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ABSTRACT:  
Autonomous driving has made significant progress in recent years, but adverse weather 
conditions still remain a major challenge for perception and decision-making algorithms. 
This work presents a multimodal data acquisition prototype designed to enhance 
autonomous vehicle perception in challenging environments such as fog, heavy rain, and 
snow. The system is mounted on a Dacia Duster and features a diverse sensor suite 
including visible, Short-Wave Infra-Red, thermal, and polarimetric cameras with a solid-
state LiDAR and automotive radars. The whole system is calibrated with dedicated 
calibration boards developed on purpose to enable data fusion across all modalities. Initial 
results demonstrate the effectiveness of our approach, showing that critical environmental 
features can be detected reliably across various weather conditions. Future work includes 
the release of a fully annotated multimodal dataset to support further research in adverse 
weather perception. 
 Keywords: autonomous driving, multimodal imaging, data fusion, LiDAR, SWIR, 

thermal imaging, artificial intelligence, data set, adverse weather conditions 

 

1.- Introduction 
Autonomous driving has emerged as one of 
the most transformative areas in modern 
transportation, promising to redefine mobility 
and enhance road safety. The development of 
autonomous vehicles (AVs) relies on 
advanced sensing and perception systems that 
allow the vehicle to understand its 
environment in real-time. As the demand for 
safer, more efficient transportation grows, the 
autonomous driving industry has become a 
highly competitive sector, attracting 
significant investments and leading to diverse 
approaches in vehicle design, data acquisition, 
and perception technologies. Companies 
across the world are developing different 
strategies to address the unique challenges of 
autonomous navigation, from environmental 

perception to decision-making and control to 
get an edge over their competitors. 
A crucial element in these advancements is 
the data acquisition systems employed by 
AVs, as they are in charge to feed the machine 
learning models that power autonomous 
driving. While some companies focus on 
integrating multiple sensor modalities, others 
have opted for more specialized approaches, 
focusing on specific data types to optimize 
performance. 
One clear example of a specialized approach 
is Tesla, Inc.’s vision-centered approach. 
Their sensor suite consists on having multiple 
cameras to get a 360º field of view (FOV) 
around the vehicle. Tesla, Inc.’s “Autopilot” 
system detects objects and estimates depth 
with only images and sophisticated neural 
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networks. While this system maintains 
reduced costs, as visible cameras are generally 
cheaper than other sensors like Light 
Detection And Ranging (LiDAR), it 
compromises safety and robustness in certain 
environmental conditions where visible 
cameras might fail, like fog or low light. 
In contrast, companies like Waymo, LLC. 
have embraced a multimodal approach, 
integrating LiDAR, radar, and visible cameras 
to enhance perception accuracy and 
robustness. For instance, low-light scenarios 
will not present as much problems with this 
configuration as LiDAR and radars, being 
active sensors, do not rely on external 
illumination. However, low-visibility 
scenarios such as fog, heavy rain, and snow 
will still compromise the safety of the ride. 
While rare in some environments, these 
adverse weather conditions present a big 
problem to tackle in order to obtain full 
autonomous driving, not to mention countries 
where such conditions are frequent.  
This paper explores the development of a 
multimodal autonomous driving prototype 
designed to produce a rich dataset for research 
and development of novel autonomous 
driving perception algorithms under adverse 
weather conditions. By integrating 
unconventional sensors, such as thermal and 
polarimetric cameras or solid-state LiDAR, 
alongside more traditional modalities like 
radar and visible cameras, the prototype aims 
to create a more diverse and accurate dataset 
for testing and enhancing autonomous driving 
systems. Through the careful collection and 
fusion calibration of such multimodal data, 
this approach has the potential to offer new 
insights into the performance and reliability of 
autonomous systems under any weather 
condition. 

