that compactly extract relevant and meaningful
information while considering the correlations between the weights in an NN.

4.6 Conclusions

In this work, we present a novel approach to learning neural representations from
the weights of neural networks. To that end, we proposed new augmentations, self-
supervised learning losses, and adapted multi-head attention-based architectures with
suitable weight encoding for this domain. Further, we introduced several new model
zoos and investigated their properties. We showed that not only learned neural networks
but also their neural representations contain the latent footprint of their training data.
We demonstrated high performance on downstream tasks, exceeding existing methods
in hyper-parameters, test accuracy, and generalization gap prediction and showing the
potential in an out-of-distribution setting.
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Appendix

4.A Permutation Augmentation

In this appendix section, we give the full derivation about the permutation equivalence
in the proposed permutation augmentation (Section 4.2 in the paper). In the following
appendix subsections, we show the equivalence in the forward and backward pass
through the neural network with original learnable parameters and the permutated
neural network.

4.A.1 Neural Networks and Back-propagation

Consider a common, fully-connected feed-forward neural network (FFN). It maps inputs
x ∈ RN0 to outputs y ∈ RNL . For a FFN with L layers, the forward pass reads as

a0 = x,

nl = Wlal−1 + bl, l ∈ {1, · · · , L},

al = σ(nl), l ∈ {1, · · · , L}.

(4.A.1)

Here, Wl ∈ RNl×Nl−1 is the weight matrix of layer l, bl the corresponding bias vector.
Where Nl denotes the dimension of the layer l. The activation function is denoted by
σ, it processes the layer’s weighted sum nl to the layer’s output al.

Training of neural networks is defined as an optimization against a objective function
on a given dataset, i.e. their weights and biases are chosen to minimize a cost function,
usually called loss, denoted by L. The training is commonly done using a gradient based
rule. Therefore, the update relies on the gradient of L with respect to weight Wl and
the bias bl, that is it relies on ∇WL and ∇bL, respectively. Back-propagation facilitates
the computation of these gradients and makes use of the chain rule to back-propagate
the prediction error through the network [144]. We express the error vector at layer l as

δl = ∇nlL, (4.A.2)
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and further use it to express the gradients as

∇WlL = δl(al−1)T,

∇blL = δl.
(4.A.3)

The output layer’s error is simply given by

δL = ∇aLL ⊙ σ′(nL), (4.A.4)

where ⊙ denotes the Hadamard element-wise product and σ′ is the activation’s derivative
with respect to its argument. Subsequent earlier layer’s error are computed with

δl = (Wl+1)Tδl+1 ⊙ σ′(nl), l ∈ {1, · · · , L− 1}. (4.A.5)

A usual parameter update takes on the form

(Wl)new = Wl − β∇WlL, (4.A.6)

where β is a positive learning rate.

4.A.2 Proof: Permutation Equivalence

In the following appendix subsection, we show the permutation equivalence for feed-
forward and convolutional layers.

Permutation Equivalence for Feed-forward Layers. Consider the permutation
matrix Pl ∈ NNi×Nl , such that (Pl)TPl = I, where I is the identity matrix. We can
write the weighted sum for layer l as

nl+1 = Wl+1 al + bl+1

= Wl+1 σ(nl) + bl+1

= Wl+1 σ(Wlal−1 + bl) + bl+1.

(4.A.7)

As Pl is a permutation matrix and since we use the element-wise nonlinearity σ(.), it
holds that

Plσ(nl) = σ(Plnl), (4.A.8)
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which implies that we can write

nl+1 = Wl+1 I σ(Wl al−1 + bl) + bl+1

= Wl+1 (Pl)T Pl σ(Wl al−1 + bl) + bl+1

= Wl+1 (Pl)T σ(Pl Wl al−1 +Pl bl) + bl+1

= Ŵl+1 σ(Ŵl al−1 + b̂l) + bl+1,

(4.A.9)

where Ŵl+1 = Wl+1(Pl)T, Ŵl = PlWl and b̂l = Plbl are the permuted weight
matrices and bias vector.

Note that rows of weight matrix and bias vector of layer l are exchanged together
with columns of the weight matrix of layer l + 1. In turn, ∀l ∈ {1, · · · , L− 1}, (4.A.9)
holds true. At any layer l, there exist Nl different permutation matrices Pl. Therefore,
in total there are

∏L−1
l=1 Nl! equivalent networks.

Additionally, we can write

(PlWl)new =PlWl− αPl∇WlL

=PlWl− αPlδl(al−1)T

=PlWl− αPl
[
(Wl+1)Tδl+1 ⊙ σ′(nl)

]
(al−1)T

=PlWl− α
[
(Wl+1PT)Tδl+1 ⊙ σ′(Plnl)

]
(al−1)T

=PlWl− α[(Wl+1(Pl)T)Tδl+1 ⊙ σ′(PlWlal−1 +Plbl)](al−1)T.

(4.A.10)

If we apply a permutation Pl to our update rule (equation 4.A.6) at any layer except
the last, then using the above, we can express the gradient-based update as

(Ŵl)new = Ŵl − α
[
(Ŵl+1)Tδl+1 ⊙ σ′(Ŵlal−1 + b̂l)

]
(al−1)T□ (4.A.11)

The above implies that the permutations not only preserve the structural flow of
information in the forward pass, but also preserve the structural flow of information
during the update with the backward pass. That is we preserve the structural flow of
information about the gradients with respect to the parameters during the backward
pass through the feed-forward layers.
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Permutation Equivalence for Convolutional Layers. We can easily extend the
permutation equivalence in the feed-forward layers to convolution layers. Consider the
2D-convolution with input channel x and O output channels as1 = [

a1
.

aO
]. We express

a single convolution operation for the input channel x with a convolutional kernel
Ko, o ∈ {1, ..., O} as

ao =bo +Ko ⋆ x, o ∈ {1, · · · , O}, (4.A.12)

where ⋆ denotes the discrete convolution operation.
Note that in contrast to the whole set of permutation matrices Pl (which were

introduced earlier) now we consider only a subset that affects the order of the input
channels (if we have multiple) and the order of the concatenation of the output channels.

We now show that changing the order of input channels does not affect the output
if the order of kernels is changed accordingly.

The proof is similar to the permutation equivalence for the feed-forward layer. The
difference here is that we take into account only the change in the order of channels
and kernels. In order to prove permutation equivalence here it suffices to show that
we can represent the convolution of multiple input channels by multiple convolution
kernels in an alternative form, that is as matrix-vector operation.

To do so we first show that we can express the convolution of one input channel
with one kernel to its equivalent matrix-vector product form. Formally, we have that

ao =bo +Ko ⋆ x = bo +Rox, (4.A.13)

where Ro is the convolution matrix. We build the matrix Ro in this alternative form
(4.A.13) for the convolution operation from the convolutional kernel Ko. Ro has a
special structure (if we have 1D convolution then it is known as a circulant convolution
matrix), while the input channel x remains the same. The number of columns in Ro

equals the dimension of the input channel, while the number of rows in Ro equals the
dimension of the output channel. In each row of Ro, we store the elements of the
convolution kernel. That is we sparsely distribute the kernel elements such that the
multiplication of one row Ro,j of Ro with the input channel x results in the convolution
output ao,j for the corresponding position j at the output channel ao.

The convolution of one input channel by multiple kernels can be expressed as
a matrix-vector operation. In that case, the matrix in the equivalent form for the
convolution with multiple kernels over one input represents a block concatenated matrix,
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where each of the block matrices has the previously described special structure, i.e.,

as1 =
[

a1
.

aO

]
=
[

b1
.

bO

]
+

R1

.

RO

x = bf +Rfx, (4.A.14)

where bf =
[

b1
.

bO

]
and Rf =

R1

.

RO

.

In the same way the convolution of multiple input channels x1, ...,xS by multiple
kernels K1, ...,KO can be expressed as a matrix vector operation. In that case, the
matrix in the equivalent form for the convolution with multiple kernels over multiple
inputs represents a block diagonal matrix, where each of the blocks in the block diagonal
matrix has the previously described special structure, i.e.,

[
as1.
ass

]
=
[
bf
.
bf

]
+

Rf 0 ... 0

. . . .

0 ... 0 Rf

[
x1
.

xS

]
=

[
bf
.
bf

]
+R

[
x1
.

xS

]
, (4.A.15)

where R =

Rf 0 ... 0

. . . .

0 ... 0 Rf

, which we can also express as

a = b+R
[

x1
.

xS

]
, (4.A.16)

where a =
[
as1.
ass

]
and b =

[
bf
.
bf

]
.

Note that the above equation has an equivalent form with equation (4.A.7), therefore,
the previous proof is valid for the update with respect to hole matrix R. However, R
has a special structure, therefore for the update of of each element in R, we can use
the chain rule, which results in

∂f(R)

∂Rij

=
∑
k

∑
l

∂f(R)

∂Rkl

∂Rkl

∂Rij

= Tr

[[
∂f(R)

∂R

]T
∂R

∂Rij

]
. (4.A.17)

Replacing f() by L in the above and using the update rule equation (4.A.6) gives us
the update equation for Rij. Using similar argumentation and derivation that leads to
equation (4.A.11) concludes the proof for permutation equivalence for a convolutional
layer □
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Figure 4.A.1: Empirical Evaluation of Permutation Equivalence. Left: Accuracies of orignal
model A, permuted model Ap and model B trained from Ap’s initialization. All models are
indistinguishable in their accuracies. Right: pairwise distances of vectorized weights over
epochs of models A, Ap and B. The distance between A and Ap as well as A and B is equally
large and does not change much over the epochs. The distance between Ap and B, which
start from the same point in weight space, is small and remains small over the epochs. both
figures: permuted versions of models are indistinguishable in their mapping, but far apart in
weight space.

Empirical Evaluation. We empirically confirm the permutation equivalence (see
Figure 4.A.1). We begin by comparing the accuracies of permuted models (Figure 4.A.1
left). To that end, we randomly initialize model A and train it for 10 epochs. We pick
one random permutation and permute all epochs of model A. For the permuted version
Ap we compute the test accuracy for all epochs. The test accuracy of model A and Ap
lie on top of each other, so the permutation equivalence holds for the forward pass. To
test the backward pass, we create model B as a copy of Ap at initialization and train
for 10 epochs. Again, train and test epochs of A and B lie on top of each other, which
indicates that the equivalence empirically holds for the backward pass, too.

To track how models develop in weight space, we compute the mutual ℓ2 distances
between the vectorized weights (Figure 4.A.1 right). The distance between A and Ap,
as well as between A and B is high and identical. Therefore, model A is far away from
models Ap and B. Further, the distance between Ap and B is small, confirming the
backward pass equivalence. We attribute the small difference to numerical errors.

Further Weight Space Symmetries. It is important to note that besides the
symmetry used above, other symmetries exist in the model weight space, which changes
the representation of a NN model, but not its mapping, e.g., scaling of subsequent layers
with piece-wise linear activation functions [39]. While some of these symmetries may
be used as augmentation, these particular mappings only create equivalent networks in
the forward pass, but different gradients and updates in the backward pass when back
propagating. Therefore, we did not consider them in our work.
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4.B Self-Supervised Loss Additional Details

Below, we give additional details about the losses in our self-supervised representation
learning approach.

Encoder with Contrastive Loss. (Ec). We use an encoder gθ(wi) with parameters
θ, where zi = gθ(wi) denotes the neural representation with dimension of L. To learn
the encoder parameters, we use the NT_Xent loss [20]. For a batch of MB model
weights, each sample wi is randomly augmented twice and propagated through the
encoder, which results in two views zi,v1 = zi and zi,v2 (positive pair). Given a batch of
positive pairs zi and zi,v2 the loss is defined as

LE = Lc =
∑
i

− log
exp (sim(zi, zi,v2)/τ)∑
j ̸=i exp (sim(zi, zj)/τ)

,

where sim(zi, zi,v2) = zTi zi,v2/||zi||||zi,v2|| is the cosine similarity and τ is the temperature
parameter. The encoded negative samples zj for each positive pair (zi, zi,v2) are indexed
by j ̸= i. The configuration is denoted as ED.

Encoder-Decoder with Reconstruction Loss. (ED). We denote the encoder as
gθ(wi) with parameters θ, while zi = gθ(wi) denotes the neural representation with
dimension L. We denote the decoder as hψ(zi) with parameters ψ, while ŵi = hψ(zi) =

hψ(gθ(wi)) denotes the reconstructed NN weights. To learn the encoder and decoder
parameters, we use the common MSE reconstruction loss

LED = LMSE =
1

M

M∑
i=1

∥wi − hψ(gθ(wi))∥22.

The configuration is denoted as ED.

Encoder-Decoder with Reconstruction and Contrastive Loss. (EcD). As above,
this architecture also consists of an encoder and decoder. To learn its parameters, we use
a reconstruction loss LMSE and a contrastive loss defined on the representations zi, i.e.,

LEcD = LMSE + βLc,

where LMSE and Lc are defined as above and β is a Lagrangian parameter. We denote
this configuration as EcD.
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Encoder-Decoder with Reconstruction and Modified Contrastive Loss. (Ec+D).
As the reconstruction loss prevents mode collapse, which negative samples are com-
monly used for in contrastive learning, we further experiment with applying the con-
trastive loss only on positive pairs. Then, Lc simplifies to

Lc+ =
∑
i

− log exp (sim(zi, zi,v2)/τ)

and the resulting loss is
LEc+D = LMSE + βLc+.

We denote this configuration as Ec+D.

A Note on the Composite Losses. We point out that in both composite losses
LEcD = LMSE+βLc and LEc+D = LMSE+βLc+, we use a Lagrangian parameter β ≥ 0.
It determines the strength of influence of each of the components in the loss. Low-
valued β > 0 puts focus on the reconstruction, while high-valued β > 0 puts focus on
the distinctiveness between the neural representations. Therefore, we experimented
with different β > 0, and found out that β has to be chosen such that it represents
a balanced trade-off between reconstruction and preservation of distinctiveness. In
particular, we found that β = 1 works well in our experiments.
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4.C Downstream Tasks Additional Details

In this appendix section, we provide additional details about the downstream tasks
that we use to evaluate the utility of the neural representations obtained by our self-
supervised learning approach.

4.C.1 Downstream Tasks Problem Formulation

We use linear probing as a proxy to evaluate the utility of the learned neural represen-
tations, similar to [59].

We denote the training and testing neural representations as Ztrain and Ztest. We
assume that training ttrain and testing ttest target vectors are given. We compute the
closed form solution r̂ to the regression problem

(Q1) : r̂ = argmin
r

∥Ztrainr− ttrain∥22,

and evaluate the utility of Ztest by measuring the R2 score [170] as discrepancy between
the predicted Ztestr̂ and the true test targets ttest.

Note that by using different targets ttrain in (Q1), we can estimate different r

coefficients. This enables us to evaluate on different downstream tasks, including,
accuracy prediction (Acc), epoch prediction (Eph) as proxy to model versioning, F-Score
[56] prediction (Fc), learning rate (LR), ℓ2-regularization (ℓ2-reg), dropout (Drop) and
training data fraction (TF). For these target values, we solve (Q1), but for categorical
hyper-parameters prediction, like the activation function (Act), optimizer (Opt), and
initialization method (Init), we train a linear perceptron by minimizing a cross-entropy
loss [56]. Here, instead of R2 score, we measure the prediction accuracy.

4.C.2 Downstream Tasks Targets

In this appendix subsection, we give the details about how we build the target vectors
in the respective problem formulations for all of the downstream tasks.

Accuracy Prediction (Acc). In the accuracy prediction problem, we assume that
for each trained NN model on a particular data set, we have its accuracy. Regarding the
task of accuracy prediction, the value atrain,i for the training NN models represents the
training target value ttrain,i = atrain,i, while the value atest,j for the testing NN models
represents the true testing target value ttest,j = atest,j.

75



Hyper-Representations: Learning Representations on Neural Network Weights

Generalization Gap Prediction (GGap). In the generalization gap prediction
problem, we assume that for each trained NN model on a particular data set, we have
its train and test accuracy. The generalization gap represents the target value gi =
atrain,i − atest,i for the training NN models, while gj = atrain,j − atest,j is the true target
ttest,j = gj for the testing NN models.

Epoch Prediction (Eph). We consider the simplest setup as a proxy to model
versioning, where we try to distinguish between NN weights and biases recorded at
different epoch numbers during the training of the NNs in the model zoo. To that end,
we assume that we construct the model zoo such that during the training of a NN
model, we record its different evolving versions, i.e., the zoo includes versions of one
NN model at different epoch numbers ei. Similarly to the previous task, our targets
for the task of epoch prediction are the actual epoch numbers, ttrain,i = etrain,i and
ttest,j = etest,j, respectively.

F Score Prediction (Fc). To identify more fine-grained model properties, we therefore
consider the class-wise F score. We define the F score prediction task similarly as in
the previous downstream task. We assume that for each NN model in the training and
testing subset of the model zoo, we have computed F score [56] for the corresponding
class with label c that we denote as Ftrain,c,i and Ftest,c,j, respectively. Then we use
Ftrain,c,i and Ftest,c,i as a target value ttrain,c,i =Ftrain,c,i in the regression problem and
set ttest,c,j =Ftest,c,j during the test evaluation.

Hyper-parameters Prediction. We define the hyper-parameter prediction task
identically as the previous downstream tasks. Where for continuous hyper-parameters,
like learning rate (LR), ℓ2-regularization (ℓ2-reg), dropout (Drop), and nonlinear thresh-
olding function (TF), we solve the linear regression problem (Q1). Similarly to the
previous task, our targets for the task of hyperparameters prediction are the actual hy-
perparameters values.

In particular, for learning rate ttrain,i = learning rate, for ℓ2-regularization ttrain,i =
ℓ2-regularization type, for dropout (Drop) ttrain,i = dropout value and for nonlinear
thresholding function (TF) ttrain,i = nonlinear thresholding function. In a similar
fashion, we also define the test targets ttest.

For categorical hyper-parameters, like activation function (Act), optimizer (Opt), and
initialization method (Init), instead of regression loss (Q1), we train a linear perception
by minimizing a cross-entropy loss [56]. Here, we also define the targets as detailed
above. The only difference here is that the targets have discrete categorical values.
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4.D Model Zoos Details

Our Zoos Data NN Type No. Param. Varying Prop. No. Eph No. NNs

TETRIS-SEED TETRIS MLP 100 seed (1-1000) 75 1000*75
TETRIS-HYP TETRIS MLP 100 seed (1-100), act, init, lr 75 2900*75

MNIST-SEED MNIST CNN 2464 seed (1-1000) 25 1000*25
FASHION-SEED F-MNIST CNN 2464 seed (1-1000) 25 1000*25

MNIST-HYP-1-FIX-SEED MNIST CNN 2464 fixed seed, act, int, lr 25 ∼ 1152*25
MNIST-HYP-1-RAND-SEED MNIST CNN 2464 random seed, act, int, lr 25 ∼ 1152*25

MNIST-HYP-5-FIX-SEED MNIST CNN 2464 5 fixed seeds, act, int, lr 25 ∼ 1280*25
MNIST-HYP-5-RAND-SEED MNIST CNN 2464 5 random seeds, act, int, lr 25 ∼ 1280*25

Existing Zoos Data NN Type No. Param. Varying Prop. No. Eph No. NNs

MNIST-HYP MNIST CNN 4970 act, init, opt, lr, 9 ∼ 30000*9
ℓ2-reg, drop, tf

FASHION-HYP F-MNIST CNN 4970 act, init, opt, lr, 9 ∼ 30000*9
ℓ2-reg, drop, tf

CIFAR10-HYP CIFAR10 CNN 4970 act, init, opt, lr, 9 ∼ 30000*9
ℓ2-reg, drop, tf

SVHN-HYP SVHN CNN 4970 act, init, opt, lr, 9 ∼ 30000*9
ℓ2-reg, drop, tf

1 Init M Init No data leakage Dense checkpoints

[159]
√ √

× ×
[43]

√
×

√
×

proposed zoos
√ √ √ √

Table 4.D.1: Overview of the characteristics for the model zoos proposed and used (existing)
in this work.

