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ABSTRACT

Fog dramatically compromises the overall visibility of any scene, critically affecting features such as objects’
illumination, contrast, and contours. The decrease in visibility compromises the performance of Computer
Vision algorithms such as pattern recognition and segmentation, some of them very relevant to decision-making
in the rise of autonomous-driven vehicles. Many dehazing methods have been proposed. However, to the best of
our knowledge, all currently used metrics do compare the defogged image to its ground truth, usually the same
scene on a non-foggy day, or estimate physical parameters from the scene. This hinders progress in the field, as
obtaining proper ground truth images is not always possible and becomes costly and time-consuming because
physical parameters greatly depend on the scene conditions. This work aims to tackle this issue by proposing
a real-time operating defogging network that only takes an RGB image of the fogged scene as input, performs
the defogging, and uses a contour-based metric for Single Image Defogging evaluation even when the ground
truth is not available, which is the most common situation. The proposed metric only requires the original hazy
image and the image after the defogging procedure. We trained our network using a novel two-stage pipeline
with the DENSE dataset and compared our method and metric with currently used metrics and other defogging
techniques with the NTIRE 2018 defogging challenge to prove their effectiveness.

Keywords: Image defogging, Image evaluation metrics, visual enhancement evaluation, edge detection, deep
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1. INTRODUCTION AND STATE-OF-THE-ART

Adverse weather conditions such as fog, smoke, or haze critically compromise the visibility of any scene. Im-
age processing algorithms perform poorly under such conditions. Furthermore, given the rise and advances in
autonomous vehicles, there is a need to achieve a processing solution that reduces the effect of bad weather
conditions, as the reduction of visibility can directly affect the judgment in an autonomous vehicle system.
The process of enhancing the visibility in bad weather conditions is called defogging. The quantification of the
defogging level attained is not an obvious process.

Nowadays there are several approaches to defog an image. Some of them are active and rely on using polarized
light to get more information about the scene, or use non-visible cameras in the longer IR bands. There is also
interest in applying Deep Neural Networks (DNNs) to these problems. Hence, this work offers a state-of-the-art
solution to the fog problem in Computer Vision (CV) that relies on the information of an RGB image and the use
of a DNN to be used in real-time applications. Later on, we will propose a metric to evaluate the improvements
obtained by the DNN. Let us first understand the physics of the problem and how DNNs might be a solution
for it.
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Figure 1. Image degradation model. Direct transmission correspond to the light coming from the object that has been
attenuated due to the fog. Air-light correspond to the light that has been scattered directly from the fog particles.

1.1 Light scattering in fog

Fog is a common phenomenon that consists on tiny liquid water particles suspended in the air that absorb
and scatter light resulting in reduced luminance and contrast, producing an overall degradation of the image.
Imaging models through haze have been widely studied.1 According to the image degradation model, the radiance
reaching a detector in a foggy environment is a sum of two contributions, the direct transmission, D(x, y) and
the diffuse air-light field A(x, y),

I(x, y) = D(x, y) +A(x, y). (1)

As seen in Fig. 1, D(x, y) contains information of the original scene, L(x, y). Nevertheless, this information is
still affected by the transmittance of the atmosphere t(x, y). So,

D(x, y) = L(x, y) · t(x, y). (2)

Transmittance can be described as an attenuation that depends on the distance between the object and the
observer, t(x, y) = e−βd(x,y), where, d(x, y) is the distance between the object and the observer and β the
attenuation coefficient of the atmosphere, which may vary depending on the weather conditions. On the other
hand, the diffuse air-light field can be understood as,

A(x, y) = A∞[1− t(x, y)], (3)

where A∞ is the radiance of an object at infinite distance. Knowing that, combining equations 1 , 2 and 3 we
can estimate the real defogged image L(x, y) as follows,

L(x, y) =
I(x, y)−A(x, y)

1−A(x, y)/A∞
. (4)

Therefore, the key to obtaining the defogged image is to properly estimate both t(x, y) and A∞. Unfortunately,
estimating these parameters is not an easy task as they greatly depend on the conditions of the scene.
Some alternative strategies have been proposed to achieve this. Polarized light has been proposed to physically
achieve a defogged image.2 There are different polarimetric methods for dehazing. Schechner2 presented a
method using polarized-difference imaging which was quite successful. It was based on the premise that it exists
a best (I∥) and worst (I⊥) polarization state when it comes to transmission through fog. The parameter A∞ is



Figure 2. Schematic of our Network. The two components can be seen, the Generator with a U-Net schematic and the
D, an encoder with Gaussian noise layers to decrease its performance.

computed as, A∞ = 1
2 (I∥(sky)+ I⊥(sky)). The issue with this method relies on the difficulty of finding a proper

sky pixel in the image, and the acquisition of the best and worst polarization states, which often needs be done
sequentially.