2.- State-of-the-art Data sets for 
autonomous driving 

2.1 KITTI 
The KITTI[1] dataset is one of the most 
widely known benchmarks in autonomous 
vehicle research. It is considered the pioneer 
of modern autonomous driving datasets as it 
was the first to include 3D laser scanner and 
3D annotations in real live scenarios. They 
equipped a Volkswagen Passat (B6) with: two 

color and two grayscale visible cameras with 
a big horizontal FOV, a 64-beam spinning 
LiDAR with a maximum range of 100m, and 
a GPS/IMU localization system. The set up 
has been calibrated to enable data fusion. The 
data set includes good-weather, urban scenes. 

2.2 Waymo Open 
Released in 2019, Waymo-Open[2] is 
Google’s approach to autonomous driving. 
Waymo-Open is presented as the largest and 
most diverse autonomous driving dataset. 
Figure 1 shows the sensor layout and 
coordinate system of Waymo’s data 
acquisition prototype. Their prototype counts 
with: five rotating LiDAR sensors, five high 
resolution pinhole cameras. The sensors are 
precisely calibrated and synchronized to 
enable data fusion and capture the vehicle’s 
surrounding environment. The data is 
captured at different times and in different 
weather conditions, even though sunny scenes 
are the most common and visibility is always 
clear, mostly in urban scenes. 

 
Fig.1: Waymo’s data acquisition prototype for 

Waymo Open[2]. 

2.3 NuScenes 
Introduced by Motional in 2019, nuScenes[3] 
it is largely considered the reference dataset 
for autonomous driving. The data was 
collected in Boston (USA) and Singapore, 
offering challenging scenes with complex 
traffic dynamics and dense urban structures. 
The data is collected at different times of the 
day (day and night) and weather conditions 
(sun, light rain, and clouds). However, there is 
no sign of adverse weather conditions such as 
heavy rain, fog, or snow. NuScenes uses an 
extensive sensor suite mounted on a Renault 
Zoe custom data acquisition prototype as 
shown in Fig 2. The vehicle is equipped with: 
six RGB visible cameras that cover 360º of 
FOV, one 32 beam spinning LiDAR, five 
frequency modulated continuous wave 



   
  
 
 

(FMCW)  radars, and one GPS/IMU system 
for localization. All sensors are synchronized 
and calibrated to enable data fusion. 

 
Fig. 2: NuScenes’[3] data acquisition prototype. 

2.4 Seeing Through Fog (STF) 
Previous data sets only focus in good 
environmental conditions. Even nuScenes’[3] 
and Waymo’s[2] rainy scenes have fairly 
good visibility. As a result, existing 
autonomous systems perform well under 
normal imaging conditions but fail under 
adverse weather due to the bias toward clear 
scenes. Mercedes-Benz alongside Ulm and 
Princeton universities tackled the issue 
presenting the first multimodal data set under 
adverse weather conditions [4]. To overcome 
the challenges of adverse weather conditions, 
they presented a sensor suit sensible to the 
visible, mm-wave, Near Infra-Red (NIR), and 
Far Infra-Red (FIR) band. They used: two 
visible stereo cameras, a gated NIR camera, a 
FMCW radar, a 64-beam spinning LiDAR, a 
thermal camera, and an IMU. The data set 
includes urban and highway scenes of 
northern Europe. 

3.- Design and Sensor Suite 
As we have just seen, there is no publicly 
available data set except for STF[4] that has a 
wide range of sensors and is tested under 
harsh environmental conditions. Therefore, 
this work intends to fill the gap in the 
literature by proposing developing a design 
for robust multimodal autonomous driving 
under adverse weather conditions that 
complements the work done by STF[4]. Our 
proposed sensor suite can be found in Fig 3. 
We equipped a Dacia Duster with the 
following sensors: three RGB high-resolution 
visible cameras, one short-wave infra-red 
(SWIR) camera, one thermal camera, one 
polarimetric camera, two radars, one solid-
state LiDAR, and a GNSS/INS system. 

 
Fig. 3: Design of the developed data acquisition 

prototype. 