In Table 4.D.1, we give an overview of the characteristics for the used model zoos in
this paper. This includes

• The data sets used for zoo creation.

• The type of the NN models in the zoo.

• Number of learnable parameters for each of the NNs.

• Used number of model versions that are taken at the corresponding epochs during
training.

• Total number of NN models contained in the zoo.
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Our Zoos INIT SEED OPT ACT LR DROP ℓ2-Reg

TETRIS-SEED Uniform 1-1000 Adam tanh 3e-5 0.0 0.0

uniform, normal, 1-100 Adam tanh, relu 1e-3, 1e-4, 0.0 0.0
TETRIS-HYP kaiming-no, kaiming-un 1e-5

xavier-no, xavier-un

MNIST-SEED Uniform 1-1000 Adam tanh 3e-4 0.0 0.0

MNIST-HYP- 1-FIX-SEED uniform, normal 42 Adam, SGD tanh, relu, 3e-3, 1e-3, 0.0, 0.3, 0, 1e-3, 1e-1
kaiming-un, kaiming-no sigmoid, gelu 3e-4, 1e-4 0.5

MNIST-HYP- 1-RAND-SEED uniform, normal 1∈ [1e0, 1e6] Adam, SGD tanh, relu 3e-3, 1e-3 0.0, 0.3, 0, 1e-3, 1e-1
kaiming-un, kaiming-no sigmoid, gelu 3e-4, 1e-4 0.5

MNIST-HYP- 5-FIX-SEED uniform, normal 1,2,3,4,5 Adam, SGD tanh, relu 1e-3, 1e-4 0.0, 0.5 1e-3, 1e-1
kaiming-un, kaiming-no sigmoid, gelu

MNIST-HYP- 5-RAND-SEED uniform, normal 5∈ [1e0, 1e6] Adam, SGD tanh, relu 1e-3, 1e-4 0.0, 0.5 1e-3, 1e-1
kaiming-un, kaiming-no sigmoid, gelu

FASHION-SEED Uniform 1-1000 Adam tanh 3e-4 0.0 0.0

Table 4.D.2: Architecture configurations and modes of variation of our model zoos.

Figure 4.D.1: Visualization of samples representing the four basic shapes in our Tetris data set.

In Table 4.D.1 we also compare the existing and the introduced model zoos in prior
and this work in terms of properties like initialization, data leakage, and presence of
dense model versions obtained by recording the NN model during training evolution.

In Table 4.D.2 we provide the architecture configurations and exact modes of
variation of our model zoos.

4.D.1 Zoos Generation Using Tetris Data

As a toy example, we first create 4x4 grey-scaled image data set that we call Tetris
by using four tetris shapes. In Figure 4.D.1 we illustrate the basic shapes of the tetris
data set. We introduce two zoos, which we call TETRIS-SEED and TETRIS-HYP, which
we group under small. Both zoos contain FFN with two layers. In particular, the FFN
has an input dimension of 16 a latent dimension of 5, and output dimension of 4. In
total the FFN has 16× 5 + 5× 4 = 100 learnable parameters (see Table 4.D.3). We
give an illustration of the used FFN architecture in Figure 4.D.4.

In the TETRIS-SEED zoo, we fix all hyper-parameters and vary only the seed to cover
a broad range of the weight space. The TETRIS-SEED zoo contains 1000 models that
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are trained for 75 epochs. In total, this zoo contains 1000 × 75 = 75000 trained NN
weights and biases.

To enrich the diversity of the models, the TETRIS-HYP zoo contains FFNs, which vary
in activation function [tanh, relu], the initialization method [uniform, normal, kaiming
normal, kaiming uniform, xavier normal, xavier uniform] and the learning rate
[1e-3, 1e-4, 1e-5]. In addition, each combination is trained with 100 different seeds.
Out of the 3600 models in total, we have successfully trained 2900 for 75 epochs - the
remainder crashed and are disregarded. So in total, this zoo contains 2900×75 = 217500

trained NN weights and biases.

4.D.2 Zoos Generation Using MNIST Data.

Similarly to TETRIS-SEED, we further create medium-sized zoos of CNN models. In
total the CNN has 2464 learnable parameters, distributed over 3 convolutional and
2 fully connected layers. The full architecture is detailed in Table 4.D.4. We give an
illustration of the used CNN architecture in Figure 4.D.5. Using the MNIST data set,
we created five zoos with approximately the same number of CNN models.

In the MNIST-SEED zoo we vary only the random seed (1-1000), while using only one
fixed hyper-parameter configuration. In particular,

In MNIST-HYP-1-FIX-SEED we vary the hyper-parameters. We use only one fixed seed
for all the hyper-parameter configurations (similarly to [159]). The MNIST-HYP-1-RAND-SEED
model zoo contains CNN models, where per each model we draw and use 1 random
seed and different hyper-parameter configurations.

We generate MNIST-HYP-5-FIX-SEED ensuring that for each hyper-parameter config-
uration, we add 5 models that share 5 fixed seeds. We build MNIST-HYP-5-RAND-SEED

such that for each hyper-parameter configuration we add 5 models that have different
random seeds.

We grouped these model zoos as medium. In total, each of these zoos approximately
1000× 25 = 25000 trained NN weights and biases.

In Figure 4.D.2 we provide a visualization for different properties of the MNIST-SEED,
MNIST-HYP-1-FIX-SEED, MNIST-HYP-1-RANDOM-SEED, MNIST-HYP-5-FIX- SEED and MNIST-

HYP-5-RANDOM-SEED zoos. The visualization supports the empirical findings from the
paper, that zoos that vary in seed only appear to contain a strong correlation between
the mean of the weights and the accuracy. In contrast, the same correlation is consid-
erably lower if the hyper-parameters are varied. Further, we also observe clusters of
models with shared initialization methods and activation functions for zoos with fixed
seeds. Random seeds seem to disperse these clusters to some degree. This additionally
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confirms our hypothesis about the importance of the generating factors for the zoos.
We find that zoos containing hyper-parameters variation and multiple (random) seeds
have a rich set of properties, avoid ’shortcuts’ between the weights (or their statistics)
and properties, and therefore benefit neural representation learning.

In Figure 4.D.3, we show additional UMAP reductions of MNIST-HYP, which confirm
our previous findings. Similarly to the UMAP for the MNIST-HYP-1-FIX-SEED zoo, the
UMAP for the MNIST-HYP has distinctive and recognizable initialization points. The
categorical hyper-parameters are visually separable in weight space. As we can see
in the same figure, it seems that the UMAP for the MNIST-HYP zoo contains very few
paths along which the evolution during learning of all the models can be tracked in
weight space, facilitating both epoch and accuracy prediction.

4.D.3 Zoo Generation Using F-MNIST Data

We used the F-MNIST data set. As for the previous zoos for the MNIST data set, we
have created one zoo with exactly the same number of CNN models as in MNIST-SEED.
In this zoo that we call FASHION-SEED, we vary only the random seed (1-1000), while
using only one fixed hyper-parameter configuration.

type details Params

1.1 Linear ch-in=16, ch-out=5 80
1.2 Nonlin. Tanh

2.1 Linear ch-in=5, ch-out=4 20

Table 4.D.3: FFN Architecture Details. ch-in describes the number of input channels, ch-
out the number of output channels.
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Figure 4.D.2: Visualization on the properties for the MNIST-SEED, MNIST-HYP-1-FIX-SEED,
MNIST-HYP-1-RANDOM-SEED, MNIST-HYP-5-FIX-SEED and MNIST-HYP-5-RANDOM-SEED zoos.
Row One. Boxplot of NNs accuracy over the epoch ids. Row Two. NNs accuracy plotted
over the mean of the NNs weights of each sample. MNIST-SEED shows homogeneous develop-
ment and a strong correlation between weight mean and accuracy, while varying the hyperpa-
rameters yields heterogeneous development without that correlation. Rows Three to Five.
UMAP reductions of the weight space colored by activation function, initialization method,
and sample epoch. Zoos with fixed seeds contain visible clusters of NNs that share the same
initialization method or activation function. Zoos with varying hyperparameters and random
seeds do not contain such clear clusters.
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Figure 4.D.3: UMAP dimensionality reduction of the weight space (left), weight statistics
(middle) and learned neural representations (right) for the MNIST-HYP zoo [159]. The
initialization methods for the trained NN weights are already visually separable to a high
degree in weight space, which carries over to the learned embedding space, while the statistics
introduce a mix between the initialization methods. For accuracy, in seems that the statistics
filter out and contain more relevant information than the weight space. Learned embeddings
appear to cluster the models according to their initialization methods and within the clusters
help to preserve high accuracy.
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Figure 4.D.4: A diagram for the feed-forward architecture of the NNs in the TETRIS-SEED and
TETRIS-HYP zoos.
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Figure 4.D.5: A diagram for the CNN architecture of the NNs in the MNIST zoos.

type details Params

1.1 Conv ch-in=1, ch-out=8, ks=5 208
1.2 MaxPool ks= 2
1.3 Nonlin. Tanh

2.1 Conv ch-in=8, ch-out=6, ks=5 1206
2.2 MaxPool ks= 2
2.3 Nonlin. Tanh

3.1 Conv ch-in=6, ch-out=4, ks=2 100
3.2 MaxPool ks= 2
3.3 Nonlin. Tanh

4 Flatten

5.1 Linear ch-in=36, ch-out=20 740
5.2 Nonlin. Tanh

6.1 Linear ch-in=20, ch-out=10 200

Table 4.D.4: CNN Architecture Details. ch-in describes the number of input channels, ch-
out the number of output channels. ks denotes the kernel size, kernels are always square.
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4.E Additional Results

In this appendix section, we provide additional results about the impact of the com-
pression ratio c = N/L.

4.E.1 Impact of the Compression Ratio N/L

In this subsection, we first explain the experiment setup and then comment on the results
about the impact of the compression ratio on the performance for downstream tasks.

Experiment Setup. To see the impact of the compression ratio c = N/L on the
performance over the downstream tasks, we use our neural representation learning
approach under different types of architectures, including Ec, ED, and EcD (see Section
3 in the paper). As encoders E and decoders D, we used the attention-base modules
introduced in Section 3 in the paper. The attention-based encoder and decoder, on the
TETRIS-SEED and TETRIS-HYP zoos, we used 2 attention blocks with 1 attention head
each, token dimensions of 128 and FC layers in the attention module of dimension 512.

We use our weight augmentation methods for representation learning (please see
Section 3.1 in the paper). We run our representation learning algorithm for up to 2500
epochs, using the adam optimizer [86], a learning rate of 1e-4, weight decay of 1e-9,
dropout of 0.1 percent, and batch-sizes of 500. In all of our experiments, we use 85% of
the model zoos for training and 15% for testing. We use checkpoints of all epochs but
ensure that samples from the same models are either in the train or in the test split of
the zoo. As a quality metric for self-supervised learning, we track the reconstruction
R2 on the test split of the zoo.

Results. As Table 4.E.1 shows, all NN architectures decrease in performance, as the
compression ratio increases. The purely contrastive setup Ec generally learns embeddings
that are useful for the downstream tasks but suffer from higher compression. Notably,
the reconstruction of ED is very stable, even under high compression ratios. However,
higher compression ratios appear to negatively impact the neural representations for the
downstream tasks we consider here. The combination of reconstruction and contrastive
loss shows the best performance for c = 2 but suffers the most under compression. c = 3

yields a neural representation with very low performance in downstream tasks. Higher
compression ratios perform better on the downstream tasks but don’t manage high re-
construction R2. We interpret this as a sign that the combination of losses requires high-
capacity bottlenecks. If the capacity is insufficient, the two objectives can’t be both sat-
isfied (c = 3). The training then prioritizes one of the two loss components (c = 5, 10).
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Encoder with contrative loss Ec

c Rec Eph Acc FC0 FC1 FC2 FC3

2 – 82.0 77.5 56.1 59.3 63.6 67.4
3 – 84.4 74.5 53.8 56.7 53.9 71.9
5 – 75.4 67.1 45.7 56.7 52.2 59.8

Encoder and decoder with reconstruction loss ED

c Rec Eph Acc FC0 FC1 FC2 FC3

2 91.9 92.0 81.0 58.0 62.3 57.7 58.3
3 87.9 91.0 79.6 57.2 59.0 50.2 54.9
5 88.8 82.1 75.7 53.1 51.5 45.2 57.4

Encoder and decoder with reconstruction and contrastive loss EcD

c Rec Eph Acc FC0 FC1 FC2 FC3

2 90.4 95.2 87.0 67.3 68.0 66.4 60.3
3 74.4 19.1 19.2 24.2 17.9 33.8 10.8
5 26.9 88.8 73.7 51.9 57.3 47.9 49.6
10 16.4 57.5 36.1 21.6 39.5 25.1 35.5

Table 4.E.1: The impact of the compression ratio c = N/L in the different NN architectures of
our approach for learning neural representations over the Tetris-Seed Model Zoo. All values
are R2 scores and given in %.

4.E.2 NN Model Characteristics Prediction on FASHION-SEED

Due to space limitations, here in Figure 4.E.2, we present the results on the FASHION-SEED
together with the results on MNIST-SEED. The experimental setup is the same as for the
MNIST-SEED zoo, which is explained in the paper. Here, we add a complementary result
to our ablation study about the seed variation, that we presented in section 4.3 in the pa-
per. Similarly to the discussion in the paper, random seed variation in the FASHION-SEED
again appears to make the prediction more challenging. The results show that the pro-
posed approach is on par with the comparing s(W ) for this type of model zoo.

4.E.3 In-distribution and Out-of-distribution Prediction

In Figures 4.E.1, 4.E.2 and 4.E.3 we show in-distribution and out-of-distribution
comparative results for test accuracy, epoch id, and generalization gap prediction using
the MNIST-HYP zoo.

In the majority of the results for accuracy and generalization gap prediction, our
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MNIST-SEED FASHION-SEED
W s(W) Ec+D W s(W) Ec+D

Eph 54.9 97.7 95.9 51.8 98.0 95.7

Acc 82.8 98.1 97.5 57.6 97.5 96.1

GGap 82.8 98.5 98.1 57.6 97.5 96.1

Table 4.E.2: R2 score in % for epoch, accuracy and generalization gap.

learned representations have higher R2 and Kendall’s τ score. Also, in the baseline
methods the distribution of predicted target values is more dispersed compared to the
true target values. On the epoch id prediction we have comparable results but with
lower score, we attribute this to the fact that the zoos contain sparse checkpoints and
we suspect that there are not enough so that our learning model could capture the
present variability. Overall in the in-distribution and out-of-distribution results for test
accuracy, epoch id, and generalization gap prediction, the proposed approach has a
slight advantage.

Due to space limitations, for the MNIST-SEED, FASHION-SEED zoos and an additional
SVHN-SEED zoo we only include out-of-distribution results for accuracy prediction in
Figure 4.E.4. Here, too, our learned representations have higher scores in both Kendall’s
τ as well as R2. Further, the accuracy prediction for SVHN-SEED clearly preserves the
order, but has a noticeable bias. We attribute that effect to the different accuracy
distributions of MNIST-SEED (ID, accuracy: [0.2,0.95]) and SVHN-SEED (OOD, accuracy:
[0.2,0.75]). Due to the higher accuracy in MNIST-SEED, we suspect that the accuracy in
SVHN-SEED is overestimated.
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MNIST-HYP FASHION-HYP SVHN-HYP CIFAR10-HYP
W s(W) Ec+D W s(W) Ec+D W s(W) Ec+D W s(W) Ec+D

MNIST-HYP (τ) .73 .73 .75 -.08 .71 .61 .38 .49 .55 .33 .58 .63
MNIST-HYP (R2) 72.7 81.1 89.4 -211 67 26 -140 -180 -137 -148 -337 -153

Figure 4.E.1: In-distribution and out-of-distribution results for test accuracy prediction.
Representation learning model and linear probes are trained on MNIST-HYP, and evaluated on
MNIST-HYP, FASHION-HYP, SVHN-HYP and CIFAR-HYP.
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MNIST-HYP FASHION-HYP SVHN-HYP CIFAR10-HYP
W s(W) Ec+D W s(W) Ec+D W s(W) Ec+D W s(W) Ec+D

MNIST-HYP (τ) .46 .47 .46 .06 .45 .32 .25 .46 .33 .18 .41 .16
MNIST-HYP (R2) 21.6 32.2 34.7 -64.9 27.8 6.9 -39.1 13.4 9. -21.9 19.2 -13.

Figure 4.E.2: In-distribution and out-of-distribution results for the epoch id predictions.
Representation learning model and linear probes are trained on MNIST-HYP, and evaluated on
MNIST-HYP, FASHION-HYP, SVHN-HYP and CIFAR-HYP.
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MNIST-HYP FASHION-HYP SVHN-HYP CIFAR10-HYP
W s(W) Ec+D W s(W) Ec+D W s(W) Ec+D W s(W) Ec+D

MNIST-HYP (τ) .36 .29 .35 .20 .10 .32 .13 .24 .19 -.05 -.02 .05
MNIST-HYP (R2) 15.3 24.8 32.9 -56.2 -81.8 -27.8 -24. -.9 -1.9 -16. -22.2 .5

Figure 4.E.3: In-distribution and out-of-distribution results for the generalization gap predic-
tions. Representation learning model and linear probes are trained on MNIST-HYP, and evalu-
ated on MNIST-HYP, FASHION-HYP, SVHN-HYP and CIFAR-HYP.
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MNIST-SEED FASHION-SEED SVHN-SEED
W s(W) Ec+D W s(W) Ec+D W s(W) Ec+D

MNIST-SEED (τ) .71 .90 .88 .68 .77 .77 .58 .43 .70
MNIST-SEED (R2) 82.8 98.5 98.0 -64.3 -44.9 36.7 -247 -576 -264

Figure 4.E.4: In-distribution and out-of-distribution results for test accuracy prediction.
Representation learning model and linear probes are trained on MNIST-SEED, and evaluated
on MNIST-SEED, FASHION-SEED and SVHN-SEED.
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Chapter 5

Hyper-Representations as Generative
Models: Sampling Unseen Neural
Network Weights

Abstract

Learning representations of neural network weights given a model zoo is an emerging and
challenging area with many potential applications from model inspection, to neural ar-
chitecture search or knowledge distillation. Recently, an autoencoder trained on a model
zoo was able to learn a hyper-representation, which captures intrinsic and extrinsic prop-
erties of the models in the zoo. In this work, we extend hyper-representations for gener-
ative use to sample new model weights. We propose layer-wise loss normalization which
we demonstrate is key to generate high-performing models and several sampling methods
based on the topology of hyper-representations. The models generated using our meth-
ods are diverse, performant, and capable of outperforming strong baselines as evaluated
on several downstream tasks: initialization, ensemble sampling, and transfer learning.
Our results indicate the potential of knowledge aggregation from model zoos to new mod-
els via hyper-representations thereby paving the avenue for novel research directions.