1.2 Deep Neural Networks

DNNs are Artificial Neural Networks (ANN) with many hidden layers between the input and output layers.
These networks have been vastly used in CV and image processing among other fields. Due to the big number
of connections between layers and neurons and the non-linear nature of the network, DNNs can find patterns
from very complex data. The advancement in the Single Image Defogging (SID) field is usually evaluated in the
NTIRE workshop.3 This workshop proposes challenges in image and video processing in several fields, usually
including homogeneous and non-homogeneous fog removal among the topics of interest. In these challenges,
some research groups took advantage from previous information on the image and tried to evaluate the natural
parameters (air-light and transmission map) through deep learning techniques.4 Other groups took advantage
of the generative capabilities of DNNs and used them to directly generate a defogged image from a foggy
one without estimating any physical parameter.5 The most common model used is based on the Generative
Adversarial Network (GAN).6 This network created a big impact in the field due to its ability to capture the
training data distribution and generate new data from it. These models are made of two different networks, a
Generator (G), and a Discriminator (D), and their usefulness arise from the adversarial competition between
them. On the one hand, the main purpose of G is to produce “fake” data that resembles the training data.
On the other hand, D ’s job is to identify if the input data is “real” or “fake”. By “real” one means that it is
part of the training dataset, and by “fake” that it is generated by G. During training, G continuously tries to
fool D by generating better representations of the training data while D tries to adapt to these changes. GANs
are extremely useful when it comes to generating “fake” data. The competition between G and D is done by
a minmax function, where G wishes to minimize a cost function, whereas D tries to maximize it. Ideally, by
the end of the training, this cost function should tend to 1

2 , as the probability of D getting the right output is
completely random. At this point, our generated “fake” data should be indistinguishable from the “real” one.

The common minmax function between G and D is,

minmax V (D,G) = log(D(x)) + log(1−D(G(z))) (5)

Here, x represents the data of an image. Therefore, D(x) is the probability that the image is “real”, that we
wish to be high, as we expect D to correctly guess “real” images as “real”. On the other hand, z represents a
latent vector. In the case that the input of G is also an image, then z and x would have the same dimensions.
Knowing that, G(z) is, therefore, a generated “fake” image. Then, D(G(z)) is the probability that D guesses a
“fake” image as “real”. Here is where the competition arises as G tries to bring this probability up, whereas D
tries to bring it down.



1.3 Defogging metrics

In order to evaluate the effectiveness of the defogging networks, classical image processing metrics such as the
Structural Similarity Index (SSIM) or the Peak Signal to Noise Ratio have been classically used to compare the
defogged image with a Ground Truth (GT) of the scene. Nevertheless, classical CV algorithms for evaluation,
as the mentioned above, perform poorly when it comes to quantifying an enhancement in the scene’s visibility.
Interestingly, these metrics need always a GT image (that is, the image of the same scene without fog) to be
implemented. Needless to say, obtaining ground truth images in adverse weather conditions is costly, time-
consuming and, often, simply unfeasible. In natural conditions fog is a time-variant and complex weather
phenomenon. Reproducing the same scene for acquiring images without fog but with equivalent luminance,
positioning of the objects, etc, is a very complex task in practice. Thus, research is often based on artificial
fog generation in rather controlled environments, usually large-scale fog chambers. However, such artificially
generated fog is not fully equivalent to natural fog in terms of homogeneity and distribution.7 This problem is
especially sensitive with DNNs because they need huge datasets to achieve good results and avoid overfitting.
Even though there exist defogging DNNs which are trained in an unpaired manner,8 the problem still perseveres
when it comes to validation, as the most used evaluation metrics require a ground truth for comparison.

This is why there has been interest in defining a metric that properly defines a quantitative enhancement in a
defogging procedure. There are different approaches used for evaluation of defogging algorithms. We can divide
the evaluation methods into three groups.9 The first two are called full-reference image quality assessment (FR-
IQA) and no-reference image quality assessment (NR-IQA). The first group, FR-IQA, needs a ground truth
image to evaluate quantitatively the defogging result. This is the case of SSIM and PSNR. On the contrary,
NR-IQA metrics either do not need a reference or do not use a fog-free ground truth image for comparison.
Our proposed metric falls into this category. The third group simulates hazy images from clear images based on
Koschmieder’s law10 and then employs FR-IQA metrics to evaluate dehazing algorithms.