 
Fig. 4: Cameras and LiDAR assembled on the 

vehicle. 
The RGB cameras are all Allied Vision 
Alvium G1-319c. Two of them have a wide 
FOV of 60º by 50º that give a combined 115º 
of horizontal FOV of the vehicle. They have 
part of their FOVs overlapped to enable stereo 
imaging, if desired. The other RGB camera 
has a narrow FOV of 20º by 17º that focuses 
on small far objects in the frontal direction of 
the car. The SWIR camera is a Basler Ace 2X 
a2A640-240gmSWIR sensible in the range 
from 400nm to 1700nm. This region has a 
remarkable penetration through turbid media 
such as fog or smoke. The camera is able to 
see the lights of cars in dense fog 
environments before than visible cameras. 
Both radars are Smartmicro sensor UMRR-96 
Type 153 Automotive, they operate in the 
range of 76-81GHz and have a nominal range 
of up to 120m with 130º of FOV. This model 
aims at short to medium range and very wide 
horizontal angular coverage, providing short, 
medium- and long-range modes. It is almost 
unaffected by bad weather. The thermal 
camera is a Seek Thermal C304SP that 
operates in the range from 7.8µm to 1400µm 
with a FOV of 56º x 42º. The polarimetric 
camera is a LUCID Vision Labs Phoenix™ 
PHX050S1-QC. This camera gives RGB 
information as well as linear polarization 



   
  
 
 

intensity for 0º, 45º, 90º, and 135º. The last 
two cameras come together with a solid-state 
MEMS LiDAR with 60º by 40º of FOV 
produced by Beamagine S.L. in a multimodal 
sensor suite called L3CAM. Solid state 
LiDARs have more resolution and range than 
their spinning counterparts. However, they 
cannot have a 360º of horizontal FOV. Thanks 
to this sensor we can also study how a higher 
point cloud resolution affects feature 
extraction and detection in state-of-the-art 3D 
object detection neural networks. 
Additionally, the prototype also counts with 
an Anello EVK, a GNSS unit used for 
localization and odometry. 

Table 1: Failure mode comparison of our 
prototype. 

 Sun Night Rain Snow Fog 
LIDAR   ~ ~ ~ 
RADAR      

RGB   ~ ~  
POL   ~ ~ ~ 

LWIR ~  ~ ~  
SWIR  ~    

 
While our system has considerably more 
imaging modes than other data acquisition 
prototypes, our FOV is restricted to just the 
frontal part of the vehicle. Nevertheless, there 
is a FOV of 60º by 20º where all modalities 
overlap. This gives the system a lot of 
redundancy and robustness against adverse 
weather conditions. For example, if the 
prototype is driving in low-light conditions, 
the visible, polarimetric, and SWIR camera 
will not produce good data, yet, we can still 
use the thermal camera combined with radars 
and the solid-state LiDAR to identify the 
environment well enough. Table 1 shows a 
comparison of the performance of each sensor 
in our sensor suite. It can be seen that there is 
always at least a 2D sensor and a 3D sensor in 
good performance regime independently of 
the weather condition. 

4.- Data Fusion 
In order to fully exploit the advantages of our 
multimodal configuration we have to be able 
to perform data fusion among the imaging 
modes. Data fusion requires two key 

components to be implemented: temporal 
synchronization and spatial registration.  
For temporal synchronization, we let each 
sensor record data at their maximum frame 
rate and temporally pair the data with our 
main sensor, the solid-state LiDAR, via best 
effort synchronization. With that strategy, we 
achieve temporal differences of less than 
50ms between every sensor with respect to the 
main sensor per frame. The solid-state LiDAR 
used has a frame rate of 7Hz.  
On the other hand, spatial registration has 
been carried out using [5]. Common reference 
features have to be found in every mode with 
the solid-state LiDAR. This is not trivial as 
each sensor has its own sensitivity range and 
they may not share it with other sensors in the 
system. Therefore, we designed two different 
calibration boards. One for visible, thermal, 
and LiDAR calibration and another for 
visible, radar, and LiDAR calibration. 