This work was accepted for publication at NeurIPS 2022 [148]
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5.1 Introduction

Over the last decade, countless neural network models have been trained and uploaded to
different model hubs. Many factors such as random initialization and no global optimum
ensure that the trained models are different from one another. What could we learn
from such a population of neural network models? Since the parameter space of neural
networks is complex and high-dimensional, representation learning from such populations
(often referred to as model zoos) has become an emerging and challenging area.

Recent work along that direction has demonstrated the ability of such learned rep-
resentations to capture intrinsic and extrinsic properties of the models in a zoo [118,
147, 159]. According to [147], NNs populate a low dimensional manifold, which can be
learned with an autoencoder via self-supervised learning directly from the model param-
eters (weights and biases) without access to the original image data and labels. This
so-called hyper-representation has been demonstrated to be useful for predicting several
model properties such as accuracy, hyperparameters, or architecture configurations.

However, [147] focused on discriminative downstream tasks by exploiting the encoder
only. We take one step further and extend their work towards the generative downstream
tasks by sampling model weights directly from the task-agnostic hyper-representation.
To that end, we introduce a layer-wise normalization that improves the quality of decoded
neural network weights significantly. Based on a careful analysis of the geometry, smooth-
ness, and robustness of this space, we also propose several sampling methods to generate
weights in a single forward pass from the hyper-representation. We evaluate our approach
on four image datasets and three generative downstream tasks of (i) model initialization,
(ii) ensemble sampling, and (iii) transfer learning. Our results demonstrate its capa-
bility to outperform previous hyper-representation learning and conventional baselines.

Previous work on generating model weights proposed (Graph) HyperNetworks [61, 88,
179], Bayesian HyperNetworks [36], HyperGANs [142] and HyperTransformers [182] for
neural architecture search, model compression, ensembling, transfer- or meta-learning.
These methods learn representations by using images and labels of the target domain.
In contrast, our approach only uses model weights and does not need access to under-
lying data samples and labels – an emergent use case, e.g. of deep learning monitoring
services or model hubs. In addition to the ability to generate novel and diverse model
weights, compared to previous works our approach (a) can generate novel weights con-
ditionally on model zoos from unseen tasks and (b) can be conditioned on the latent
factors of the underlying hyper-representation. Notably, both (a) and (b) can be done
without the need to retrain hyper-representations.
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Figure 5.1.1: Outline of our approach: Model zoos are trained on image classification tasks.
Hyper-representations are trained with self-supervised learning on the weights of the model
zoos using layer-wise loss normalization in the reconstruction loss. We sample new embeddings
in hyper-representation space and decode to weights. Generated models perform significantly
better than random initialization or models sampled from baseline hyper-representations.
Sampled models achieve high performance fine-tuned and transfer learned on new datasets.

The results suggest our approach (Figure 5.1.1) to be a promising step towards a
general-purpose hyper-representation encapsulating knowledge of model zoos to ad-
vance different downstream tasks. The hyper-representations and code to reproduce our
results are available at https://github.com/HSG-AIML/NeurIPS_2022-Generative_
Hyper_Representations.

5.2 Background: Training Hyper-Representations

We summarize the first stage of our method that corresponds to learning a hyper-
representation of a population of neural networks, called a model zoo [147]. In [147] and
this paper, a model zoo consists of models trained on the same task such as CIFAR-10
image classification [92]. Specifically, a hyper-representation is learned using an autoen-
coder ŵi = h(g(wi)) on a zoo of M models {wi}M1 , where wi is the flattened vector
of dimension N of all the weights of the i-th model. The encoder g compresses vector
wi to fixed-size hyper-representation zi = g(wi) of lower dimension. The decoder h de-
compresses the hyper-representation to the reconstructed vector ŵi. Both encoder and
decoder are built on a self-attention block [160]. The samples from model zoos are un-
derstood as sequences of convolutional or fully connected neurons. Each of the neurons
is encoded as a token embedding and concatenated to form a sequence. The sequence
is passed through several layers of multi-head self-attention. Afterward, a special com-
pression token summarizing the entire sequence is linearly compressed to the bottleneck.
The output is fed through a tanh-activation to achieve a bounded latent space zi for
the hyper-representation. The decoder is symmetric to the encoder, the embeddings are
linearly decompressed from hyper-representations zi, and position encodings are added.
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Training is done in a multi-objective fashion, minimizing the composite loss L =

βLMSE + (1− β)Lc, where Lc is a contrastive loss and LMSE is a weight reconstruc-
tion loss (see details in [147]). We can write the latter in a layer-wise way to facilitate
our discussion in § 5.3.1:

LMSE =
1

MN

∑M

i=1

∑L

l=1
||ŵ(l)

i −w
(l)
i ||22, (5.2.1)

where ŵ
(l)
i , w(l)

i are reconstructed and original weights for the l-th layer of the i-th
model in the zoo. The contrastive loss Lc leverages two types of data augmentation
at train time to impose structure on the latent space: permutation exploiting inherent
symmetries of the weight space and random erasing.

5.3 Methods

In the following, we present (i) layer-wise loss normalization to ensure that decoded mod-
els are performant, and (ii) sampling methods to generate diverse populations of models.

5.3.1 Layer-Wise Loss Normalization

We observed that hyper-representations as proposed by [147] decode to dysfunctional
models, with performance around random guessing. To alleviate that, we propose a novel
layer-wise loss normalization (LWLN), which we motivate and detail in the following.

Figure 5.3.1: Comparison of the distributions of SVHN zoo weights w (blue) and reconstructed
weights ŵ (orange) as well as their test accuracy on the SVHN test set. Top: Baseline
hyper-representation as proposed by [147], the weights of layers 3, 4 collapse to the mean.
These layers form a weak link in reconstructed models. The accuracy of reconstructed
models drops to random guessing. Bottom: Hyper-representation trained with layer-wise
loss normalization (LWLN). The normalized distributions are balanced, all layers are evenly
reconstructed, and the accuracy of reconstructed models is significantly improved.
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Due to the MSE training loss in (5.2.1), the reconstruction error can generally be
expected to be uniformly distributed over all weights and layers of the weight vector w.
However, the weight magnitudes of many of our zoos are unevenly distributed across dif-
ferent layers. In these zoos, the even distribution of reconstruction errors leads to unde-
sired effects. Layers with broader distributions and large-magnitude weights are recon-
structed well, while layers with narrow distributions and small-magnitude weights are
disregarded. The latter layers can become a weak link in the reconstructed models, caus-
ing performance to drop significantly down to random guessing. The top row of Figure
5.3.1 shows an example of a baseline hyper-representation learned on the zoo of SVHN
models [129]. Common initialization schemes [54, 64] produce distributions with differ-
ent scaling factors per layer, so the issue is not an artifact of the zoos, but can exist in
real-world model populations. Similarly, recent work on generating models normalizes
weights to boost performance [88]. In order to achieve equally accurate reconstruction
across the layers, we introduce a layer-wise loss normalization (LWLN) with the mean µl
and standard deviation σl of all weights in layer l estimated over the train split of the zoo:

L ¯MSE =
1

MN

M∑
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L∑
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l

. (5.3.1)

5.3.2 Sampling from Hyper-Representations

We introduce methods to draw diverse and high-quality samples z∗ ∼ p(z) from the
learned hyper-representation space to generate model weights w∗ = h(z∗). Such
sampling is facilitated if there is knowledge on the topology of the space spanned by z.
One way to achieve that is to train a variational autoencoder (VAE) with a predefined
prior [87] instead of the autoencoder of [147]. While training VAEs on common
domains such as images has become well-understood and feasible, in our relatively novel
weight domain, we found it problematic (see details in Appendix 5.E). Other generative
methods avoid a predefined prior of VAEs, either by analyzing the topology of the space
learned by the autoencoder or fitting a separate density estimation model on top of the
learned representation [60, 109]. These methods assume the representation space to have
strong regularities. The hyper-representation space learned by the autoencoder of [147]
is already regularized by dropout regularization applied to the encoder and decoder as
in [53]. The contrastive loss component requiring similar models to be embedded close to
each other may also improve the regularity of the representation space. Empirically, we
found our layer-wise loss normalization (LWLN) to further regularize the representation
space by ensuring robustness and smoothness (see Figure 5.4.1 in § 5.4).
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Given the smoothness and robustness of the learned hyper-representation space, we
follow [53, 60, 109] in estimating the density and topology to draw samples from a reg-
ularized autoencoder. To that end, we introduce three strategies to sample from that
space: SKDE, SNeigh, SGAN. To model the density and topology in representation space,
we use the embeddings of the train set as anchor samples {zi}. We observe that many
anchor samples from {zi} correspond to the models with relatively poor accuracy (Fig-
ure 5.3.1), so to improve the quality of sampled weights, we consider the variants of these
methods using only those embeddings of training samples corresponding to the top 30%
performing models. We denote these sampling methods as SKDE30, SNeigh30, SGAN30 re-
spectively. These methods can potentially decrease sample diversity, however, we found
that the generated weights are still diverse enough (e.g. to construct high-performant
ensembles, Figure 5.4.3). Finally, as baseline and sanity check we explore sampling uni-
formly in representation space SU and sampling in low-probability regions SC .

Uniform SU

As a naive baseline, we draw samples uniformly in hyper-representation space (bounded
by tanh, § 5.2) and denote it as SU . This is naive, because we found that the embed-
dings z populate only sections of a shell of a high-dimensional sphere (see Figures 5.D.1
and 5.D.2 in Appendix 5.D). So most of the uniform samples lie in the low-probability
regions of the space and are not expected to be decoded to useful models.

Density estimation SKDE and counterfactual sampling SC

The dimensionality D of hyper-representations z in [147], as well as in our work, is rela-
tively high due to the challenge of compressing weights w. Fitting a probability density
model to such a high-dimensional distribution is feasible by making a conditional inde-
pendence assumption: p(z(j)|z(k),w) = p(z(j)|w), where z(j) is the j-th dimensionality
of the embedding z. To model the distribution of each j-th dimensionality, we choose
kernel density estimation (KDE), as it is a powerful yet simple, non-parametric, and de-
terministic method with a single hyperparameter. We fit a KDE to the M anchor sam-
ples {z(j)i }Mi=1 of each dimension j, and draw samples z(j) from that distribution: z(j) ∼
p(z(j)) = 1

Mh

∑M
i=1K(

z(j)−z
(j)
i

h
), where K(x) = (2π)−1/2 exp (−x2

2
) is the Gaussian kernel

and h is a bandwidth hyperparameter. The samples of each dimension z(j) are concate-
nated to form samples z∗ = [z(1), z(2), · · · , z(D)]. This method is denoted as SKDE.

As a sanity check, we invert the SKDE method and explicitly draw samples from re-
gions not populated by anchor samples, i.e. with a low probability according to the
KDE. This method, denoted as SC , essentially samples counterfactual embeddings and
similarly to SU is expected to perform poorly.
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Neighbor sampling SNeigh

Sampling neighbors of anchor samples {zi} could be a simple and effective sampling
strategy, but due to the high sparsity of the hyper-representation space, this strategy
results in poor-quality samples. We therefore propose to use a neighborhood-based di-
mensionality reduction function k : RD → Rd that maps zi to low-dimensional embed-
dings ni ∈ Rd where sampling is facilitated. The assumption is that due to the low
dimensionality of Rd (we choose d = 3) there will be fewer low-probability regions so
that uniform sampling in Rd can be effective. Specifically, given low-dimensional em-
beddings ni = k(zi), we sample n∗ uniformly from the cube: n∗ ∼ U(min(n),max(n)).
Samples n∗ are then mapped back to hyper-representations z∗ = k−1(n∗). To preserve
the neighborhood topology of RD in Rd and enable mapping back to RD, we choose
k to be an approximate inverse neighborhood-based dimensionality reduction function
based on UMAP [120].

Latent space GAN SGAN

A common choice for generative representation learning is generative adversarial net-
works (GANs) [55]. While training a GAN directly to generate weights is a promising yet
challenging avenue for future research [142], we found the GAN framework to work rea-
sonably well when trained on the hyper-representations. This idea follows [60, 109] that
showed improved training stability and efficiency compared to training GANs on inputs
directly. We train a generator G : Rd → RD with z∗ = G(n∗) to generate samples in
hyper-representation space from the Gaussian noise n∗. We choose d = 16 as a compro-
mise between size and capacity. See a detailed architecture of our GAN in Appendix 5.E.

5.4 Experiments

5.4.1 Experimental Setup

We train and evaluate our approaches on four image classification datasets: MNIST [98],
SVHN [129], CIFAR-10 [92], STL-10 [25]. For each dataset, there is a model zoo that
we use to train an autoencoder following [147].

Model zoos: In practice, there are already many available model zoos, e.g., on Hugging
Face or GitHub, that can be used for hyper-representation learning and sampling. Unfor-
tunately, these zoos are not systematically constructed and require further effort to mine
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and evaluate. Therefore, in order to control the experiment design, ensure feasibility and
reproducibility, we generate novel or use the model zoos of [147, 150] created in a system-
atic way. With controlled experiments, we aim to develop and evaluate inductive biases
and methods to train and utilize hyper-representation, which can be scaled up efficiently
to large-scale and non-systematically constructed zoos later. For each image dataset, a
zoo contains M = 1000 convolutional networks of the same architecture with three convo-
lutional layers and two fully-connected layers. Varying only in the random seeds, all mod-
els of the zoo are trained for 50 epochs with the same hyperparameters following [147]. To
integrate higher diversity in the zoo, initial weights are uniformly sampled from a wider
range of values rather than using well-tuned initializations of [54, 64]. Each zoo is split
into the train (70%), validation (15%), and test (15%) splits. To incorporate the learning
dynamics, we train autoencoders on the models trained for 21-25 epochs following [147].
Here the models have already achieved high performance, but have not fully converged.
The development in the remaining epochs of each model is treated as hold-out data to
compare against. We use the MNIST and SVHN zoos from [147] and based on them cre-
ate the CIFAR-10 and STL-10 zoos. Details on the zoos can be found in Appendix 5.A.

Experimental details: We train separate hyper-representations on each of the model
zoos. Images and labels are not used to train the hyper-representations (see § 5.2).
Using the proposed sampling methods (§ 5.3.2), we generate new embeddings and de-
code them to weights. We evaluate sampled populations as initializations (epoch 0)
and by fine-tuning for up to 25 epochs. We distinguish between in-dataset and transfer-
learning. For in-dataset, the same image dataset is used for training and evaluating
our hyper-representations and baselines. For transfer learning, hyper-representations
(and pre-trained models in baselines) are trained on a source dataset, then all popula-
tions are evaluated and fine-tuned on a different target dataset. Full details on training,
including infrastructure and compute are detailed in the Appendix 5.B.

Baselines: As the first baseline, we consider the autoencoder of [147], which is the
same as ours but without the proposed layer-wise loss-normalization (LWLN, § 5.3.1).
We combine this autoencoder with the SKDE30 sampling method and, hence, denote it
as BKDE30. We consider two other baselines based on training models with stochastic
gradient descent (SGD): training from scratch on the target classification task BT , and
training on a source followed by fine-tuning on the target task BF . The latter remains
one of the strongest transfer learning baselines [21, 38, 90].
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Reproducibility, reliability and comparability: We compare populations of at
least 50 models to evaluate each method reliably. We report standard deviation in
Tables 5.4.1-5.4.2 and statistical significance, effect size and 95% confidence interval
in Appendix 5.F. To ensure fairness and comparability, all methods share training
hyperparameters. Fine-tuning uses the hyperparameters of the target domain.

5.4.2 Results

In the following, we first analyze the learned hyper-representations further justifying our
sampling methods and assumptions made in § 5.3.2. We then confirm the effectiveness
of our approach for model initialization without and with fine-tuning in the in-dataset
and transfer learning settings.

Hyper-Representations are Robust and Smooth

Baseline hyper-representation Our hyper-representation

(a) (b) (c) (d)

Figure 5.4.1: (a,c): Robustness of hyper-representations. For both baseline and our hyper-
representation, relatively large levels of relative noise >10% are necessary to degrade the
test accuracy (orange) or reconstruction (blue); see the text for further discussion. (b,d):
Interpolations along model trajectories (orange) and between z of different models (blue) show
the smoothness of our hyper-representation.

We evaluate the robustness and smoothness of the hyper-representation space with
two experiments on the SVHN zoo. First, to evaluate robustness, we add different levels
of noise to the embeddings of the test set to create z̃, decode them to model weights
w̃ and compute models’ accuracies on the SVHN classification task. We found that
both the baseline as well as our hyper-representations are robust to noise as large levels
of relative noise >10% are required to affect performance (Figure 5.4.1, a,c). Second,
to probe for smoothness, we linearly interpolate between the test set embeddings (i)
along the trajectory of the same model at different epochs (zi,ep5 and zi,ep25) and (ii)
between 250 random pairs of embeddings on the trajectories of different models (zi
and zj). We decode the interpolated embeddings and compute the models’ accuracies
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on the classification task. For our model, we found remarkably smooth development
of accuracy along the interpolation in both schemes (Figure 5.4.1, d). The lack of
fluctuations along and between trajectories supports both local and global notions of
smoothness in hyper-representation space.

For the baseline autoencoder (without LWLN) decoded models all perform close
to 10% accuracy, so these representations do not support similar notions of smooth-
ness (Figure 5.4.1, b), while robustness can be misleading since the accuracy even with-
out adding noise is already low (Figure 5.4.1, a). Therefore, LWLN together with reg-
ularizations added to the autoencoder allows for learning robust and smooth hyper-
representation. This property makes sampling from that representation more mean-
ingful as we show next.

Sampling for In-dataset Initialization

Figure 5.4.2: MNIST results of sampled weights (no fine-
tuning) compared to training from scratch with SGD (BT ).

Comparison between sam-
pling methods: We evalu-
ate the performance of differ-
ent sampled populations (ob-
tained with LWLN) without
fine-tuning generated weights.
On MNIST, all sampled models
except those obtained using SU and SC perform better than random initialization (10%
accuracy), but worse than models trained from scratch BT for 25 epochs (Figure 5.4.2).
Distribution-based samples (SKDE and SGAN) perform better than neighborhood based
samples (SNeigh). The populations based on the top 30% perform better than their
100% counterparts with SKDE30 as the strongest sampling method overall. This demon-
strates that the learned hyper-representation and sampling methods are able to capture
complex subtleties in weight space differentiating high and low performing models.