Hautière et. al.11 and Pomerleau et. al.12 presented different NR-IQA methods to evaluate the attenuation
coefficient of the atmosphere by means of a single camera on a moving vehicle. Nevertheless, their method cannot
be used as metric for a general single image visibility evaluator, as Pormeleau et. al. needed multiple images of
the scene and Hautière et. al. required a road and the sky to be present in the scene.

A different NR-IQA method was presented by Liu et. al.13 and consisted on the analysis of the histogram
of the image on the HSV colourspace. First, the image is converted from the RGB colourspace to HSV. Then,
fog detection is achieved by analyzing different features of the histogram of each channel: Hue (H), Saturation
(S), and Value (V). They stated that the overall value of the three channels decreased due to scattering resulting
from the fog, so the distribution was modified in presence of fog. Feature extraction of each histogram was
performed by adding the values of the pixels of the image and normalizing to the number of pixels different of 0
in the channel. After that, a classification into different visibility categories was done by comparing the results
obtained from the histogram with some empirical values. Even though Liu et. al. claimed good results with this
method there is certain subjectivity in the choice of values of the thresholds for the classification.

Li et. al.14 compared the results of two FR-IQA (SSIM and PSNR) with two NQ-IQA methods (spatial-
spectral entropy-based quality - SSEQ)15 and blind image integrity notator using DCT statistics (BLIINDS-II)16).
However, their results do not bring to a general conclusion about which IQA method has a better judgement. Be-
sides, BLIINDS-II16 is based on the statistical behavior of a group of 100 people, so there is inherent subjectivity
in the metric. Another case that uses statistical behaviour of human judgement of foggy scenes is Liu’s et. al.17

Fog-relevant Feature based SIMilarity index (FRFSIM).

Also, Choi et. al.18 presented a reference-less prediction of perceptual fog density and perceptual image
defogging based on natural scene statistics and fog-aware statistical features. Their proposed model, Fog Aware
Density Evaluator (FADE), predicts the visibility of a foggy scene from a single image without reference to a
corresponding fog-free image and without being trained on human-rated judgments. FADE only makes use of
measurable deviations from statistical regularities observed in natural foggy and fog-free images. Even though
FADE performs well in general scenarios, the usage of statistical data could introduce an unwanted bias that
could lead to a poor judgement of some scenarios. Apart from that, they present a single image defogging
network called DEFADE. More recently, Chen et. al.19 presented a visibility detection algorithm of a single fog



image based on the ratio of wavelength residual energy. Nevertheless, their algorithm uses the transmisivity
map, which is obtained by estimating certain atmospheric parameters.

Other approaches have been trying to fix the method using edge detection metric evaluation,20 as we propose.
However, they are mostly focused on the evaluation of the edge detection method rather in an improvement of
the visibility of a scene by gradient comparison. Moreover, these metrics require a ground truth edge image for
a proper evaluation.

Currently, the most used metric in defogging challenges is SSIM.21 This well-known metric takes into account
different aspects of an image and directly compares them with a sample image. SSIM basically focuses on
contrast, luminance and structure. In fact, these are some of the most affected image features when fog is
present in a scene. Nevertheless, defogging techniques, usually, do not try to completely recreate the original
image but rather to produce an enhancement in the visibility of the fogged image by adjusting luminance,
contrast, and other aspects of the scene. This could lead to a defogging procedure being heavily punished for not
being similar enough to its ground truth even if the defogging results are good. Still, the main drawback of the
metric for defogging evaluation is the need of a ground truth. As mentioned earlier, obtaining a ground truth
image of a natural foggy scene is difficult, and the issue becomes more relevant when DNNs are introduced.

Hence, this work presents a state-of-the-art fast DNN architecture for SID of natural scenes capable of
defogging images in real time. Besides, we also present a novel gradient-based metric for SID that needs neither
a GT image of the scene nor an evaluation of the physical parameters of the image. The proposed metric has
been compared with SSIM and other FR-IQA and NR-IQA metrics on the O-Haze22 dataset with some results
of the NTIRE 2018 defogging challenge.3

2. METHOD

2.1 Our Defogging GAN

2.1.1 Our Generator

The G gets data as input and generates “fake” data from it. The input dimensions do not need to be equal to
the output dimensions. Nevertheless, the data that generates G needs to be of the same type and with the same
dimensions as the “real” data we feed into the D. The hidden layers of the G may vary depending on the task.
Our architecture is based on the U-Net23 structure. To fully understand the U-Net structure we have to take a
look at Auto-Encoders (AE). An AE is a type of ANN that is used to learn efficient codings out of unlabeled
data i.e. can do unsupervised learning. This means that AEs can reduce (encode) the information in the input
data and amplify it (decode) to retrieve the original data. Obviously, during the process, some information is
lost and the output does not exactly match the input. Nevertheless, the important features of the input are
usually preserved. An AE can be understood by the combination of an encoder and a decoder. The U-Net, then,
maintains the AE structure and adds connections between the layers of the encoder and the decoder. These
connections help to transmit the general structure of the input data preserving more information about it. This
is a requirement in our application as we aim to defog an image without changing any details, or adding new
features, into it.