    
Fig. 5: Visible, thermal, LiDAR calibration 

board. Left: complete board. Right: 
nichrome wire under the absorbing tape. 

The visible-thermal-LiDAR calibration board 
(Fig.5) consists of a 5 by 7 squarred 
checkerboard. Each square is made of a tape 
that greatly absorbs 1064nm light, so no 
returns from the LiDAR are obtained from 
them. Behind the tape, there is a nicrom wire 
that greatly heats up when current passes 
through it, making the squares visible for the 
thermal camera. The intersection between the 
squares can be obtained through classical 
image processing algorithms. The later board 
cannot be used to calibrate the radars as the 
metallic wire used to detect the pattern with 
the thermal camera interferes with the radar 
waves. As a result, another board was 
designed adapting the previous calibration 
board ideas of [6]. This time, we generate a 
similar, smaller pattern with the same 
absorbing tape to be able to detect the board 
with both, visible cameras and the LiDAR. 



   
  
 
 

The board is made of Styrofoam, which is 
invisible for radar waves. Behind the board a 
metallic retroreflector is placed to force a 
high-intensity return from the radar. The 
board can be seen in Fig. 6. 

     
Fig.6: Visible, radar, LiDAR calibration board. 

Left: frontal part of the board. Right: rear, 
where the retroreflector is placed. 

By taking multiple captures of each board 
independently we can obtain the intrinsic and 
extrinsic parameters for every sensor, 
registering the different imaging modes. 

5.- Results 
Once the prototype was finally assembled and 
all sensors were calibrated, we drove it around 
different environments in search of diverse 
weather conditions. We also tested how data 
fusion was consistent even with high dynamic 
scenes. In Fig. 7 a point cloud projected onto 
an image can be seen. We can see how the 
points coincide with the shapes of the objects 
on the image.  

 
Fig. 7: LiDAR point cloud projected onto an RGB 
image in a dynamic scene. 
 
Figures 8-10 show captured samples under 
different weather scenarios. A mosaic of six 
images is presented. The top row consists of 
the wide left, narrow, and wide right images 
respectively. Below, thermal, polarimetric, 
and SWIR. After that a bird-eye-view of the 
LiDAR point cloud is presented. Fig. 8 
consists on an urban scene with clear vision. 
Every sensor performs well under these 
conditions. Differently, Fig. 9 shows a road 
scene with dense fog. It can be seen how 
visible cameras are really affected by the 

condensed water in front of them. The thermal 
camera also yields poor data as infra-red light 
is greatly absorbed by water. LiDAR 
detectivity drops significantly, however, a 
traffic light visible on the narrow image can 
still be detected at a high distance. SWIR, on 
the other hand, still presents a well-defined 
image with good detectivity of the van’s 
frontal lights. Finally, Fig. 10 presents an 
urban scene while snowing. Again, visible 
cameras struggle to produce good results, 
while the SWIR and the thermal cameras can 
still operate properly. Especially the thermal 
camera detecting pedestrians, as they are way 
hotter than the rest of the snowy environment. 

 

 
Fig. 8: Urban sample with good visibility. 
  



   
  
 
 

 

 

 
Fig. 9: Road sample with dense fog. 

 

 
Fig. 10: Urban sample while snowing. 

6.- Conclusions and future work 
A multimodal data acquisition prototype 
specially designed to be able to explore 
perception under adverse weather conditions 
has been developed and described. 
Furthermore, two novel multimodal extrinsic 
calibration boards have been developed to 
enable data fusion across all sensors. Results 
show that relevant features from the 
environment can be obtained regardless of the 
weather conditions, and that each sensor 
presents failure modes. As future work, a 
multimodal annotated data set is currently 
under development and is expected to be 
publicly published later this year. 
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