Comparison to the baseline hyper-representations: We also compare SKDE30

that is based on our autoencoder with layer-wise loss normalization (LWLN) to the
baseline autoencoder using the same sampling method (BKDE30) without fine-tuning.
On all datasets except for MNIST, SKDE30 considerably outperform BKDE30 with the
latter performing just above 10% (random guessing), see Table 5.4.1 (rows with epoch
0). We attribute the success of LWLN to two main factors. First, LWLN prevents the
collapse of reconstruction to the mean (compare Figure 5.3.1 top to bottom). Second,
by fixing the weak links, the reconstructed models perform significantly better (see Ap-
pendix 5.C for more results).
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In-dataset fine-tuning: When fine-tuning, our SKDE30 and baseline BKDE30 appear
to gradually converge to similar performance (Table 5.4.1). While unfortunate, this
result aligns well with previous findings that longer training and enough data make
initialization less important [66, 123, 141].

Table 5.4.1: Mean and std of test accuracy (%) of sampled
populations with LWLN (SKDE30) and without (BKDE30) com-
pared to models trained from scratch BT . Best results for
each epoch and dataset are bolded.

Method Ep. MNIST SVHN CIFAR-10 STL-10

BT 0 ≈10% (random guessing)
BKDE30 0 63.2±7.2 10.1±3.2 15.5±3.4 12.7±3.4
SKDE30 0 68.6±6.7 51.5±5.9 26.9±4.9 19.7±2.1

BT 1 20.6±1.6 19.4±0.6 27.5±2.1 15.4±1.8
BKDE30 1 83.2±1.2 67.4±2.0 39.7±0.6 26.4±1.6
SKDE30 1 83.7±1.3 69.9±1.6 44.0±0.5 25.9±1.6

BT 25 83.3±2.6 66.7±8.5 46.1±1.3 35.0±1.3
BKDE30 25 93.2±0.6 75.4±0.9 48.1±0.6 38.4±0.9
SKDE30 25 93.0±0.7 74.2±1.4 48.6±0.5 38.1±1.1

BT 50 91.1±2.6 70.7±8.8 48.7±1.4 39.0±1.0

We also compare SKDE30

and BKDE30 to training mod-
els from scratch (BT ). On
all four datasets, both ours
and the baseline hyper-
representations outperform
BT when generated weights
are fine-tuned for the same
number of epochs as BT . No-
tably, on MNIST and SVHN
generated weights fine-tuned
for 25 epochs are even better
than BT run for 50 epochs.
Comparison to 50 epochs is
more fair though, since the
hyper-representations were
trained on model weights
trained for up to 25 epochs. These findings show that the models initialized with gener-
ated weights learn faster achieving better results in 25 epochs than BT in 50 epochs.

Figure 5.4.3: Generated ensembles
evaluated on SVHN. Test accuracy
is averaged over 15 ensembles of ran-
domly chosen models.

Sampling ensembles: We found that a po-
tentially useful by-product of learning hyper-
representations is the ability to generate high-
performant ensembles at almost no extra computa-
tional cost since both sampling and generation are
computationally cheap. To demonstrate this effect,
we compare ensembles formed using the baseline
autoencoder (BKDE30) and ours (SKDE30) to the en-
sembles composed of models trained from scratch
for 25 epochs (BT ) on SVHN. Ensembles generated
using the baseline BKDE30 stagnate below 20% (Fig-
ure 5.4.3). In contrast, ensembles generated using
our SKDE30 gracefully improve with the ensemble
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size outperforming single BT models and almost matching BT ensembles with enough
models in the ensembles. Remarkably, the average test accuracy of generated ensembles
of 15 models is 77.6%, which is considerably higher than 70.7% of models trained on
SVHN for 50 epochs. We conclude that hyper-representations learned with LWLN gen-
erate models that are not only performant but also diverse. Although generating ensem-
bles requires learning hyper-representation and model zoo first, we assume that in the
future such a hyper-representation can be trained once and reused in unseen scenarios
as we tentatively explore below (see results in Table 5.4.3 and the discussion therein).

Figure 5.4.4: Progression of test accuracy (left) and distance
(right) between weights during fine-tuning on SVHN; w – ini-
tialization with the weights trained using SGD for 25 epochs; ŵ
– initialization with reconstructed weights.

Do reconstructed mod-
els become similar to
the original during
fine-tuning? Sampled hy-
per - representations of-
ten learn faster and to a
higher performance than
the population of models
they were trained on (Ta-
ble 5.4.1). We therefore
explore the question, if
reconstructed models de-
velop in weight space in
the same direction as their original, or find a different solution. On SVHN, we found
that the reconstructed models (ŵ) after one epoch of fine-tuning perform similar to
their originals (w) and slightly outperform from there on (Figure 5.4.4, left). At the
same time, pairs of original and reconstructed models move further apart and become
less aligned in weight space (Figure 5.4.4, right). It appears that reconstructed models
perform better and explore different solutions in weight space to do so. This confirms
the intuition that hyper-representations impress useful structure on decoded weights. A
pass through encoder and decoder thus results not just in a noisy reconstruction of the
original sample. Instead, it maps to a different region on the loss surface, which leads
to faster learning and better solutions. Combining this with the ensembling results in
Figure 5.4.3, hyper-representations do not collapse to a single solution but decode to
diverse and useful weights.
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Sampling Initializations for Transfer Learning

Setup: We investigate the effectiveness of our method in a transfer-learning setup
across image datasets. In particular, we report transfer learning results from SVHN
to MNIST and from STL-10 to CIFAR-10 as two representative scenarios. Results on
the other pairs of datasets can be found in Appendix 5.F. In these experiments, pre-
trained models BF and the hyper-representation model are trained on a source domain.
Subsequently, the pre-trained models BF and the samples SKDE, SNeigh and SGAN are
fine-tuned on the target domain. The baseline approach (BT ) is based on training
models from scratch on the target domain.

Table 5.4.2: Transfer-learning results (mean and standard deviation of the test accuracy in
%). Note that for STL-10 to CIFAR-10 the performance of all methods saturate quickly due
to the limited capacity of models in the zoo making further improvements challenging as we
discuss in § 5.4.3.

Method SVHN to MNIST STL-10 to CIFAR-10

Ep. 0 Ep. 1 Ep. 50 Ep. 0 Ep. 1 Ep. 50

BT 10.0±0.6 20.6±1.6 91.1±1.0 10.1±1.3 27.5±2.1 48.7±1.4
BF 33.4±5.4 84.4±7.4 95.0±0.8 15.3±2.3 29.4±1.9 49.2±0.7

SKDE30 31.8±5.6 86.9±1.4 95.5±0.4 14.5±1.9 29.6±2.0 48.8±0.9
SNeigh30 10.7±2.7 79.2±3.3 95.5±0.7 10.1±2.1 29.2±1.9 48.9±0.7
SGAN30 10.4±2.4 75.0±6.3 94.9±0.7 10.2±2.5 28.6±1.8 48.8±0.8

Results: When transfer learning is performed from SVHN to MNIST, the sampled
populations on average learn faster and achieve significantly higher performance than
the BT baseline and generally compare favorably to BF (Figure 5.4.5, Table 5.4.2). In
the STL-10 to CIFAR-10 experiment, all populations appear to saturate with only small
differences in their performances (Table 5.4.2). Different sampling methods perform
differently at the beginning versus the end of transfer learning. Generally, SKDE30

performs better in the first epochs, while all methods perform comparably at the end
of transfer learning. These discrepancies underline the difficulty of developing a single
strong sampling method, which is an interesting area of future research. We further
found that all datasets are useful sources for all targets (see Appendix 5.F). Interestingly
and other than in related work [122], even transfer from the simpler to harder datasets
(e.g., MNIST to SVHN) improves performance. This might be explained by the ability
of hyper-representations to capture a generic inductive prior useful across different
domains, which we further investigate next.
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Figure 5.4.5: SVHN to MNIST transfer learning experiment: test accuracy over epochs. Our
sampling methods outperform the baselines after the first epoch. Left: epochs from 0 to 50.
Right: epochs from 3 to 9, where BT is significantly lower than 80% and thus is not visible.

Table 5.4.3: Test accuracy (%) of models generated con-
ditioned on the models of unseen zoos.

Training Conditioning Mean / max accuracy
zoo unseen One model Ensemble

MNIST SVHN 12.7 / 19.8 13.4 / 18.7
SVHN MNIST 16.2 / 26.0 22.1 / 29.8
CIFAR-10 STL-10 18.0 / 24.4 23.8 / 26.7
STL-10 CIFAR-10 16.3 / 21.2 20.0 / 23.0

Conditioning on unseen zoos:
We explore if the hyper-representation
trained on the models of one zoo
(e.g. MNIST) can reconstruct
the weights of another unseen
zoo (e.g. SVHN). This can be
useful to enable the generation
of weights for novel tasks with-
out the need to retrain a hyper-
representation. This is analogous
to instance-conditioned GANs that recently were able to generate images from unseen
domains without retraining GANs [16]. Our results in Table 5.4.3 show that while the
performance on the unseen zoos is reduced, it is still well above random guessing (10%),
especially when multiple model weights are sampled and ensembled. This is promising,
as the hyper-representations were trained on single-dataset zoos.

Sampling Initializations for Unseen Architectures

Generalization to unseen large architectures with complex connectivity (ResNet, Mo-
bileNet, and EfficientNet) is a very interesting and ambitious research problem. As
a step towards that goal, we perform experiments in which we attempted to use our
hyper-representation beyond the same simple architecture. Surprisingly, our results in-
dicate the promise of leveraging the hyper-representation for more diverse architectures
and settings. Further experiments investigating the cross-architecture generalization
capabilities of hyper-representations can be found in Appendix 5.D.
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Setup: With this experiment, we aim to verify if it is possible to adapt our approach
to architectures not seen during training, e.g., with skip connections and/or with more
layers. We follow the transfer-learning setup of § 5.4.2 and use an existing MNIST
hyper-representation to sample weights as initialization for training on SVHN. However,
we now also vary the architecture. While the decoder outputs a fixed-sized vector of
weights, we can assign these weights to new architectures by either making sure that the
new architecture still has the same number of parameters or by initializing randomly the
extra parameters introduced. Specifically, we create three cases: (1) we add ResNet-style
skip connections [65] (1x1 conv) to the convolutional layers (3-conv + res-skip), (2) re-
distribute the weights to smaller four convolutional layers (4-conv), (3) re-distribute to
smaller four convolutional layers and add identity skip connections (4-conv + id.-skip).

Table 5.4.4: Test accuracy (%) on SVHN of populations with gen-
erated weights compared to models trained from scratch BT . Best
results for each epoch and dataset are bolded. r. i. indicates
random initialization, gen. denotes weights generated with our
(SKDE30).

Initialization Epoch 1 Epoch 5 Epoch 50

3-conv (r. i.) + res-skip (r.i.) 18.9±1.6 31.4±17 50.6±28
3-conv (gen.) + res-skip (r.i.) 34.5±14 60.5±21 68.0±21

4-conv (r.i.) 19.2±1.0 19.2±0.9 55.2±11
4-conv (gen.) 44.0±4.5 57.8±3.5 67.6±1.9

4-conv + id.-skip (r.i.) 18.9±1.0 19.6±1.7 56.4±7.9
4-conv + id.-skip (gen.) 48.0±4.0 59.9±2.5 66.4±1.7

Results: Surprisingly,
despite training our
hyper- representation
on the models of the
same architecture, gen-
erated weights for all
three cases outperform
random initialization
and converge signifi-
cantly faster across all
the variations (Table
5.4.4). In all the vari-
ations even just after
5 epochs, the models
with generated weights are better than training the baseline for 50 epochs. In the 3-
conv + res-skip experiments, some models in both populations did not learn, which
leads to high standard deviation. Further analysis is required to explain the gains of
our approach in this challenging setup. To extend and scale up our method further,
future work could combine it with the methods of growing networks [19, 163], so that
some layers are generated while some are initialized in a sophisticated way to preserve
the functional form of the network.
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5.4.3 Limitations of Zoos with Small Models

To thoroughly investigate different methods and make experiments feasible, we chose
to use the model zoos of the same small scale as in [147]. While on MNIST and SVHN,
the architectures of such model zoos allowed us to achieve high performance, on CIFAR-
10 and STL-10, the performance of all populations is limited by the low capacity of the
model zoo’s architecture. The models saturate at around 50% and 40% accuracy, re-
spectively. The sampled populations reach the saturation point and fluctuate, but can-
not outperform the baselines, see Appendix 5.F for details. We hypothesize that due to
the high remaining loss, the weight updates are correspondingly large without converg-
ing or improving performance. This may cause the weights to contain relatively little
signal and high noise. Larger model architectures might mitigate this behavior. Cor-
responding model zoos have recently been made available in [150] to tackle this issue1.

5.5 Related Work

HyperNetworks: Recently, representation learning on neural networks is typically
based on HyperNetworks that learn low-dimensional structure of model weights to gen-
erate weights in a deterministic fashion [9, 61, 88, 179]. HyperNetworks have also been
extended to meta-learning by conditioning weight generation on data [143, 182]. Closely
related to our work, HyperGANs [142] can sample model weights by combining the hy-
pernetworks and the GAN framework. Similarly, [36] allow for sampling model weights
by conditioning the hypernetwork on a noise vector. However, training hypernetwork-
based methods require input data (e.g. images) to feed to the neural networks. In prac-
tice, there may already be large collections of trained models, while their training data
may not always be accessible. Learning representations of model weights without data,
called hyper-representations, has been recently introduced in [147]. Our methods build
on that work to allow for better reconstruction and sampling. [35] showed that given a
few parameters of a network, the remaining values of a single model can be accurately
reconstructed. However, in our work, we leverage the autoencoder to train a represen-
tation of the entire model zoo. Very recently, [136] used diffusion on a population of
models to generate model weights for the original task via prompting.

Transfer Learning: Transfer learning via fine-tuning aims at re-using models and
their learned knowledge from a source to a target task [21, 38, 90, 122, 176]. Transfer
learning models make training less expensive, boost performance, or allow training on

1www.modelzoos.cc
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datasets with very few samples and have been applied on a wide range of domains [188].
The common transfer learning methods however only consider transferring from a single
model, and so disregard the large variety of pre-trained models and the potential benefit
of combining them.

Knowledge distillation: Our work is related to [108, 153, 165] that allows to distill
knowledge from a model zoo into a single network. Knowledge distillation overcomes the
inherent limitation of transfer learning by transferring the knowledge from many large
teacher models to a relatively small student model [108, 153]. Knowledge distillation
however requires the source models at training as in [108] and at inference as in[153]
thus increasing memory cost. Further, the learned knowledge cannot be shared between
different target models. Learnable initialization [31, 187] provide methods to improve
initialization by leveraging the meta-learning and gradient-flow ideas. In contrast to
knowledge distillation and learnable initialization, we train a hyper-representation of a
model zoo in a latent space, which is a more general and powerful approach that can
enable sampling an ensemble, property estimation, improved initialization, and implicit
knowledge distillation across datasets.

5.6 Conclusion

In this paper, we propose a new method to sample from hyper-representations to gen-
erate neural network weights in one forward pass. We extend the training objective
of hyper-representations by a novel layer-wise loss normalization which is key to the
capability of generating functional models. Our method allows us to generate diverse
populations of model weights, which show high performance as ensembles. We evalu-
ate sampled models both in-dataset as well as in transfer learning and find them ca-
pable of outperforming both models trained from scratch, as well as pre-trained and
fine-tuned models. Populations of sampled models, even for some unseen architectures,
generally learn faster and achieve statistically significantly higher performance. This
demonstrates that such hyper-representation can be used as a generative model for neu-
ral network weights and therefore might serve as a building block for transfer learning
from different domains, meta-learning, or continual learning.
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Appendix

5.A Model Zoo Details

Table 5.A.1: Model zoo overview.

Zoo Channels Parameters Population Size

MNIST 1 2464 1000
SVHN 1 2464 1000
CIFAR-10 3 2864 1000
STL-10 3 2864 1000

The model zoos are generated fol-
lowing the method of [147, 150]
An overview of the model zoos is
given in Table 5.A.1. All model
zoos share one general CNN archi-
tecture, outlined in Table 5.A.2.
The hyperparameter choices for
each of the populations are listed
in Table 5.A.3. The hyperparameters are chosen to generate zoos with smooth, continu-
ous development and spread in performance.
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Table 5.A.2: CNN architecture details for the models in model zoos.

Layer Component Value

Conv 1

input channels 1/3
output channels 8
kernel size 5
stride 1
padding 0

Max Pooling kernel size 2

Activation tanh / gelu

Conv 2

input channels 8
output channels 6
kernel size 5
stride 1
padding 0

Max Pooling kernel size 2

Activation tanh / gelu

Conv 3

input channels 6
output channels 4
kernel size 2
stride 1
padding 0

Activation tanh / gelu

Linear 1 input channels 36
output channels 20

Activation tanh / gelu

Linear 2 input channels 20
output channels 10

5.B Hyper-Representation Architecture and Training

Details

Hyper-representations are learned with an autoencoder based on multi-head self-
attention. The architecture is outlined in Figure 5.B.1. Convolutional and fully con-
nected neurons are embedded to token embeddings of dimension dtoken. Learned po-
sition encodings are added to provide relational information. A learned compression
token (CLS) is appended to the sequence of token embeddings. The sequence of token
embeddings is passed to Nlayers layers of multi-head self-attention with Nheads heads
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Table 5.A.3: Hyperparameter choices for the model zoos.

Model Zoo Hyperparameter Value

MNIST

input channels 1
activation tanh
weight decay 0
learning rate 3e-4
initialization uniform
optimizer Adam
seed [1-1000]

SVHN

input channels 1
activation tanh
weight decay 0
learning rate 3e-3
initialization uniform
optimizer adam
seed [1-1000]

CIFAR-10

input channels 3
activation gelu
weight decay 1e-2
learning rate 1e-4
initialization kaiming-uniform
optimizer adam
seed [1-1000]

STL-10

input channels 3
activation tanh
weight decay 1e-3
learning rate 1e-4
initialization a kaiming-uniform
optimizer adam
seed [1-1000]

with hidden embedding dimension dhidden. The CLS token is compressed to the bottle-
neck of dimension dz with an MLP or a linear layer. For the decoder, an MLP or a
linear layer maps the bottleneck to a sequence of token embeddings. The sequence is
passed through another stack of multi-head self-attention, which is symmetric to the
encoder. Debedders map the token embeddings back to convolutional and fully con-
nected neurons. The reconstruction and contrastive loss are balanced with a parameter
β. The contrastive loss is computed on the embeddings z mapped through a projec-
tion head z̄ = p(z, where p is a learned MLP with four layers with 400 neurons each
and z̄ has 50 dimensions. In Table 5.B.1, the exact hyper-parameters for each of the
hyper-representations are listed to reproduce our results.
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Figure 5.B.1: Schematic of the auto-encoder architecture to learn hyper-representations.