Figure 3 shows the architecture of our G. One can identify three main stages in the network: the encoder,
the middle stage, and the decoder. The encoder part gets as input a 128 × 128 colored image and reduces its
dimensions with convolutional and max pooling layers. The middle stage consists of performing two convolutional
layers. Finally, the decoder stage gets the latent vector from the middle stage and recovers the input image
dimensions by performing transverse convolutional layers. Some very important aspects of our network are the
concatenate and dropout layers. These operations help to maintain the details and general structure of the input
image. GANs are often used to generate completely new images with generated details. We cannot afford to
generate “fake” objects such as cars, traffic signals or people on the scene as our main purpose for defogging is to
effectively increase the performance of CV algorithms that would ultimately execute an action in an autonomous
vehicle. Executing an action due to a ghost object can be very dangerous, so a lot of effort has been put to make
sure our network does not introduce ghost features.



Figure 3. Generator architecture. The arrows represent the different layers applied: Convolutional (Blue), Max Pooling
(Red), Dropout (Yellow), Convolutional Transpose (Green), and Concatenate (Black). Also, each convolutional layer had
a ReLU activation function.

2.1.2 Our Discriminator

The D takes two sets of data, the “real” one and the “fake” generated by the U-Net. Randomly, we deliver these
two sets of data to D. The input of D has to be properly labeled, i. e. indicating whether the image is ”real” or
”fake”. The output layer of the D has to be a sigmoid (or equivalent) that transforms the previous data into a
single scalar that represents the probability of the input data being “real” or “fake”, between 0 and 1.

Figure 4 shows the architecture of our D. An image enters the network, its dimensions are reduced through
convolutions until we get a flat vector in the latent space. After that, we apply one last dense layer with a sigmoid
activation to retrieve a probability. We decided to add dropouts and Gaussian noise layers to the typical classifier
structure. This may seem counterproductive as it lowers the detection capability of our network. However, one
has to look at the bigger picture here and consider the network as a whole, including G. D ’s task, a binary
classification, is way simpler than the defogging task performed by G. This led to D quickly understanding G ’s
behavior and effectively identifying every image as “real” or “fake”. Having a more advanced D led to a worse
apprenticeship of G. By worsening D, we achieved a better joint learning process and better results.

Figure 4. Discriminator architecture. The arrows represent the different layers applied: Convolutional (Blue), Leaky
ReLU (Purple), Dropout (Yellow), Gaussian noise (Orange), Flatten (Brown), Dense (Cyan), and Sigmoid (Pink).

2.1.3 Our training loop

One of the most complex parts of adjusting the GAN is the training procedure. Both G and D learn from
each other at each step. This symbiotic relationship only produces proper results when a fine equilibrium is
achieved between the evolution rate of both networks. If G is significantly more advanced than D it might find
patterns that fool D even if the results are not good. On the contrary, if D is far more advanced, G will not
have sufficient information to produce good results and will output random noise. We also noticed that trying to
defog an image directly from the initial weights is a too complex task for our network, which quickly saturated at
low epochs. To avoid saturation, we thought of a more complex training loop. First, we trained our network to
properly replicate fog-free images. This task is way easier than trying to defog the image from the beginning so
our network completed the task with ease. This step was also useful for learning not to generate ghost objects.
After that, we re-train our network from these weights to perform defogging.
A general training loop for a GAN can be seen in Algorithm 2. In our case, we took k = 3 for the reconstruct
stage and k = 1 for the defogging stage as it led to the best results. The difference in training between the
replicate stage and the defog stage only relies on the input data and its labeling. For the replicating stage, only



fog-free images enter the G whereas both fog-free and generated images are taken as input for D. In D, fog-free
images are labeled as real and generated images as fake. On the other hand, for the defogging stage, only fogged
images enter G whereas fogged, fog-free, and generated images enter D. Only fog-free images are labeled as
“real”, the others, fogged and the generated defogged images, are labeled as “fake”. The initial weights for the
replicate stage are taken from a glorot uniform distribution. Both networks have an Adam optimizer with an
initial learning rate of 7 · 10−5. The G for the defogging stage has an initial learning rate an order of magnitude
smaller for better refining of the images. The first learning stage takes us to a local minimum, a smaller learning
rate for the second stage results in a fine tuning of the results, i. e. a realistic defogged image with the same
features as the original.

Algorithm 1: General training loop for GANs.

for Number of training iterations do
for k steps do

◦ Sample batch m of real labeled data;
◦ Sample batch m of fake labeled data;
◦ Update the Discriminator by ascending its stochastic gradient:

∇θd

1

m

m∑
i=1

[
logD

(
x
(i)

)
+ log

(
1 − D

(
G

(
z
(i)

)))]
(6)

◦ Sample batch m of real or fake labeled data;
◦ Update the Generator by descending its stochastic gradient:

∇θg

1

m

m∑
i=1

log
(
1 − D

(
G

(
z
(i)

)))
(7)

2.2 Contour-based metric without ground truth

As Fig. 5 shows, the main effect that hazy weather has on a scene is decreased luminance and contrast, that
dramatically reduce the contours and textures of the scene. Maintaining defined contours in adverse weather
conditions is key to proper object recognition and segmentation, which are the basis of several applications.
The visibility metric we present is based on gradient detection for image defogging evaluation. Our approach
compares the gradient of the foggy image to the gradient of its defogged counterpart, i. e. after the defogging
procedure is done. Hence, there is no need for a ground truth. Besides that, our method does not need to
estimate any atmospheric parameter, which is difficult from a single RGB image and, in general, requires the
sky to be present in the image.

Thus, as a first step, we need to obtain the derivative of both images (original and defogged), as can be seen
in Fig. 5. There are several well-known image processing operators to perform such procedure. Some of the most
used are Canny,24 Roberts, Prewitt, and Sobel.25 For our method, we used the Sobel edge detector26 due to
its simplicity. The horizontal and vertical derivatives are obtained by respectively applying the horizontal and
vertical kernels on the image, as shown in Eq. 8,

Fx =

−1 0 1
−2 0 2
−1 0 1

⊛ I ; Fy =

−1 −2 −1
0 0 0
1 2 1

⊛ I, (8)

where Fx and Fy are the corresponding horizontal and vertical derivatives of the image I. The image
integrating all gradients is retrieved following

F =
√

F 2
x + F 2

y . (9)

Note that in any image, most of the pixels do not represent an edge, yielding small values in the processed
gradient image. This can be appreciated in Fig. 5 where the white pixels that represent null or negligible gradients



Figure 5. Gradient comparison between a fogged image (left) and its fog-free ground truth (right). Both colour images
are presented on top with their associated edge images below.

are dominant in the image. Hence, we define a threshold value for the gradient values in order to differentiate
the gradients of interest from the background (white).

Gradient images are normalized to one, so our proposed threshold value is to use 5% of the maximum edge
value present in the image to still keep all the relevant information related to edges while disregarding the
background data. This threshold will be further discussed after presenting Eq. 11. Such 5% value could be
optimized for a different dataset if needed. After obtaining the derivative of each image, we perform the relative
difference between the gradient images of the fogged and its defogged counterpart pixel by pixel, as stated in
Eq. 10,

RD(x, y) =


de(x, y)− fe(x, y)

fe(x, y)
de(x, y), fe(x, y) > threshold

0 otherwise
, (10)

where RD(x, y) is the relative difference computed at pixel (x,y), de(x, y) is the defogged gradient image
and fe(x, y) is the fogged gradient image. Let us take a moment to analyze the ”relative difference image” so
obtained. This image has the same dimensions as both input images. Each pixel stores the relative difference
between the corresponding pixel of both input gradient images. If the value of a pixel in the relative difference
image is positive, the strength of the gradients in the defogged image has improved, i. e. the gradient value in
the defogged image is larger than the gradient value in the original image. Otherwise, if the value of a pixel in
the relative difference image is negative, the strength of the gradient has decreased after the defogging algorithm.
Therefore, the value of the difference quantifies the improvement in gradient strength obtained after the defogging
process.

Once we compute the relative difference image, we perform the histogram of said image excluding the back-
ground pixels of the image, that is, the null values corresponding to those pixels below the threshold value.
Fig. 6 presents the resulting histogram of the defogged image from the previous Fig. 9. The vast majority of
edges in this image are better defined when fog is not present on the scene because of the defogging algorithm,
as we would expect. Negative values close to 0 in the histogram correspond to some regions that have not been
really affected by fog, or that in such areas the defogging process has introduced small variations in the gradient
strength for these regions. These pixels, however, are quite residual compared to the rest. Note that positive
pixels can reach values as large as 6, meaning a 6-fold improvement in the gradient strength.