Table 5.B.1: Hyper-representation architecture and training de-
tails.

MNIST SVHN CIFAR-10 STL-10

Architecture

dinpot 2464 2464 2864 2864
dtoken 972 1680 1488 1632
dhidden 1140 1800 1164 1680
Nlayers 2 4 2 4
Nheads 12 12 12 24
dz 700 1000 700 700
Compression linear linear linear linear

Training

Optimizer Adam Adam Adam Adam
Learning rate 0.0001 0.0001 0.0001 0.0001
Dropout 0.1 0.1 0.1 0.1
Weight Decay 1e-09 1e-09 1e-09 1e-09
β 0.977 0.920 0.950 0.950
training epochs 1750 1750 500 2000
batch size 500 250 200 200

5.C Evaluation of Layer-Wise Loss Normalization

To evaluate layer-wise loss normalization, we compare two hyper-representations with
comparable reconstruction. Both have a R2 = 1 − mse(ŵ,w)

mse(wmean,w
as a measure of the

explained variance of around 70%. One is trained with the baseline hyper-representation
MSE, the other with layer-wise-normalization. Figures 5.C.1 and 5.C.2 show the
distribution of weights per layer before and after reconstruction, as well as the accuracy
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Figure 5.C.1: Top: Weight distribution per layer (1-5) of the SVHN test set before w and after
reconstruction ŵ with the baseline hyper-representation training loss. Layers 3 and 4 have
small weight distributions, therefore adding little penalty to the MSE, and are consequently
poorly reconstructed. Bottom: Accuracy distribution of the same population before and
after reconstruction. The badly reconstructed layers (top) cause the reconstructed models to
perform around random guessing.

Figure 5.C.2: Top: Weight distribution per layer (1-5) of the SVHN test set before w and
after reconstruction ŵ with layer-wise loss normalization. The distributions of all layers are
more similar, the reconstruction is equally distributed across the layers. Bottom: Accuracy
distribution of the same population before and after reconstruction. The normalization fixes
the catastrophic failure of the models. The remaining loss in accuracy can be explained by the
remaining reconstruction error.

distribution of both populations on the SVHN image test set. With the baseline learning
scheme in Figure 5.C.1, the distributions in layers 3 and 4 do not match. In these
layers, the original weight distribution is smaller, and so there is only a small error
even if the reconstructions predict the mean. These layers become a weak link of the
reconstructed models and cause performance around random guessing. With layer-wise
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loss normalization in Figure 5.C.2, the weight distribution between the layers becomes
more similar. As a consequence, the reconstruction error is more evenly distributed
across the layers, there are no single layers that aren’t reconstructed at all. This appears
to allow information to flow forward through the model and significantly improves the
performance of reconstructed models. We find layer-wise-normalization necessary to
reconstruct or sample functional models across all populations, where the weights are
unevenly distributed.

5.D Hyper-Representation Analysis

In this section, we detail the analysis of hyper-representations. We begin with their
geometry, followed by the distributions of individual dimensions of hyper-representations,
and finally investigate robustness and smoothness.

Embeddings in Hyper-Representation Space Populate a Hyper-Sphere We
analyze the geometry of hyper-representations z. The space of hyper-representations
is bounded to a high dimensional box by a tanh activation. Surprisingly, hyper-
representations do not populate the entire space, but sections on a shell of a high-
dimensional sphere. Figure 5.D.1 shows the distribution of the norm of the embeddings
of the MNIST zoo. All embeddings are distributed on a small band between lengths
10 and 12, therefore they must populate the shell of a hyper-sphere. In Figure 5.D.2
we investigate pairwise cosine distances between the embeddings of the MNIST zoo.
The majority of the embeddings populate the region between 0.6 and 0.8. The out-
liers around 1.0 are embeddings of the same model at different epochs. This indicates
that models are not entirely orthogonal, but mutually equally far apart, populating a
section of the shell of the hyper-sphere. While hyper-spheres are commonly found in
embeddings of contrastive learning [81], in our experiments hyper-spheres form even
without a contrastive loss. Properties of the models embedded on that hyper-sphere
can be predicted from hyper-representations, therefore the topology on the sphere ap-
pears to encode model properties.

Distributions of Dimensions of Embeddings in Hyper-Representation Encode
Properties Previous work showed that linear probing from hyper-representations
accurately predicts i.e. model accuracy. In these linear probes, the individual z
dimensions each linearly contribute to accuracy predictions. This allows us to investigate
z dimensions independently. Figure 5.D.3 shows examples for the distribution of selected
individual dimensions of hyper-representations z. On the left is the distribution of the
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Figure 5.D.1: Distributions of ℓ2 norm of
hyper-representations z of the MNIST zoo.

Figure 5.D.2: Distributions of pairwise co-
sine distance of hyper-representations z of the
MNIST zoo.

entire population, and on the right of the top 30 % performing models. The individual
dimensions show different types of distributions, with different modes. Most have a zero
mean and span 3/4 of the available range, but some collapse to either −1 or 1. Further,
the distributions also differ in at least some dimension between the entire population,
and the better-performing split of the population.

Figure 5.D.3: Distributions of individual dimensions of hyper-representations z of the MNIST
zoo. In blue is the distribution of all samples, in orange the subset of the 30 % best samples.

Generalization Capabilities of Hyper-Representations to Diverse Model
Zoos There are certain architectural changes such as adding/removing/changing
pooling layers and nonlinearity that do not change the number of parameters (the
dimensionality of the input/output required by our approach). These changes as well
as changes in hyperparameters used to train models in a zoo may drastically alter
the distribution of weights and pose a challenge to the proposed approach. Modern
neural networks (ResNet, MobileNet, EfficientNet, etc.) are often trained with very
different hyperparameters. With the experiment below, we investigate the generalization
capabilities of hyper-representations to such changes, which might be important for
modern large-scale settings as well.
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Setup: We experimentally evaluate the generalizability of the proposed approach
on models trained with a different choice of nonlinearity or other hyperparameters with
two experiments (a and b). To that end, in addition to the original SVHN test zoo
(zoo 1), we use two more diverse SVHN zoos (zoo 2 and zoo 3). In zoo 2, in addition to
random seed, models differ in the activation (tanh, relu, gelu, sigmoid), l2-regularization
(0, 0.001, 0.1), and dropout (0,0.3,0.5). In zoo 3 (extending zoo 2), we increase the
diversity further by additionally varying the initialization method (uniform, normal,
kaiming-uniform, kaiming-normal) and the learning rate (0.0001, 0.001, 0.01).

Table 5.D.1: Generalizability of hyper-representations towards more diverse model zoo config-
urations (measured as the reconstruction score, higher is better).

Training zoo Test zoo 1 Test zoo 2 Test zoo 3
original vary activation vary hyperparameters

Original 81.9% 45.7% 38.9%
Diverse (zoo 3) 25.8% 89.1% 75.6%

Experiment (a): We first evaluate our original encoder-decoder trained on a model
zoo varying in random seed only. For evaluation, we pass the test splits of zoo 2 and
zoo 3 through the encoder-decoder. We measure the reconstruction R2 score of the
original encoder-decoder on the diverse test zoos.
Results: Our results (Table 5.D.1) indicate that our original encoder-decoder can still
encode and decode weights even in such a challenging setting, although there is an
expected drop in performance.

Experiment (a): We next evaluate if hyper-representations can be trained on
diverse zoos. For this experiment, we train a hyper-representation on the train split of
zoo 3. With this, we aim to show that training hyper-representations on diverse zoos
improve generalization capabilities further.
Results: Our results show that training on diverse zoos is a much more difficult task to
optimize, hence the reconstruction on the original zoo degrades. It nonetheless improves
the reconstruction results on the test split of the diverse zoos 2 and 3. This indicates
that varying seeds and hyperparameters may be different aspects of complexity that
need to be considered.

118



5.E Sampling Methods

5.E Sampling Methods

VAE

A common extension of the autoencoder of [147] to enable sampling from its latent rep-
resentation is to make the autoencoder variational [87]. In our experiments, VAEs could
not be trained to reconstruct model weights without unweighting the KL-divergence to
insignificance essentially making it deterministic as in [147]. Empirically, embeddings in
hyper-representations are mapped on the shell of a sphere (see Section 5.D) and leave
the inside of the sphere entirely empty. On the other hand, a Gaussian prior allocates
most of the probability mass near the center of the sphere. It therefore appears plau-
sible that the two may be incompatible. That issue of non-compatible priors is well
known. [53] find that regularizing embeddings and decoder yields equally smooth rep-
resentation spaces as VAEs without restrictions to specific priors. During training of
hyper-representations, both encoder and decoder are regularized with a small ℓ2 penalty.
Further, dropout is applied throughout the autoencoder, which serves as another reg-
ularizer and adds blurriness to the embeddings. The combination of dropout, the eras-
ing augmentation and the contrastive loss further regularizes the hyper-representation
space. In all our sampling methods, we draw samples from probability distributions,
which effectively disconnects the drawn samples from training embeddings.

Latent Space GAN Details

The generator and discriminator of our GAN consist of four fully-connected layers inter-
leaved with ReLU nonlinearities. The same architecture and training hyperparameters
are used for all experiments. The generator’s input is a Gaussian noise n∗ of dimen-
sionality d = 16, the hidden dimensionalities are 128, 256, and 512, and the output
dimensionality is equal to the hyper-representation length D. The discriminator’s in-
put is D-dimensional, the hidden dimensionalities are 1024, 512, and 256, and the out-
put dimensionality is a scalar denoting either a real or fake sample. The discriminator
is regularized with Spectral Norm [124]. The discriminator and generator are trained
for 1000 epochs and batch size 32 using Adam with a two-time-scale update rule [69]:
learning rate is 1e-4 for the generator and 2e-4 for the discriminator.
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5.F Full Experiment Results

Table 5.F.1: Accuracy of sampled models: median and 95% confidence intervals. On the main
diagonal are in-dataset experiments, otherwise transfer-learning from source to target. Bold
numbers highlight the best source-to-target results. N/A denotes cases, in which the boot-
strapped CI on the median could not be computed.

Population Source Target

MNIST SVHN

BT

MNIST

91.1 [91.1, 91.2] 72.3 [72.0, 72.4]

BF 91.2 [91.0, 91.3] 76.2 [75.8, 76.5]
SKDE 92.3 [92.1, 92.8] 76.7 [76.2, 77.0]
SKDE30 93.1 [92.9, 93.4] 77.2 [76.8, 77.6]
SNeigh 93.4 [93.2, 93.5] 76.8 [76.4, 77.1]
SNeigh30 94.0 [93.8, 94.1] 77.0 [76.3, 77.4]
SGAN 93.5 [93.3, 93.6] 76.9 [76.6, 77.6]
SGAN30 93.9 [93.5, 93.9] 76.5 [76.3, 76.8]

BF

SVHN

95.1 [95.0, 95.3] 73.2 [72.8, 73.4]
SKDE 95.1 N/A 73.0 [72.6, 73.3]
SKDE30 95.5 N/A 74.2 [73.9, 74.5]
SNeigh 97.2 [97.0, 97.3] 78.1 [77.9, 78.2]
SNeigh30 95.5 [95.4, 95.7] 76.5 [76.3, 76.7]
SGAN 94.3 [94.1, 94.6] 74.5 [74.0, 74.9]
SGAN30 94.9 [94.8, 95.1] 75.3 [75.0, 75.6
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Table 5.F.2: Mann-Whitney U test of Samples S vs Baselines B: p-value and CLES (Common
Language Effect Size). p-values indicate the probability of the samples of two groups originating
from the same distribution. CLES=0.5 indicates no effect, CLES=1.0 a strong positive,
CLES=0.0 a strong negative effect. As the results indicate, both proposed sampling methods
are almost always statistically significantly better than the two baselines. Further, their effect
is often very strong.

Population Pairs Source Target

MNIST SVHN

SKDE vs. BT

MNIST

2.1e-18 | 0.8701 5.2e-27 | 0.9551
SKDE vs. BF 0.0e+00 | 0.8639 1.1e-01 | 0.5920
SKDE30 vs. BT 7.0e-27 | 0.9539 2.5e-29 | 0.9754
SKDE30 vs. BF 6.9e-22 | 0.9545 1.7e-04 | 0.7180
SNeigh vs. BT 1.5e-30 | 0.9857 6.6e-31 | 0.9888
SNeigh vs. BF 4.5e-25 | 0.9889 5.2e-03 | 0.6622
SNeigh30 vs. BT 1.7e-35 | 0.9987 1.3e-29 | 0.9778
SNeigh30 vs. BF 3.1e-28 | 0.9994 1.4e-02 | 0.6426
SGAN vs. BT 7.6e-31 | 0.9883 8.0e-25 | 0.9351
SGAN vs. BF 3.0e-25 | 0.9907 7.8e-03 | 0.6546
SGAN30 vs. BT 1.1e-31 | 0.9953 2.1e-26 | 0.9496
SGAN30 vs. BF 6.8e-26 | 0.9973 4.9e-02 | 0.6144

SKDE vs. BT

SVHN

6.1e-79 | 0.9943 1.1e-04 | 0.6006
SKDE vs. BF 7.8e-01 | 0.4904 3.8e-01 | 0.4704
SKDE30 vs. BT 1.7e-82 | 1.0000 1.6e-30 | 0.7985
SKDE30 vs. BF 0.0e+00 | 0.7292 3.0e-08 | 0.6850
SNeigh vs. BT 2.9e-78 | 0.9867 8.6e-80 | 0.9916
SNeigh vs. BF 2.8e-44 | 0.9661 1.8e-47 | 0.9833
SNeigh30 vs. BT 1.7e-82 | 1.0000 4.7e-76 | 0.9797
SNeigh30 vs. BF 8.2e-08 | 0.6791 1.7e-42 | 0.9563
SGAN vs. BT 1.2e-31 | 0.9948 0.0e+00 | 0.8140
SGAN vs. BF 1.5e-07 | 0.2517 7.5e-06 | 0.7118
SGAN30 vs. BT 4.2e-32 | 0.9987 6.7e-22 | 0.9067
SGAN30 vs. BF 3.6e-01 | 0.4565 0.0e+00 | 0.8335
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Table 5.F.3: Accuracy of sampled models: median and 95% confidence intervals. On the main
diagonal are in-dataset experiments, otherwise transfer-learning from source to target. Bold
numbers highlight the best source-to-target results. N/A denotes cases, in which the boot-
strapped CI on the median could not be computed.

Population Source Target

CIFAR-10 STL-10

BT

CIFAR-10

49.0 [48.9, 49.0] 39.0 [38.9, 39.1]

BF 48.6 [48.3, 48.7] 42.8 [42.5, 42.9]
SKDE 48.3 [48.1, 48.4] 40.7 [40.3, 40.9]
SKDE30 48.7 [48.4, 48.8] 41.3 [40.9, 41.5]
SNeigh 45.6 [44.9, 46.0] 36.7 [35.8, 37.4]
SNeigh30 46.2 [45.8, 46.4] 37.9 [37.3, 38.2]
SGAN 46.0 N/A 38.6 [38.1, 39.0]
SGAN30 47.0 [46.5, 47.2] 38.6 [38.2, 39.1]

BF

STL-10

49.3 [49.0, 49.4] 39.5 [38.9, 39.7]
SKDE 48.6 [48.4, 48.9] 37.3 [37.0, 37.8]
SKDE30 48.8 [48.4, 49.2] 38.3 [37.9, 38.4]
SNeigh 10.0 N/A 28.3 [26.8, 29.1]
SNeigh30 49.0 [48.5, 49.1] 37.8 [37.6, 38.2]
SGAN 49.0 [48.6, 49.4] 38.5 [37.9, 38.9]
SGAN30 48.8 [48.5, 49.1] 37.9 N/A
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Table 5.F.4: Mann-Whitney U test of Samples S vs Baselines B: p-value and CLES (Common
Language Effect Size). p-values indicate the probability of the samples of two groups originating
from the same distribution. CLES=0.5 indicates no effect, CLES=1.0 a strong positive,
CLES=0.0 a strong negative effect.

Population Pairs Source Target

CIFAR-10 STL-10

SKDE vs. BT

CIFAR-10

1.5e-06 | 0.2966 7.4e-19 | 0.8750
SKDE vs. BF 3.7e-02 | 0.4014 1.7e-18 | 0.0849
SKDE30 vs. BT 3.6e-02 | 0.4114 4.8e-25 | 0.9371
SKDE30 vs. BF 2.9e-01 | 0.5498 0.0e+00 | 0.1266
SNeigh vs. BT 5.7e-28 | 0.0364 7.4e-18 | 0.1359
SNeigh vs. BF 3.1e-22 | 0.0413 7.1e-26 | 0.0024
SNeigh30 vs. BT 3.5e-25 | 0.0616 2.0e-07 | 0.2800
SNeigh30 vs. BF 2.2e-19 | 0.0741 3.0e-25 | 0.0089
SGAN vs. BT 6.6e-25 | 0.0642 6.6e-02 | 0.4223
SGAN vs. BF 2.8e-19 | 0.0754 1.0e-24 | 0.0145
SGAN30 vs. BT 2.1e-21 | 0.0983 1.1e-02 | 0.3928
SGAN30 vs. BF 8.8e-16 | 0.1195 2.7e-25 | 0.0084

SKDE vs. BT

STL-10

1.3e-01 | 0.4362 0.0e+00 | 0.1730
SKDE vs. BF 6.9e-04 | 0.3028 6.0e-10 | 0.1404
SKDE30 vs. BT 6.1e-01 | 0.4783 1.2e-06 | 0.2948
SKDE30 vs. BF 1.1e-02 | 0.3528 9.1e-06 | 0.2424
SNeigh vs. BT 2.9e-32 | 0.0000 3.0e-32 | 0.0000
SNeigh vs. BF 3.3e-20 | 0.0000 7.1e-18 | 0.0000
SNeigh30 vs. BT 1.0e+00 | 0.5000 4.3e-09 | 0.2517
SNeigh30 vs. BF 2.1e-02 | 0.3654 5.4e-07 | 0.2090
SGAN vs. BT 3.2e-01 | 0.5418 2.0e-04 | 0.3427
SGAN vs. BF 2.7e-01 | 0.4360 2.4e-04 | 0.2864
SGAN30 vs. BT 6.2e-01 | 0.4788 5.4e-07 | 0.2880
SGAN30 vs. BF 1.2e-02 | 0.3532 4.6e-06 | 0.2340
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Chapter 6

Towards Scalable and Versatile
Hyper-Representation Learning

Abstract

Learning representations of well-trained neural network models holds the promise to
provide an understanding of the inner workings of those models, potentially shedding
light on their robustness, safety, and other aspects. However, previous work faced lim-
itations when processing larger networks or were task-specific to either discriminative
or generative tasks. This paper introduces SANE , which overcomes these challenges by
learning a task-agnostic representation of neural networks that is not only scalable to
much larger model sizes but also shows capabilities beyond a single task. Our method
extends the idea of hyper-representations towards sequential processing of subsets of
neural network weights, thus allowing one to embed a potentially large neural net-
work as a set of tokens into the learned representation space. This technique reveals
global model information across layer-wise components, and it can sequentially gen-
erate unseen neural network models, an aspect previously unattainable with previous
hyper-representation learning methods. We evaluate SANE on multiple downstream tasks
across multiple models zoos, representing six computer vision datasets. Our findings
demonstrate that SANE not only matches but also exceeds state-of-the-art performance
on several weight representation learning benchmarks, particularly in initialization and
transfer learning tasks for larger models like ResNets.
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Figure 6.1.1: Aggregated results of 56 experiments showing (left:) four discriminative down-
stream tasks in R2, and (right:) four generative downstream tasks in accuracy, each evalu-
ated on (bottom:) CNNs model zoos trained on 4 datasets (NMIST, SVHN, CIFAR-10, STL)
and (top:) ResNet18 model zoos trained on three datasets (CIFAR-10, CIFAR-100, Tiny-
ImageNet). The colors indicate performance of Blue: training from scratch baseline, Orange:
weight statistics from Unterthiner et al. [159], Purple: trained hyper-representations from
Schürholt et al. [147, 148], and Green: SANE (ours). It can be seen that while some methods
are performing well on their specific tasks, or are restricted by the size of the underlying mod-
els, SANE can deliver excellent performance on all tasks and model sizes.