Figure 6. Histogram of the relative difference between the gradient images of the ground truth and the fogged image
shown in Fig. 9. The positive values of the histogram are shown in green whereas negative values are shown in red.

At this point, the strategy of the gradient-based metric becomes clear. However, we still need a scalar value
to quantify the enhancement of the defogging procedure consistent with the information that can be graphically
observed in the histogram presented in Fig. 6. There are several options to obtain this numerical value. Our
proposal consists on calculating the weighted ratio between the positive part of the histogram and the whole
one. Mathematically,

R =

∑∞
i=0 r

+
i · h(r+i )−

∑∞
i=0 |r

−
i | · h(r

−
i )∑∞

i=0 r
+
i · h(r+i ) +

∑∞
i=0 |r

−
i | · h(r

−
i )

(11)

where r±i is the value of the relative difference, either positive or negative, and h(r±i ) corresponds to the
histogram value of r±i , so the total counts on the gradient image of such a value. R can take values from -1 to
1, being 1 when all the gradients have been enhanced and -1 when the defogging procedure has worsened every
gradient of the image. The weighted character of the metric is used to strengthen the gradient that have been
greatly improved or worsened. If we compute the proposed metric value for the example images shown in Fig. 9
we get R = 0.9732. This is a reasonable result since we are comparing a fogged image directly with its fog-free
ground truth, mimicking an ideal defogging algorithm.

As we previously mentioned, the threshold value in Eq. 10 has been empirically fixed. We noted that setting
a threshold above 8% disregards low intensity gradients, and decreases the value of the metric. On the other
side, a threshold smaller than 5% considers a gradient almost any variation due to noise. We shall recall the
reader that this threshold was introduced to separate the background pixels, where there are no contours, edges,
or textures, from the low intensity edges.

An additional remark must be made. As previously discussed, DNNs, and especially GANs,6 are nowadays
used to tackle defogging. GANs are very useful when it comes to generating new data that resembles the data
distribution it has learned from. This means that these networks tend to generate new features in the images,
which leads to new contours producing better results in our metric even if the defogging is poor.

These situations may occur with images lacking edge information. Under this condition, two scenarios could
happen. First, the original haze-free might does not have any contours. In this case, fog will not be a problem
since no information would be hidden due to fog. Moreover, once the defogging procedure is done the resulting
image will be very similar to the original hazy one because there is no element on the scene that needs to be
improved. Second, the original haze-free scene has contours, but the fog is so dense that there is no visibility.



This is a more delicate case since there are elements in the image that could be improved. Nevertheless, no
realistic defogging method could recover any information under such conditions. Any contour generated under
extremely low visibility can in practice be considered a “ghost” object as long as it is appearing in the image
from nothing.

In our opinion, generating these “ghost” features in the image should directly discard the defogging method.
Defogging is especially useful to increase the performance of object detection and image segmentation, which
will ultimately execute an action in an autonomous vehicle. Executing an action due to a “ghost” feature could
be extremely dangerous. So our metric works under the premise that no new features are added to the defogged
image during the defogging procedure, and only already existing features are highlighted.

In 2008, Hautiére et. al.27 presented a reference-less metric that was based on a gradient comparison between
the original hazy image and the defogged one. Specifically, it focuses on the new visible gradients that have
appeared after the visibility enhancement. We hypothesize that any defogging method that generates new
contours or gradients should be discarded. This decision is based purely on safety measurements as the authors
believe that the main application of defogging algorithms is autonomous systems. Among other differences in
the algorithm, our metric differs from Hautiére in the sense that it deals with the up-to-date problems of the
defogging issue.

A complete algorithm for the metric computation is presented in Algorithm 2∗.

Algorithm 2: Algorithm to compute the gradient-based metric for image defogging without ground truth.

◦ Obtain the gradient images of both Fogged and Defogged images:

Fx =

−1 0 1
−2 0 2
−1 0 1

⊛ I ; Fy =

−1 −2 −1
0 0 0
1 2 1

⊛ I

F =
√

F 2
x + F 2

y

◦ Obtain the relative difference image from the gradient images:

RD(x, y) =


de(x, y)− fe(x, y)

fe(x, y)
de(x, y), fe(x, y) > threshold

0 otherwise

◦ Perform the histogram of the relative difference image;
◦ Obtain the ratio of enhancement:

R =
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3. EXPERIMENTS AND RESULTS

In this section we present a quantitative comparison between our proposed metric with several state-of-the-art
methods to prove its effectiveness. Afer that, we will present the results† of our defogging network on the DENSE
dataset.28 We also present quantitative results of our network on our proposed metric and compare them with
SSIM, the metric used in the official challenge, on the O-Haze dataset22 using some results of the NTIRE 2018
challenge.3

∗A Matlab implementation of the metric can be found at the following GitHub repository.
†Additional material can be found in the following google drive link, where the results are separated in folders with

their corresponding readme files.

https://github.com/GDMG99/Gradient-based-metric-for-image-defogging-without-ground-truth
https://drive.google.com/drive/folders/1u2QINM18Iz9crPKlR8AirkHXQM8DHsKy?usp=sharing


Figure 7. Classification of the mean over the 45 images of the O-Haze dataset for SSIM (FR-IQA), our proposed metric
(NR-IQA), FADE (NR-IQA), and FRFSIM (FR-IQA).

3.1 Comparison of our proposed metric with the state-of-the-art

To validate our proposed metric, we tested it on the O-Haze dataset.22 This dataset was used in the NTIRE 2018
challenge.3 It consists of 45 outdoor scenes. Each fogged scene has its ground truth counterpart. Apart from
that, the results of seven defogging methods provided by seven researchers were also facilitated in the dataset.
Fig. 9 shows some examples of the O-Haze dataset as well as the seven mentioned results of the defogging
methods. We used our metric to compare the results of some groups who participated in the challenge. During
the NTIRE’18 defogging challenge, the groups received 35 fogged images, with their respective ground truth for
training their networks. They also received 5 more images for validation purposes and 5 more for testing, which
were evaluated by the jury. Again, the last ten images had their respective ground truths delivered. In order
to fully validate the effectiveness of our metric, we used the 45 scenes with every defogging method available,
reaching up to 405 images. Apart from that, we also tested two state-of-the-art defogging evaluation metrics,
FRFSIM,17 an FR-IQA metric based on statistical behavior over human judgment on foggy scenes, and FADE,18

an NR-IQA fog density prediction model based on natural scene statistics, on the O-Haze dataset and compared
the results with our own.

As mentioned above, the metrics used for evaluation in the NTIRE 2018 challenge were SSIM and PSNR,
calculated relative to the ground truth image. The defogged images have 800 pixels of height or width at most
whereas both the ground truth and the original hazy images have greater resolutions so we resized them to match
the dimensions of the defogged image, to enable proper comparison. The resize method used was the bi-cubic
algorithm. After resizing, we computed the value of the SSIM, FADE, FRFSIM, and our proposed metric for
each scene and method. After that, we computed the mean over the 45 scenes to obtain a mean value of the
defogging method for each criterion. Numerical values are shown in Table 1, where the worst and best values of
each metric are plotted in red and green, respectively. The classification according to their ranking can be seen
in Fig. 7.

Table 1 and Fig. 7 show relevant information. First, every metric considers Ancuti’s as the best performing
defogging method. There is a dispute over the last place. On the one hand, our metric and FADE, both NR-IQA,

Table 1. Mean over the 45 images of the O-Haze22 dataset of SSIM (FR-IQA), our proposed metric (NR-IQA), FADE
(NR-IQA with natural scene statistics) and FRFSIM (FR-IQA with human judgement). The best and worst performing
results are colored in green and red respectively for each metric.

He et. al. Meng et. al. Fattal et. al. Bermann et. al. Cai et. al. Ren et. al. Ancuti et. al.
SSIM↑ 0.399 0.498 0.441 0.545 0.433 0.519 0.573
Ours↑ 0.911 0.872 0.769 0.944 0.747 0.889 0.975
FADE↓ 0.256 0.288 0.258 0.262 0.642 0.503 0.252
FRFSIM↑ 0.340 0.461 0.352 0.443 0.352 0.468 0.480



Figure 8. Defogging results of our network. The first row contains the original images and the second the results after the
GAN is applied.

judge Cai’s as the worst method. On the other hand, SSIM and FRFSSIM state that He is actually the worst
defogging procedure. Let us look closely at He’s case. When it comes to defogging and, especially, differentiating
objects, He’s results are visibly better than Meng’s, Cai’s, or even Ren’s. Nevertheless, all previous groups are
ahead of them when SSIM is applied. This can be explained by looking at the colors of each image and comparing
them to the ground truth. The color aberration introduced by He is measured by SSIM and FRFSIM as a bad
defogging method. On the contrary, our metric strictly considers one of the most affected features by fog, the
edges of objects, leading to a more reasonable position of He’s defogging method even without the need for a
ground truth comparison.