6.1 Introduction

The exploration of the “weight space” of neural network (NN) models, i.e., the high-
dimensional space spanned by the model parameters of a population of trained NNs,
allows us to gain insights into the inner workings of those models.

In the discriminative context, works aim to link weight space properties to properties
such as model quality, generalization gap, or hyperparameters, using either the margin
distribution [80, 172], or graph topology features [26], or eigenvalue decompositions
of weight matrices [113, 116, 117, 119]. Some works learn classifiers to map between
statistics of weights and model properties [43, 159], or learn lower-dimensional manifolds
to infer NN model properties [147].

In the generative context, methods have been proposed to generate model weights
using (Graph) HyperNetworks [61, 88, 179], Bayesian HyperNetworks [36], HyperGANs
[142], and HyperTransformers [182]. These approaches have been used for tasks such
as neural architecture search, model compression, ensembling, transfer learning, and
meta-learning. They have in common that they derive their learning signal from the
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Figure 6.1.2: Given model zoos trained on different classification tasks, SANE trains hyper-
representations on sequences of layers or subset of weights of these model zoos. Once trained,
SANE can be used for multiple downstream tasks, either only using the encoder for discriminative
tasks such as the prediction of model accuracy, or the decoder for generative tasks such as
sampling of unseen models.

underlying (typically image) dataset. In contrast to these methods, so-called hyper-
representations [148] learn a lower-dimensional representation directly from the weight
space without the need to have access to the e.g., underlying image dataset, to sample
unseen NN models from that latent representation.

In this paper, we present Sequential Autoencoder for Neural Embeddings (SANE ),
an approach to learn task-agnostic representations of NN weight spaces capable of em-
bedding individual NN models into latent to perform the above-mentioned discrimi-
native or generative downstream tasks. Our approach builds upon the idea of hyper-
representations [147, 148], which learn a lower-dimensional representation z from a pop-
ulation of NN models. This is accomplished by auto-encoding their flattened weight
vectors wi through a transformer architecture, with the bottleneck acting as a lower-
dimensional embedding zi of each NN model. While the hyper-representation method
promises to be useful for discriminative and generative tasks, until now, separate hyper-
representations had to be trained specifically for either discriminative or generative
tasks. Additionally, it has a major shortcoming: the underlying encoder-decoder model
has to embed the entire flattened weight vectors wi at once into the learned lower-
dimensional representation z. This drastically limits the size of NNs that can be em-
bedded. SANE addresses these limitations by decomposing the entire weight vector wi
into layers or smaller subsets and sequentially processes these. Instead of encoding the
entire NN model by one embedding, SANE encodes a potentially very large NN as mul-
tiple embeddings. The change from processing the entire flattened weight vector to
subsets of weights is motivated by Martin and Mahoney [115, 117], who showed that
global model information is preserved in the layer-wise components of NNs. An illus-
tration of the approach can be found in Fig. 6.1.2.

To evaluate SANE , first, we analyze how NN embeddings encoded by SANE behave in
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comparison to Martin and Mahoney [115, 117] quality measures. We show that some of
these quality metrics as derived from the matrices of the analyzed NN models show
similar characteristics as the embeddings produced by SANE . This holds not only for
held-out NN models of the model zoo used for training SANEbut also for NN models
of other model zoos we consider out-of-distribution, given the model architectures
and underlying image datasets. Second, we demonstrate that SANE can learn hyper-
representations from much larger NN models, rendering them applicable to real-world
problems. In particular, the models in the ResNet model zoo used for training are
three orders of magnitudes larger than all model zoos used for hyper-representation
learning in previous works. While previous hyper-representation learning methods were
structurally constrained to encode the entire NN model at once, SANE is scalable, given
its sequential approach to encode layers or subsets of weights into hyper-representation
embeddings. It is thus potentially applicable to NN models far larger than ResNets.
Finally, we evaluate SANE on both discriminative and generative downstream tasks. For
discriminate tasks, we evaluate on four model zoos by linear-probing for properties of
the underlying NN models. For generative tasks, we evaluate on three model zoos by
sampling unseen model weights for initialization and transfer learning.

We provide an aggregated overview of our results in Fig. 6.1.1. For very small CNN
models (as evaluated on MNIST, SVHN, CIFAR-10, and STL, which we include for com-
parison with prior work) SANE performs as well as previous state-of-the-art (SOTA) for
discriminative tasks. For generative downstream tasks SANE outperforms SOTA by 25%
in accuracy for initialization on the same task and 17% in accuracy for finetuning to
new tasks. For larger models such as ResNets (as evaluated on CIFAR-10, CIFAR-100,
Tiny-ImageNet and were beyond the capabilities of prior work), we show results com-
parable to baselines for discriminative downstream tasks and report outperformance to
baselines for generative downstream tasks by 31% for initialization and 28% for finetun-
ing to new tasks. Additionally, we show that we can sample unseen models by prompt-
ing SANEwith different architectures than it used for training. These sampled models
can outperform models trained from scratch on the prompted architecture.
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6.2 Methods

Hyper-representations learn an encoder-decoder model on the weights of NNs [147]:

z = gθ(W) (6.2.1)

Ŵ = hψ(z), (6.2.2)

where gθ is the encoder which maps the flattened weights W to embeddings z, and
hψ decodes back to reconstructed weights Ŵ. Even though previous work realized
both encoder and decoder with transformer backbones, the weight vector had to be of
fixed size, and models are represented in a global embedding space [147, 148].Hyper-
representations are trained with a reconstruction loss Lrec = ∥W−Ŵ∥22 and contrastive
guidance loss Lc = NTXent(pϕ(zi), pϕ(zj)), where pϕ is a projection head. Schürholt
et al. [147] proposed weight permutation, noise, and masking as augmentations to
generate views i, j of the same model.

Existing hyper-representation methods have two major limitations: i) using the full
weight vector to compute global model embeddings becomes infeasible for larger models;
and ii) can only embed models that share the architecture with the original model zoo.
Our SANEmethod addresses both. To make models more digestible for pretraining and
inference, we propose to express models as sequences of token vectors. To address i),
SANE learns per-token embeddings, which are trained on subsequences of the full base
model sequence. This way, the memory and compute load are decoupled from the base
model size. By decoupling the tokenization from the representation learning, we also
address ii). The models in the model zoo set can have varying architectures, as long
as they are expressed as a sequence with the same token-vector size. The transformer
backbone and per-token embeddings also allow to change the length of the sequence
during or after training. Below, we provide technical details on SANE . We first provide
details on pretraining SANE , computing model embeddings, and sampling models; and
we then introduce aligning, haloing, and bn-conditioning.

Sequential Autoencoder for Neural Embeddings To tokenize weights, we reshape
the weights Wraw ∈ Rcout×c1×···×cin , to 2d matrices W ∈ Rcout×cr , where cout are the
outgoing channels, and where cr the remaining, flattened dimensions. We then slice the
weights row-wise, along the outgoing channel. Using global token size dt, we split the
slices into multiple parts if cr > dt and zero-pad to fill up to dt. For weights Wl of layer
l, this gives us tokens Tl ∈ Rnl×dt , where nl = cout,l ceil(

cr
dt
). Since all tokens Tl share

the same token size, the tokens of layer l = 1...L can be concatenated to get the model
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token sequence T ∈ RN×dt . To indicate the position of a token in the sequence, we use
a 3-dimensional position Pn = [n, l, k], where n ∈ [1, N ] indicates the global position in
the sequence, l ∈ [1, L] indicate the layer index, and k ∈ [1, K(l)] is the position of the
token within the layer.

Out of the full token sequence T and positions P ∈ NN×3, we take a random
consecutive sub-sequence Ts,n = Tn,...,n+ws with positions Ps,n = Pn,...,n+ws of length ws.
We call these sub-sequences windows and the length of the sub-sequence the window
size ws.

For SANE on windows of tokens, we extend Eqs. 6.2.1 and 6.2.2 to encode and decode
token windows as

zs,n = gθ(Ts,n,Ps,n) (6.2.3)

T̂s,n = hψ(zs,n,Ps,n), (6.2.4)

where zs,n ∈ Rws×dz is the per-token latent representation of the window. In contrast to
hyper-representations Eqs. 6.2.1 and 6.2.2 which operate on the full flattened weights
of a model, SANE encodes sub-sequences of tokenized models. For simplicity, we apply
linear mapping to and from bottleneck, to reduce tokens from dt to dz.

We adapt the composite training loss of hyper-representations, L = (1−γ)Lrec+γLc,
for sequences as:

Lrec = ∥Ms,n ⊙
(
Ts,n − T̂s,n

)
∥22 (6.2.5)

Lc = NTXent(pϕ(zs,n,i), pϕ(zs,n,j)). (6.2.6)

Here, the mask Ms,n indicates signal with 1 and padding with 0, to ensure that the loss
is only computed on actual weights. The contrastive guidance loss uses the augmented
views i, j and projection head pϕ.

The pretraining procedure is detailed in Algorithm 1. We preprocess model weights
by standardizing weights per layer and aligning all models to a reference model, see
Model Alignment below. As in previous work [136, 147], the encoder and decoder are
realized as transformer blocks. Training on the full sequence would memory-limit the
base-model size by its sequence length. Training the encoder and decoder on windows
instead of the full model sequence decouples the memory requirement from the base
model’s full sequence length. The window size can be used to balance GPU memory load
and the amount of context information. Notably, since we disentangle the tokenization
from the representation learning model, SANE also allows to embed sequences of models
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Algorithm 1 SANEpretraining
Input: population of models
i: standardize models weights
ii: align models to one common reference model
iii: tokenize models to tokens T, positions P, masks M
iv: draw k windows per model: Ts,n, Ps,n, Ms,n

v: train on Ltrain until convergence of Lval

with varying architectures, as long as their token size is the same. To prevent potential
overfitting to specific window positions, we propose to sample windows from each model
sequence multiple times randomly.

Computing SANEModel Embeddings. SANE can be used to analyse models in
embedding space, e.g., by using embeddings as features to predict properties such as
accuracy, or to identify other model quality metrics. In contrast to hyper-representations,
SANE can embed different model sizes and architectures in the same embedding space.
To embed any model, we begin by preprocessing weights by standardizing per layer
and aligning models to a pre-defined reference model (see Model Alignment below).
Subsequently, the preprocessed models are tokenized as described above. For short model
sequences, the embedding sequences can be directly computed as z = gθ(T,P). For
larger models, the token sequences are too long to embed as one. We therefore employ
haloing (see below) to encode the entire sequence as coherent subsequences. Algorithm
2 summarizes the embedding computation. To compare different models in embedding

Algorithm 2 SANEmodel embedding computation

Input: population of models
i: preprocessing: standardize and align model weights
ii: tokenize models: T, positions P, property y
iii: split model sequences to consecutive chunks Ths,n,Phs,n

iv: compute embeddings zhs,n = gθ(Ths,n,Phs,n)
v: stitch model embeddings z together from chunks zhs,n

space, we aggregate the sequences of token embeddings. To that end, we understand the
token sequence of one model to form a surface in embedding space and choose to represent
that surface by its center of gravity. That is, we take the mean of all tokens along the
embedding dimension as z̄ = 1

N

∑N
n=1(zn). That results in one vector in embedding

space per model. Of course, one could use other aggregation methods with SANE .
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Sampling Models with Few Prompt Examples. Sampling models from SANE promises
to transfer knowledge from pretraining populations to new models with different ar-
chitectures. Given pre-trained encoders gθ and decoder hψ, the challenge is to iden-
tify the distribution P in latent space which contains the targeted properties. To ap-
proximate that distribution, previous work used a large number of well-trained mod-
els [136, 148]. However, increasing the size of the sampled models makes pretraining a
large number of high-performance models exceedingly expensive. Instead of using ex-
pensive high-performance models to model P directly, we propose to find a rough esti-
mate of P , sample broadly, and refine P using the signal from the sampled models. Us-
ing E prompt examples We we compute the token sequence Te and corresponding em-
bedding sequence ze = gθ(T

e,P). Following previous work, we use a KDE to model the
distribution P per token as Pe∈E(zen) [148]. We then draw k new samples per token as:

zkn ∼ Pe∈E(zen). (6.2.7)

We reconstruct the sampled embeddings to weight tokens Tk = hψ(z
k,P) and ultimately

weights Wk. Sampling tokens can be done cheaply, decoding and evaluating the weights
using some performance metric involves only forward passes and is likewise cheap.
Therefore, one can draw a large amount of samples and keep only the top m models,
according to the performance metric. We call this method subsampling. The process can
be refined iteratively, by re-using the embeddings zk of the best models as new prompt
examples, to adjust the sampling distribution to best fit the needs of the performance
metric. We call this sampling method bootstrapped. By only requiring a rough version
of P and refining with the target signal, our sampling strategy reduces requirements
on prompt examples s.t. only need very few and slightly trained prompt examples are
necessary. The overall sampling method is outlined in Algorithm 3. It makes use of
model alignment, haloing, and batch-norm conditioning which are detailed below. In
addition to the compute efficiency, these sampling methods learn the distribution of
targeted models in embedding space. Further, they are not bound to the distribution of
prompt examples but can find the distribution that best satisfies the target performance
metric, independent of the prompt examples.

Growing sample model size poses several additional challenges, three of which we
address with the following methods. We evaluate these methods in Appendix 6.A.
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Algorithm 3 Sampling models with SANE
Input: model prompt examples
i: tokenize prompt examples: tokens T, positions P
ii: embed prompt examples ze following Alg. ??
for iboot = 1 to bootstrap iterations do

iii: draw k samples zkn ∼ Pe∈E(zen)
iv: decode to tokens Tk = hψ(z

k)
v: apply batch-norm conditioning
vi: compute target metric and keep best m models
if bootstrap iterations > 1 then

vii: ze = zkfor k ∈ m
end if

end for

Model Alignment. Symmetries in the weight space of NN complicate representation
learning of the weights. The number of symmetries grows fast with model size [10].
To make representation learning easier, we reduced all training models to a unique,
canonical basis of a reference model. With reference model A we align model B by
finding the permutation π = argminπ∥vec(Θ(A))− vec(Θ(B))∥2, where Θ(A) are the
parameters of model A [1]. We fix the same reference model across all dataset splits
and use the last epoch of each model to determine the permutation for that model.

Haloing. The sequential decomposition of SANEdecouples the pretraining sequence
length from downstream task sequence lengths. Since the memory load at inference
is considerably lower, the sequences at inference can be longer. However, full model
sequences may still not fit in memory and have to be processed in slices. To ensure
consistency between the slices, we add context around the content windows. With added
context halo before and after the content window, we get Ths,n = Tn−h,..,n,...,n+ws,n+ws+h

Similar to approaches in computer vision [161], this context halo is added for the pass
through encoder and decoder, but disregarded after.

Batch-Norm Conditioning. In most current NN models, some parameters like
batch-norm weights are updated during forward passes instead of with gradients. Since
that makes them structurally different, we exclude these parameters from representation
learning and sampling with SANE . Nonetheless, these parameters need to be instantiated
for sampled models to work well. For model sampling methods we therefore propose to
condition batch-norm parameters by doing a few forward passes with some target data.
Importantly, this process does not update the learned weights of the model. It serves
to align the batch norm statistics with the model’s weights.
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6.3 Training SANE

We pretrain SANE following Alg. 1 on several populations of trained NN models, from
the model zoo dataset [150]. We use zoos of small models to compare with previous
work, as well as zoos containing larger ResNet-18 models. All zoos are split into training,
validation, and test splits 70 : 15 : 15.

• Smaller CNN zoos. The MNIST and SVHN zoos contain LeNet-style models
with 3 convolution and 2 dense layers and only ∼ 2.5k parameters. The slightly
larger CIFAR-10 and STL-10 zoos use the same architecture with wider layers
and ∼ 12k parameters.

• Larger ResNet zoos. We also use the CIFAR-10, CIFAR-100, and Tiny-
Imagenet zoos containing ResNet-18 models [150] with ∼ 12M parameters to
evaluate scalability to large models.

Pretraining. We train SANEusing Alg. 1. As augmentations, we use noise and per-
mutation. The permutation is computed relative to the aligned model, the aligned
model serves as one view, and a permuted version as the second view.

Implementation Details. To maintain diversity within each batch, we select only a
single window from each model. Loading, preprocessing, and augmenting the entire
sample only to use approximately 1% of it is infeasible. To address this, we leverage
FFCV [97] to compile datasets consisting of sliced and permuted windows of models.
Each model is super-sampled for approximately full coverage within the training set,
considering the ratio of window length to sequence length. For the ResNet zoos, we
include 140 models per zoo, a number that remains manageable in terms of memory
and storage. We train for 50 epochs using a OneCycle learning rate scheduler [155].
Seeds are recorded to ensure reproducibility. We build SANE in PyTorch [135], using
automatic mixed precision and flash attention [29] to enhance performance. We use
ray.tune [107] for hyperparameter optimization. Code to reproduce the experiments
will be made available upon publication.
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6.4 Embedding Analysis

In this section, we analyze the embeddings of SANE and compare to the weight-analysis
methods WeightWatcher (WW) [119]. We focus on three aspects: i) global relation
between accuracy and embeddings; ii) the trend of embeddings over layer index, as in
[119]; and iii) the identification of training phases as in [116, 117].

To analyze weights, we focus on two WW metrics which in previous work reveal
model performance as well as internal model composition (correlation flow); the log
spectral norm log(∥W∥2∞) and weighted α, the coefficient of the power law fitted to
the empirical spectral density [119]. These two metrics describe different aspects of the
eigenvalue distribution. To get a similar signal on the internal dependency of weight
matrices, we compute per-layer scalars ẑl as the spread of the tokens of one layer in
hyper-representation space, i.e., their standard deviation.

ẑl = stdt(ztm) (6.4.1)

ztm = g(Wt
m), (6.4.2)

where g is the hyper-rep encoder, ztm are the stacked tokens t of layer m, and Wt
m is

the weight-slice t of layer m.