As mentioned above, the metric used in the NTIRE’18 defogging challenge3 was SSIM. From the metrics
used in the paper, our proposed one is the one that better resembles SSIM’s behavior. From SSIM’s perspective,
FADE and FRFSIM are too harsh on Berman and give too much credit to Fattal or Cai. Yet, in our case, the
only discrepancy with SSIM is the He exception mentioned in the paragraph above.

3.2 Qualitative results from the defogging network

Finding a proper dataset is key to getting good results in a deep learning project, which usually needs a large set
of images to see the network converge. Unfortunately, finding a large dataset of haze and its associated GT is a
difficult task. For this project, we used some RGB images of the DENSE dataset.28 The dataset used contained
3.366 haze-free images and 732 images with dense fog for training, 25 dense fog images for testing, and over 20
images of the same scene for validation in a fog chamber with its corresponding GT. This is still a very small
dataset for a conventional deep learning project so we had to find an efficient training loop and constantly check
the results with the test and validation datasets. Some defogging results can be seen in Fig. 8. We see how the
GAN focuses on increasing the contrast and changing the illumination of the scene. Another interesting aspect
of our network is its response time. Counting pre- and post-processing and inference time our network can work
at a frame rate of over 45 fps, making it suitable for real-time applications. The calculations have been done
with a Nvidia GeForce RTX 3070 and Python’s TensorFlow environment.

3.3 Quantitative results on our proposed metric

In Fig. 9 a comparison of different defogging algorithms on the O-Haze dataset can be seen. Note that not every
method presented in Fig. 9 is based on deep learning. Also, some of them estimate the physical parameters
of the scene. Besides, these methods have been specially designed to perform well in this dataset, as it was
part of the NTIRE 2018 challenge. Our model, instead, was trained on a different dataset which clearly differs
from this one, especially in fog, as in the latter it is artificially created, so the distribution of fog in the scene is
very different from what our network has learned. We compared our metric results with the metric used in the
official challenge, SSIM, on every method available, including our defoggign results. Results are summarized in



Figure 9. Comparison of different defogging algorithms on the O-Haze dataset. From left to right, the hazy scene, other
proposed methods, in order, He, Meng, Fattal, Berman, Cai, Ren, Ancuti,4,5,29–33 ours, and the ground truth.

Table 2. We can see that, first, our metric behaves similarly to the SSIM despite it works without any reference.
The only clear difference between the two metrics is in He’s case. He’s method performs poorly on SSIM and
average on our metric. If we look at Fig. 9 we can see that He’s results are visibly better than Cai’s or Meng’s.
However, He’s drastically modified the image’s colours resulting in a low SSIM, nevertheless, it increases the
contours which leads to better performance on our metric. Second, even if our results in Fig. 9 do not look as
good as Fig. 8 our method achieves good results on both metrics as it focuses on a better edge difference and
contrast which leads to better identification of the objects. The difference in the results in Fig. 9 and Fig. 8 for
our network can be explained through the structural difference between datasets. Our proposed metric allows
to quantify the amount of defogging in a scene, without the need of a GT.

Table 2. Mean over the 45 images of the O-Haze22 dataset of SSIM and our proposed metric.
He et. al. Meng et. al. Fattal et. al. Berman et. al. Cai et. al. Ren et. al. Ancuti et. al. Ours

SSIM 0.43684 0.51198 0.48097 0.57125 0.43986 0.53451 0.60856 0.53588
Ours 0.75652 0.63628 0.65295 0.80755 0.50801 0.71127 0.91184 0.90606

4. CONCLUSIONS AND FUTURE WORK

We proposed a fast defogging network with a GAN-like architecture that only takes the information of an RGB
image of the fogged scene and does not estimate any physical parameter of the scene. We thoroughly described
each part, its training loop, and our stretch to preserve the general structure of the input images to avoid the
generation of ghost objects. We also described a gradient-based metric for SID that does not need a GT image.
Lastly, we compared our proposed metric with the current metric of evaluation for defogging challenges, SSIM,
as well as other state-of-the-art metrics through the O-Haze dataset. We concluded that the proposed metric
properly judges visual enhancement of SID without any reference other than the original RGB fogged scene. In
future work, we intend to train defogging networks with a polarized dataset in natural hazy scenes, despite the
difficulties of producing such data, as polarized light is less affected by fog than unpolarized light.
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