Figure 6.4.1: Comparison between WeightWatcher (WW) features (left) and SANE (right).
Features over layer index for ResNets from pytorchcv of different sizes.

To compare WW metrics to SANE , we pretrain SANE on a Tiny-Imagenet ResNet-
18 zoo and compute the two metrics on ResNets and VGGs of different sizes trained
on ImageNet from pytorchcv [151]. On both ResNets in Figure 6.4.1, 6.C.3 and VGGs
in Figure 6.C.2, the WW metrics and our embeddings show similar global trends. On
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ResNets, our embeddings and WW have low values at early layers and a sharp increase
at the end. However, our embeddings add an additional step for intermediate layers,
which may indicate that SANE is sensitive to a higher degree of variation in these layers
which previous work found by comparing activations [91]. In a second experiment,
we aggregate the layer-wise embeddings ẑl to evaluate relations to model accuracy in
Figures ??, ?? and ??, similar to previous work [119]. On models from pytorchcv
and the Tiny-ImagNet model zoo from [150], the WW features and SANE embeddings
both show strong correlations to model accuracy. However, while the WW metrics are
negatively correlated to accuracy, our embeddings are positively correlated to accuracy.
The reason for that may lie in the additional ’step’ in Figure 6.4.1. That is, larger
models with more layers generally have higher performance. As Figure 6.4.1 shows,
more layers add very small values reducing the global average for WW metrics. For
our embeddings, deeper models have more layers with higher ẑl values, due to the
afore-mentioned step. This increases the global model average with growing model size.
Lastly, we compare the eigenvalue spectrum to embeddings. Previous work identified
distinct shapes at different training phases or with varying training hyperparameters
[116, 117]. While we can replicate the distributions of the eigenvalues, the distributions
of our embeddings only show the change from early phases of training to the heavy-
tailed distribution, see Figure 6.C.1. In summary, the embedding analysis indicates
that SANE represents aspects of model quality globally and on a layer level.

Figure 6.4.2: Comparison between WeightWatcher features (left) and SANE (right). Accuracy
over model features for ResNets and VGGs from pytorchcv of different sizes. Although SANE is
pretrained in a self-supervised fashion, it preserves the linear relation of a globally-aggregated
embedding to model accuracy.
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6.5 Empirical Performance

In this section, we describe the general performance SANE .

6.5.1 Predicting Model Properties

Here, we evaluate SANE for discriminative downstream tasks as a proxy for encoded model
qualities. Specifically, we investigate whether SANEmatches the predictive performance
of hyper-representations on small CNN models (Table 6.5.1) and whether similar
performance can be achieved on ResNet-18 models (Table 6.5.2). To that end, we
compute model embeddings z̄ as outlined in Alg. 2 and compare against flattened
weights W and weight statistics s(W ). Following the experimental setup of [43, 147, 159],
we compute embeddings using the three methods and linear probe for test accuracy
(Acc), epoch (Ep), and generalization gap (Ggap). We again use trained models from
the modelzoo repository [150], with the same train, test, val splits as above.

Table 6.5.1: Property prediction on populations of small CNNs used in previous work [147].
We report the regression R2 on the test set prediction test accuracy Acc., epoch Ep. and
generalization gap Ggap for linear probing with model weights W , model weights statistics
s(W ) or SANE embeddings as inputs.

MNIST SVHN CIFAR-10 (CNN)

W s(W) SANE W s(W) SANE W s(W) SANE

Acc. 0.965 0.987 0.978 0.910 0.985 0.991 -7.580 0.965 0.885
Ep. 0.953 0.974 0.958 0.833 0.953 0.930 0.636 0.923 0.771
Ggap 0.246 0.393 0.402 0.479 0.711 0.760 0.324 0.909 0.772

SANEmatches baselines on small models. The results of linear probing on small
CNNs in Tables 6.5.1 and 6.D.1 confirm the performance of W (low) and s(W ) (very
high) of previous work. SANE embeddings show comparably high performance to the
s(W ) and previous hyper-representations. Sequential decomposition and representation
learning as well as using the center of gravity does not appear to negatively affect
the information contained in SANE embeddings. Additional experiments in App. 6.D
compare to previous work and confirm these findings. Sequential decomposition and
representation learning as well as using the center of gravity does not significantly
reduce the information contained in SANE embeddings.

SANE performance prediction scales to ResNets. Both s(W ) and SANE embeddings
show similarly high performance on populations of ResNet-18s, see Table 6.5.2. On
ResNet-18s, using the full weights W for linear probing is infeasible due to the size of
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Table 6.5.2: Property prediction on ResNet-18 model zoos of [150]. We report the regression
R2 on the test set prediction test accuracy Acc., epoch Ep. and generalization gap Ggap for
linear probing with model weights statistics s(W ) or SANE embeddings as inputs.

CIFAR-10 CIFAR-100 Tiny-Imagenet

s(W) SANE s(W) SANE s(W) SANE

Acc. 0.880 0.879 0.923 0.922 0.802 0.795
Ep. 0.999 0.999 0.999 0.992 0.999 0.980
Ggap 0.490 0.512 0.882 0.879 0.704 0.699

the flattened weights. SANEmatches the high performance of s(W ). The results show
that sequential hyper-representation are capable of scaling to ResNet-18 models. Fur-
ther, the aggregation even of long sequences ( 50k tokens) preserves meaningful infor-
mation on model performance, which indicates the feasibility of applications like model
diagnostics or targeted sampling.

6.5.2 Generating Models

Here, we evaluate SANE for sampling model weights. We generate weights following Alg.
3 and test them in fine-tuning, transfer learning, and how it generalizes to new tasks
and architectures. In the following paragraphs, we begin with experiments on small
CNN models from the modelzoo repository to compare with previous work (Tables 6.5.3,
6.E.1. Subsequently, we evaluate SANE for sampling ResNet-18 models for finetuning
and transfer learning (Tables 6.5.4, 6.E.2. Lastly, we evaluate sampling for new tasks
and new architectures using only few prompt examples (Figure 6.5.1 and Tables 6.5.5,
6.E.3,6.E.4, 6.E.5).

We pretrain SANE on models from the first half of the training epochs with Alg. 1,
and keep the remaining epochs (26-50) as holdout to compare against, following the
experimental setup of [148]. We sample using Alg. 3 and use models from the last
epoch in the pretraining set (epoch 25) as prompt examples. We compare sampled
models using prompt examples against training from scratch, as well as fine-tuning from
the prompt examples. We denote subsampling with SANE SUB and iteratively updating
the distribution P as SANE BOOT . To evaluate the impact of the sampling method, we
also combine SANEwith the KDE30 sampling approach that uses high-quality prompt
examples [148]. We also evaluate sampling without prompt examples by bootstrapping
off of a Gaussian prior P, denoted as SANEGAUSS. We compare against training from
scratch, as well as fine-tuning from the prompt examples.
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Table 6.5.3: Model generation on CNN model populations fine-tuned on the same task. We
compare training from scratch with SKDE30 from [148], SANE combined with the KDE30
sampling method, and our SANE subsampled. Each of the sampled populations is fine-tuned
over 25 epochs.

Ep. Method MNIST SVHN CIFAR-10 STL

0

tr. fr. scratch ∼10 /% ∼10 /% ∼10 /% ∼10 /%
SKDE30 68.6±6.7 54.5±5.9 n/a n/a
SANEKDE30 84.8±0.8 70.7±1.4 56.3±0.5 39.2±0.8
SANE SUB 86.7±0.8 72.3±1.6 57.9±0.2 43.5±1.0
SANEGAUSS 20.8±0.1 21.6±0.5 19.3±0.2 17.5±1.5

1

tr. fr. scratch 20.6±1.6 19.4±0.6 37.2±1.4 21.3±1.6
SKDE30 83.7±1.3 69.9±1.6 n/a n/a
SANEKDE30 85.5±0.8 71.3±1.4 58.2±0.2 43.5±0.7
SANE SUB 87.5±0.6 73.3±1.4 59.1±0.3 44.3±1.0
SANEGAUSS 61.3±3.1 24.1±4.4 27.2±0.3 22.4±1.0

5

tr. fr. scratch 36.7±5.2 23.5±4.7 48.5±1.0 31.6±4.2
SKDE30 92.4±0.7 57.3±12.4 n/a n/a
SANEKDE30 87.5±0.7 72.2±1.2 58.8±0.4 45.2±0.6
SANE SUB 89.0±0.4 73.6±1.5 59.6±0.3 45.3±0.9
SANEGAUSS 83.4±0.8 35.6±8.9 43.3±0.3 34.2±0.7

25

tr. fr. scratch 83.3±2.6 66.7±8.5 57.2±0.8 44.0±1.0
SKDE30 93.0±0.7 74.2±1.4 n/a n/a
SANEKDE30 92.0±0.3 74.7±0.8 60.2±0.6 48.4±0.5
SANE SUB 92.3±0.4 75.1±1.0 61.2±0.1 48.0±0.4
SANEGAUSS 94.2±0.4 54.2±17.6 52.2±0.6 43.5±0.5

50 tr. fr. scratch 91.1±2.6 70.7±8.8 61.5±0.7 47.4±0.9

Sampling High-Performing CNNs Zero-Shot. We begin with finetuning and
transfer learning experiments on small CNNs from the modelzoo dataset to validate
that the sequential decomposition for pretraining and sampling does not hurt perfor-
mance. The results of these experiments show dramatically improved performance zero-
shot for fine-tuning and transfer learning over previous hyper-representations, see Ta-
bles 6.5.3 and 6.E.1. At epoch 0, SANE improves over previous hyper-representations
SKDE30 by almost 20%. The effect becomes smaller during fine-tuning. Nonetheless
SANE consistently outperforms training from scratch with a higher epoch budget, of-
ten by several percentage points. This demonstrates on small CNNs that sequential
pretraining and sampling of SANE improves performance, particularly zero shot. That
indicates the potential for scenarios with little labelled data.
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Table 6.5.4: Model generation on ResNet-18 model populations fine-tuned on the same task.
We compare sampled models at different epochs with models trained from scratch.

Epoch Method CIFAR-10 CIFAR-100 Tiny-Imagenet

0 tr. fr. scratch ∼10 /% ∼1 /% ∼0.5 /%
SANEKDE30 64.8±2.0 19.8±2.5 8.4±0.9
SANE SUB 68.1±0.7 19.8±1.3 11.1±0.5
SANEBOOT 68.6±1.2 20.4±1.3 11.7±0.5

1 tr. fr. scratch 43.7±1.3 17.5±0.7 13.8±0.8
SANEKDE30 82.4±0.9 59.0±1.3 46.7±0.8
SANE SUB 83.6±1.5 60.8±0.8 47.4±1.0
SANEBOOT 82.8±1.4 60.2±0.5 47.2±0.8

5 tr. fr. scratch 64.4±2.9 36.5±2.0 31.1±1.6
SANEKDE30 85.9±0.6 56.2±1.7 45.6±1.4
SANE SUB 85.4±1.3 56.7±1.6 45.7±0.8
SANEBOOT 85.4±0.7 56.4±1.2 49.1±1.7

10 tr. fr. scratch 76.5±2.7 49.0±2.0 39.9±2.2
SANEKDE30 91.4±0.1 72.9±0.2 64.2±0.3
SANE SUB 91.6±0.2 72.9±0.1 64.0±0.2
SANEBOOT 91.6±0.2 72.8±0.1 64.1±0.2

25 tr. fr. scratch 85.5±1.5 56.5±2.0 43.3±1.9
50 tr. fr. scratch 92.14±0.2 70.7±0.4 57.3±0.6
60 tr. fr. scratch n/a 74.2±0.3 63.9±0.5

SANE Sequential Sampling Scales to ResNets. To evaluate how well sampling with
SANE scales to larger models, we continue with experiments on ResNet-18s. The results of
these experiments Tables 6.5.4 and 6.E.2 show that despite the long sequences, the sam-
pled ResNet models perform well above random initialization. E.g., sampled ResNet-18s
achieve 68.1% on CIFAR-10 without any fine-tuning (Table 6.5.4). These models are at
least three orders of magnitude larger than models in hyper-representations, and are com-
putationally infeasible for these methods since they operate on full models at once [148],
hence we cannot compare to hyper-representations here. As before, the performance dif-
ference to random initialization becomes smaller during fine-tuning. Similar to our ex-
periments on CNNs, sampled ResNet-18s achieve competitive performance or even out-
perform training from scratch with a considerably smaller computational budget.1 Trans-
ferred to a new task, sampled models outperform training from scratch and match fine-
tuning from prompt examples (Table 6.E.2). Interestingly, subsampling and bootstrap-
ping appears to work well when there is a useful signal to start with, i.e., on easier tasks

1The base population is trained with a one-cycle learning rate scheduler. To avoid any bias, we
adopt the same scheduler, but train for only 10 epochs, which affects direct comparability.
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that are similar to the pretraining distribution. This suggests that the sampling distribu-
tions are not ideal, and may require a better fit, more samples, or iterative adjustment
to fit new datasets zero-shot. Nonetheless, even the relatively naive sampling methods
can successfully sample competitive models, even at the scale of ResNet-sized architec-
tures. This shows that our sequential sampling works even for long sequences of tokens.

Subsampling Improves Performance Previous work requires high-quality prompt
examples to target specific properties [148]. Our sampling methods drop these require-
ments and use prompt examples only to model a prior. We therefore compare SANEwith
SKDE30 from [148] to SANE . Further, we compare the KDE30 sampling method with
our subsampling approach on SANE . On datasets where published results are available,
using KDE30 with SANE improves performance over previously published results with
SKDE30, see Table 6.5.3 MNIST and SVHN results, e.g. epoch 0. We credit that to the
better reconstruction quality of pre-training with SANE . Further, our sampling methods
improve performance over SKDE30. We compare SANE+ SKDE30 with SANE+ subsam-
pling and SANE+ bootstrapping, for example in Table 6.5.4 on CIFAR-10 at epoch 0
from 64.8% to 68.1%, or on Tiny Imagenet from 8.4% to 11.1%. Using bootstrapping
to adjust P iteratively further improves the sampled models slightly. It even allows to
replace prompt examples with a Gaussian prior P. The results of SANEGAUSS show
high performance after fine-tuning, even the highest overall on MNIST. These results
show that our sampling methods not only drop requirements for the prompt examples
but even improve the performance of the sampled models.

Figure 6.5.1: Comparison between sampled models and random initialization trained for 5
epochs Tiny-Imagenet. Different architectures are sampled from SANE pretrained on a ResNet-18
CIFAR-100 zoo. Although both models and task are changed, sampled models perform better.
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Few-Shot Model Sampling Transfers to New Tasks and Architectures. Lastly,
we explore whether sampling models using SANE generalize beyond the original task
and architecture with very few prompt examples. Such transfers are out of reach of
previous hyper-representations, which are bound to a fixed number of weights. SANE on
the other hand represents models of different sizes or architectures simply as sequences
of different lengths, which can vary between pretraining and sampling. Since we use
the prompt examples only to roughly model the sampling distribution, we need only a
few (1-5) prompt examples which are trained for only a few epochs (1-5). That way,
sampling for new architectures and/or tasks can become very efficient. We test that idea
in three experiments: (i) changing the tasks between pretraining and prompt-examples
from CIFAR-100 to Tiny-Imagenet (Table 6.5.5); (ii) changing the architecture between
pretraining and prompt-examples from ResNet-18 to ResNet-34 (Table 6.E.3); and (iii)
changing both task and architecture from ResNet-18 on CIFAR-100 to ResNet-34 on
Tiny-Imagenet (Figure 6.5.1 and Table 6.E.4).

Table 6.5.5: Sampling ResNet-18 models
for Tiny-Imagenet. SANEwas pre-trained on
CIFAR-100, 15 samples are drawn using sub-
sampling, and 5 prompt examples are taken
from the Tiny-Imagenet ResNet-18 zoo at epoch
25 with a mean accuracy of 43%.

ResNet-18 CIFAR100 to TinyImagnet

Ep. Method Acc TI

0
tr. fr. scratch 0.5±0.0
SANE 0.6±0.0

1
tr. fr. scratch 10.4±2.2
SANE 39.4±1.5

2
tr. fr. scratch 28.5±0.9
SANE 61.0±0.2

2 SANEEns. 64.0

In all three experiments, using tar-
get prompt examples improves over ran-
dom initialization as well as previous
transfer experiments. This indicates
that SANE representations contain useful
features even for new architectures or
tasks. The sampled models outperform
the prompt examples and training from
scratch, considerably in earlier epochs,
and preserve a performance advantage
throughout fine-tining.

Sampling for a new task (Table
6.5.5), the sampled models outperform the
prompt examples after just two epochs of
fine-tuning, which indicates that transfer-
learning using SANE is an efficient alterna-
tive. Sampling from ResNet-18 to ResNet-34 for the same task (Table 6.E.3) shows like-
wise improved performance over training from scratch, which indicates that the learned
representation generalizes to larger architectures as well. Sampling for new tasks and
different architecture (Figure 6.5.1 and Table 6.E.4) combines the previous experiments
and confirms their results. Sampled models outperform training from scratch by a con-
siderable margin. Figure 6.5.1 indicates that with increasing distance from the pretrain-
ing architecture for SANE , the performance gain of sampled models decreases, e.g. with
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increasing ResNet size. Additionally, since sampling models using SANE is cheap and
lends itself to ensembling, we investigate the diversity of sampled models in Sec. 6.E in
the Appendix. Taken together, the experiments show that SANE learns representations
that can generalize beyond the pretraining task and architecture, and can efficiently be
sampled for both new tasks and architectures.

6.6 Related Work

Representation learning in the space of Neural Network weights has become a growing
field recently. Several methods with different approaches to deal with weight spaces have
been proposed to predict model properties such as accuracy [2, 43, 159, 180] or learn the
encoded concepts [3, 33]. Other work investigates the structure of trained weights on a
fundamental level, using their eigen or singular value decompositions to identify training
phases or predict properties [113, 114, 116, 117, 121, 173]. Taking an optimization
perspective, other work has investigated the uniqueness of the basis of trained neural
networks [1, 14]. Other work identifies subspaces of weights that are relevant, which
motivates our work [6, 49, 112, 167]. The mode connectivity of trained models has been
investigated to improve understanding of how to train models [41, 50, 131].

A different line of work trains models to generate weights for target models, such as
HyperNetworks [61, 88, 130, 179], with a recurrent backbone [164] as learned initial-
ization [31] or for meta learning [47, 127, 182]. While the last category uses data to
get learning signals, another line of work learns representations of the weights directly.
Hyper-Representations train an encoder-decoder architecture using reconstruction of
the weights, with contrastive guidance and has been proposed to predict model proper-
ties [147] or generate new models [148, 149]. While previous work was limited to small
models of fixed length, this paper proposes methods to decouple the representation
learner size from the base model. Related approaches use convolutional auto-encoders
[7] or diffusion on the weights [136].
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6.7 Conclusion

In this work, we propose SANE to learn task-agnostic representations of models. SANE decouples
model tokenization from hyper-representation learning and can generalize to larger or
smaller models of different architectures. We analyze SANE embeddings and find they re-
veal model quality metrics. Experimental evaluations show that i) SANE embeddings are
predictive of model performance and ii) sampling models with SANE achieve high per-
formance and generalize to larger models and new architectures. Further, we propose
sampling methods that reduce quality and quantity requirements for prompt examples
and allow the targeting of new model distributions.

Limitations

In this paper, we use homogeneous zoos with one architecture. This simplifies alignment
for pre-training, but more importantly levels the playing field for model generation.
Since SANE can train on varying architectures and model sizes, the model population
requirement for pre-training is significantly relaxed. A sufficient number of models
are available on public model hubs. Further, our sampling method requires access to
prompt examples, to have an informed prior from which to sample. For small models,
bootstrapping from a Gaussian finds the targeted distribution. For large models, that
approach is too expensive for now, which is why we rely on prompt examples. Lastly,
in this paper, we perform experiments only on computer vision tasks. This is a choice
to simplify the experiment setup and evaluation.
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Appendix

6.A Ablation Studies

In this section, we perform ablation studies to assess the effectiveness of the methods
proposed above: model alignment to simplify the learning task, inference window size
to improve inference quality, haloing, and batch-norm conditioning to increase sample
quality.

Table 6.A.1: Impact of alignment ablation
and permutation on reconstruction loss.

Sample Permutations Lrec

Aligned View 1 View 2 Train Test

No Perm. Perm. 0.304 0.167
Yes Perm. Perm. 0.148 0.082
Yes Align Perm. 0.107 0.082
Yes Align Align 0.072 0.082

Impact of Model Alignment. Model
alignment intuitively reduces training com-
plexity by mapping all models to the same
subspace. To evaluate its impact, we con-
duct training experiments with the same
configuration on datasets with and without
aligned models. In the dataset with aligned
models, we use either the aligned form or 5
random permutations for the two views for
both reconstruction and contrastive learn-
ing. As shown in Table 6.A.1, the results show two effects. First, alignment through git
re-basin simplifies the learning task and contributes to improved generalization, both
training and test losses are reduced by more than 50%. Second, anchoring at least one
of the views to the aligned form does further reduce the training loss, but does not im-
prove generalization.

Window Size Ablation. The sequential decomposition of SANE allows to pretrain
not on the full model sequence, but on subsequences. The choice of the lenght of the
subsequence, the window size, is as a critical parameter that balances computational
load and context. We used a window of 256 for pretraining for most of our experiments.

Here, we study the influence of the window size on reconstruction error, exploring
values ranging from 32 to 2048. Our experiments did not reveal substantial impact of
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smaller windows on pretraining loss or sampling performance. This seems to either
suggest that a window size as large as 2048 may still be insufficient on ResNets to
capture enough context. Alternatively, it may suggest that the underlying assumption
that context matters may not entirely hold up.

Figure 6.A.1: SANE reconstruction loss over
number of tokens within a window. The
loss is lowest around the training window-
size of 256 tokens, longer sequences up to
the full models sequence length of 50k to-
kens cause interference and double the re-
construction error.

However, we did observe an important im-
pact on the relationship between training and
inference window sizes. During inference, mem-
ory load is significantly lower. Inference al-
lows much larger window sizes, up to the en-
tire length of the ResNet sequence. However,
departing from the training window size ap-
pears to introduce interference, which affects
the reconstruction error (Figure 6.A.1).

Halo and BN conditioning. Haloing and
batch-norm conditioning aim at reducing noise
in model sampling, see Section 6.2. To as-
sess their impact on sampling performance,
we conduct an in-domain experiment using
SANE trained on CIFAR-10 ResNet-18s, using
prompt examples from the train set and fine-tuning on CIFAR-10. We compare with
naïve sampling without Haloing and BN conditioning. The results in Table ?? show the
significant improvements achieved by both haloing and batch-norm conditioning. From
random guessing of naïve sampling, combining both improve to around 65%. Since
both methods aim at reducing noise for zero shot sampling, their effect is largest then
and diminishes somewhat during finetuning. Both methods not only improve zero-shot
sampling per se, but make the sampled models provide enough signal to facilitate sub-
sampling or bootstrapping strategies.
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6.B SANEArchitecture Details

Table 6.B.1: Architecture Details for SANE

Hyper-Parameter CNNs ResNet-18

tokensize 289 288
sequence lenght ∼50 ∼50k
window size 32 256, 512
d_model 1024 2048
latent_dim 128 128
transformer layers 4 8
transformer heads 4,8 4,8

In Table 6.B.1, we provide additional
information on the training hyper-
parameters for SANE on populations
of small CNNs as well as ResNet18s.
These values are the stable mean
across all experiments, exact values
can vary from population to popula-
tion. Full experiment configurations
are documented in the code.

6.C SANEEmbedding Analysis - Additional Results

This section contains additional results on SANE embedding analysis. In Figure 6.C.1,
we compare the eigenvalue distribution for different models with SANE embeddings.
Replicating the experiment setup from [116, 117], we train MiniAlexNet models on
CIFAR-10 varying only the batch size. With smaller batch size and longer training
duration, the eigenvalue distribution transitions from random with very few spikes, over
a bulk with many spikes, to heavy tailed. The embeddings of SANE appear to also become
more heavy tailed, but do not seem to pick up on the change from few to many spikes.

Figures 6.C.2 and 6.C.2 compare SANEwith different WeightWatcher metrics on
VGGs from pytorchcv [151] and the ResNet-18 zoo from the modelzoo dataset [150].
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Figure 6.C.1: Comparison between WeightWatcher features (top) and SANE (bottom). [116]
identify different phases in the eigenvalue spectrum of trained weight matrices. We replicate
the experiment setup and find ESDs similar to random (top left), bulk and spikes (top middle)
and heavy tailed (top right). We compare these against pairwise distances of SANE embeddings
of the same layer. While the distributions have a different shape, it appears to become more
heavy tailed going from random to heavy tailed.

Figure 6.C.2: Comparison between different WeightWatcher (WW) features (left) and
SANE (right). Features over layer index for VGGs from pytorchcv of different sizes. SANE shows
similar trends to WW, low values at early layers and a sharp increase at the end.
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Figure 6.C.3: Comparison between different WeightWatcher (WW) features (left) and
SANE (right). Features over layer index for Resnets from pytorchcv of different sizes. SANE shows
similar trends to WW, low values at early layers and a sharp increase at the end.

Figure 6.C.4: Comparison between WeightWatcher features (left) and SANE (right). Accuracy
over model features for Resnets and VGGs from pytorchcv of different sizes. SANE shows similar
trends to WW, low values at early layers and a sharp increase at the end.

149



Towards Scalable and Versatile Hyper-Representation Learning

Figure 6.C.5: Comparison between WeightWatcher features (left) and SANE (right). Accuracy
over model features for ResNets from the ResNet model zoo. Although SANE is pretrained in a
self-supervised fashsion, it preserves the linear relation of a globally-aggregated embedding to
model accuracy.
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6.D Model Property Prediction - Additional Results

In this section we provide additional details for Section 6.5.1. Table 6.D.1 shows full
results for populations of small CNNs.

Table 6.D.1: Property prediction on populations of small CNNs.

MNIST SVHN CIFAR-10 (CNN) STL

W s(W) SANE W s(W) SANE W s(W) SANE W s(W) SANE

ACC 0.965 0.987 0.978 0.910 0.985 0.991 -7.580 0.965 0.885 -18.818 0.919 0.305
Epoch 0.953 0.974 0.958 0.833 0.953 0.930 0.636 0.923 0.771 -1.926 0.977 0.344
Ggap 0.246 0.393 0.402 0.479 0.711 0.760 0.324 0.909 0.772 -0.617 0.858 0.307

Comparison to Previous Work

Here, we compare SANEwith previous work to disseminate the information contained
in model embeddings. The experiment setup in this paper is designed around the
ResNets, and therefore uses sparse epochs for computational efficiency. For consistency,
we use the same setup for the CNN zoos as well. The exact numbers are therefore not
directly comparable to Schürholt et al. [147]. To provide as much context as possible,
we approach the comparison from two angles:

(1) Direct comparison to the published results: to contextualize, we use the
(deterministic) results of weight statistics s(W ) to adjust for the differences in
setup. We mark the results for s(W ) from Schürholt et al. [147] as s(W )pp and
compare to their Ec+D where possible.

(2) Approximation of the effect of global embeddings: previous work used
global model embeddings, which we approximate by using the full model embed-
ding sequence. We therefore compare SANE+ aggregated tokens (as proposed in
the submission) to SANE+ full model sequence (similar to Schürholt et al. [147]).

The results in Tables 6.D.2, 6.D.3 and 6.D.4 allow the following conclusions:

(1) SANEmatches the performance of previous work: The only data available
for direct comparison is the MNIST zoo. Here, both in direct comparison and in
relation to s(W) cross-relating our results with published numbers, SANEmatches
published performance of Ec+D. On other zoos, Ec+D had similar performance
to s(W ). We likewise find SANE embeddings to have similar performance to s(W )

in our experiments.
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(2) SANE+ full sequence improves downstream task performance over the
SANE+ aggregated sequence: That indicates that SANE+ full sequence contains
more information for model prediction. However, both Schürholt et al. [147]
and SANEwith full sequence have the disadvantage that they do not scale. With
growing models, the representation learner of Schürholt et al. [147] and the input
to the linear probe of SANE+ full sequence grow accordingly. SANE+ aggregated
sequence does lose some information on small models, but scales gracefully to
large models and remains competitive.

Table 6.D.2: Property Prediction comparison to previous work on the MNIST-CNN model zoo.
We compare our linear probing results from weights W , layer-wise quintiles s(W ), embeddings
from SANE either aggregated into one embedding or using the full sequence to results previously
published in Schürholt et al. [147]. We mark their results for s(W ) as s(W )pp. Since the
experimental setup is not the same, the numbers of s(W ) do not match.

W s(W ) SANE aggregated SANE full sequence s(W )pp Ec+D

ACC 0.965 0.987 0.978 0.987 0.977 0.973
Epoch 0.953 0.974 0.958 0.975 0.987 0.989
Ggap 0.246 0.393 0.402 0.461 0.662 0.667

Table 6.D.3: Property Prediction comparison to previous work on the SVHN-CNN model
zoo. We compare our linear probing results from weights W , layer-wise quintiles s(W ), to
embeddings from SANE either aggregated into one embedding or using the full sequence. For
this zoo, previous results are not available.

W s(W ) SANE aggregated SANE full sequence s(W )pp Ec+D

ACC 0.910 0.985 0.991 0.993 n/a n/a
Epoch 0.833 0.953 0.930 0.943 n/a n/a
Ggap 0.479 0.711 0.760 0.77 n/a n/a

Table 6.D.4: Property Prediction comparison to previous work on the CIFAR-CNN(m) model
zoo. We compare our linear probing results from weights W , layer-wise quintiles s(W ), to
embeddings from SANE either aggregated into one embedding or using the full sequence. For
this zoo, previous results are not available.

W s(W ) SANE aggregated SANE full sequence s(W )pp Ec+D

ACC -7.580 0.965 0.885 0.947 n/a n/a
Epoch 0.636 0.923 0.771 0.879 n/a n/a
Ggap 0.324 0.909 0.772 0.811 n/a n/a
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6.E Model Generation - Additional Results

This section contains additional results from model sampling experiments, extending
Section 6.5.2. In Table 6.E.1, we show results on small CNNs transferring to a new task.
Similarly, Table 6.E.2 shows results on ResNet-18 models for task transfers. Lastly,
Tables 6.E.3, 6.E.4 and 6.E.5 contain additional results for transferring from ResNet-18
CIFAR-100 to ResNet34 and/or Tiny-Imagenet.

Table 6.E.1: Model generation on CNN model populations transfer learned on a new task. We
compare sampled models at different epochs with models trained from scratch and models
fine-tuned from the anchor samples.

Method SVHN to MNIST CIFAR-10 to STL-10

Epoch 0 Epoch 1 Epoch 25 Epoch 0 Epoch 1 Epoch 25

tr.fr.scratch ∼10 /% 20.6+-1.6 83.3+-2.6 ∼10 /% 21.3+-1.6 44.0+-1.0
pretrained 29.1+-7.2 84.1+-2.6 94.2+-0.7 16.2+-2.3 24.8+-0.8 49.0+-0.9
SKDE30 31.8+-5.6 86.9+-1.4 95.5+-0.4 n/a n/a n/a

SANEKDE30 40.2+-4.8 86.7+-1.6 94.8+-0.4 15.5+-2.3 24.9+-1.6 49.2+-0.5
SANE SUB . 37.9+-2.8 88.2+-0.5 95.6+-0.3 17.4+-1.4 25.6+-1.7 49.8+-0.6

Diversity of sampled models

An interesting question is whether sampling SANE generates versions of the same model.
To test that, we evaluate the diversity of samples generated with only a few few-shot
examples by combining the models to ensembles. The improvements of the ensembles
over the individual models demonstrate their diversity. This indicates that given very few,
early-stage prompt examples, sampling hyper-representations improves learning speed
and performance in otherwise equal settings. Additionally, we conducted experiments
with varying numbers of prompt examples, revealing that increasing the number of
prompt examples enhances both performance and diversity. Nonetheless, even a single
prompt example trained for just 2 epochs contains sufficient information to generate
model samples that surpass those derived from random initialization, see Table 6.E.5.
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Table 6.E.2: Model generation on ResNet-18 model populations transferred to a new task.
We compare sampled models at different transfer learning epochs with models trained from
scratch and models fine-tuned from the same anchor samples.

Epoch Method CIFAR-10 to CIFAR-100 CIFAR-100 to Tiny-Imagenet Tiny-Imagenet to CIFAR-100

0

tr. fr. scratch ∼1 /% ∼0.5 /% ∼1 /%
Finetuned 1.0+-0.3 0.5+-0.0 1.1+-0.2
SANEKDE30 1.0+-0.3 0.5+-0.1 1.0+-0.2
SANE SUB 1.0+-0.3 0.6+-0.0 1.1+-0.2
SANEBOOT 1.1+-0.2 0.5+-0.0 0.9+-0.2

1

tr. fr. scratch 17.5+-0.7 13.8+-0.8 17.5+-0.7
Finetuned 27.5+-1.3 25.7+-0.5 51.7+-0.5
SANEKDE30 26.8+-1.4 21.5+-0.9 40.2+-1.0
SANE SUB 26.4+-1.9 21.5+-1.0 40.63+-1.3
SANEBOOT 25.7_01.9 21.7+-1.0 40.9+-0.8

5

tr. fr. scratch 36.5+-2.0 31.1+-1.6 36.5+-2.0
Finetuned 45.7+-1.0 36.3+-2.5 52.6+-1.3
SANEKDE30 44.5+-2.0 36.3+-1.2 47.2+-3.3
SANE SUB 45.6+-1.2 35.8+-1.4 49.8+-2.3
SANEBOOT 43.3+-2.4 37.3+2.0 50.2+-3.4

15

tr. fr. scratch 53.3+-2.0 38.5+-1.9 53.3+-2.0
Finetuned 71.9+-0.1 63.4+-0.2 73.9+-0.3
SANEKDE30 71.8+-0.3 63.6+-0.2 73.4+-0.2
SANE SUB 72.0+-0.2 63.6+-0.3 73.5+-0.2
SANEBOOT 71.9+-0.3 63.4+-0.1 73.7+-0.3

25 tr. fr. scratch 56.5+-2.0 43.3+-1.9 56.5+-2.0
50 tr. fr. scratch 70.7+-0.4 57.3+-0.6 70.7+-0.4
60 tr. fr. scratch 74.2+-0.3 63.9+-0.5 74.2+-0.3

Table 6.E.3: Few-shot model generation for a new task: Sampling ResNet-34 models for CIFAR-
100. SANEwas pretrained on CIFAR-100 ResNet-18s, 5 samples are drawn using subsampling.
To get prompt examples, we train 3 ResNet-34 models on CIFAR-100 for 2 epochs to a mean
accuracy of 26 %.

CIFAR100 ResNet-18 to ResNet-34

Epoch Method 5 Epochs 15 Epochs

0 tr. fr. Scratch 1.0±0.1 1.0±0.1
SANE 1.6±0.3 1.6±0.3

1 tr. fr. Scratch 12.4±1.0 12.9±0.8
SANE 16.8±0.7 23.1±0.3

5 tr. fr. Scratch 49.5±0.6 36.2±1.7
SANE 51.9±0.6 37.8±1.4

15 tr. fr. scratch 68.8±0.4
SANE 69.3±0.3

SANEEns. 53.5 71.3
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Table 6.E.4: Few-shot model generation for a new task and architecture: SANE trained on
CIFAR-100 ResNet-18s used to generate ResNet-34s for Tiny-Imagenet. 5 samples are drawn
using subsampling. To get prompt examples, we train 3 ResNet-34 models on Tiny-Imagenet
for 2 epochs to a mean accuracy of 28.5 %.

ResNet-18 CIFAR100 to ResNet-34 Tiny-Imagenet

Epoch Method 5 epochs 15 epochs

0 tr. fr. Scratch 0.5±0.0 0.5±0.0
SANE 0.5±0.1 0.6±0.2

1 tr. fr. Scratch 10.5±1.4 11.9±1.9
SANE 13.3±0.5 18.5±0.7

5 tr. fr. Scratch 47.2±0.7 31.1±1.7
SANE 50.6±0.3 31.6±0.6

15 tr. fr. Scratch 61.9±0.3
SANE 62.7±0.3

SANEEns. 52 65.1

Table 6.E.5: Sampling ResNet-34 models for CIFAR-100. SANEwas pretrained on CIFAR-100
ResNet-18s, 5 samples are drawn using subsampling. To get prompt examples, we train a
single ResNet-34 model on CIFAR-100 for 2 epochs to an accuracy of 26 %.

CIFAR100 ResNet-18 to ResNet-34

Epoch Method 5 Epochs 15 Epochs

0 tr. fr. Scratch 1.0+-0.1 1.0+-0.1
SANE 1.5+-0.2 1.6+-0.1

1 tr. fr. Scratch 12.4+-1.0 12.9+-0.8
SANE 16.9+-0.7 19.4+-0.2

5 tr. fr. Scratch 49.5+-0.6 36.2+-1.7
SANE 51.5+-0.3 38.6+-1.6

15 tr. fr. scratch 68.8+-0.4
SANE 69.1+-0.1

Ensemble SANE 51.8 70.2
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Applied AI Software

Throughout the preparation of this thesis, the Generative Pretrained Transformer (GPT) 4 models by
OpenAI [133], specifically version ‘gpt-4-1106-preview’ with 128k tokens context and training data up
to April 2023 [134], served as an auxiliary tool for spell checking, and reviewing language and grammar.
Additionally, the Grammarly software [77] was used to assist in the proofreading and refinement of
the thesis. The inclusion of GPT-4 and Grammarly aimed to elevate the linguistic quality of the
manuscript, facilitating a clearer and more coherent presentation of the research.
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