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ABSTRACT

In this paper, we propose a strategy to detect objects from
still images that relies on combining two types of models: a
perceptual and a structural model. The algorithms that are
proposed for both types of models make use of a region-
based description of the image relying on a Binary Partition
Tree. Perceptual models link the low-level signal descrip-
tion with semantic classes of limited variability. Structural
models represent the common structure of all instances by
decomposing the semantic object into simpler objects and
by defining the relations between them using a Description
Graph.

1. INTRODUCTION

A common procedure to bridge the, so called, semantic gap
in the indexing framework is to characterize semantic classes
(abstract representations of objects) by means of a combi-
nation of low-level descriptors. In this context, low-level
descriptors refer to features that can be directly evaluated
on the signal (e.g.: color, texture, shape, etc.). The various
low-level descriptors that characterize a semantic class have
to be computed at different positions and scales within the
image. Region-based approaches, as the one discussed in
this paper, allow improving the robustness of this process as
well as reducing the size of the search space.

The evaluation of low-level descriptors corresponds to a
pure perceptual characterization. It is assumed that all in-
stances of an object class (individual representations of an
object) will be perceptually similar. However, some seman-
tic classes are not compatible with this restriction. In this
case, models that are not purely perceptual should be used.
One way of dealing with the variability of the object in-
stances is to analyze and to model the common structure of
all instances.

We propose in this paper a strategy to detect objects
from still images that relies on combining two types of mod-
els: a perceptual and a structural model. The algorithms that
are proposed for both types of models make use of a region-
based description of the image relying on a Binary Partition

Fig. 1. Perceptual and structural models of an object class

Tree. Perceptual models link the low-level signal descrip-
tion with semantic classes of limited variability. Structural
models represent the common structure of all instances by
decomposing the semantic object into simpler objects and
by defining the relations between them.

This paper is structured as follows. Section 2 introduces
the main concepts of the semantic class model to be used in
this work. In Section 3, the usefulness of a region-based im-
age representation is further discussed and the Binary Parti-
tion Tree is presented. Section 4 develops the bases of the
perceptual model whereas Section 5 details the structural
model. In both cases, the extraction of human frontal faces
is used as example to illustrate the usefulness of the models.
Finally, Section 6 presents the conclusions of this work.

2. OVERVIEW OF THE PROPOSED MODEL

In our work, a Semantic Class (SC) represents the abstrac-
tion of a semantic object. We use two types of models to de-
scribe a semantic class: aPerceptual modeland aStructural
model. A semantic class can be described by both types of
models. This concept is illustrated in Fig. 1 where a seman-
tic class (represented by a gray circle) is associated with
both descriptions. Typically, semantic classes with a lim-
ited amount of perceptual variability can be handled with a
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Fig. 2. Example of decomposition of a structural model into simpler structural and perceptual models.

perceptual model whereas more complex semantic classes
require a structural model.

Perceptual model: A semantic class can be character-
ized by a set of low level visual descriptors defining the per-
ceptual characteristics of all class instances. In this work,
a low level descriptor is a descriptor that can be directly
evaluated on the signal (e.g.: a histogram or the shape of a
region). The perceptual model is a list of low-level descrip-
tors whose combination defines the semantic class.

Structural model: In order to deal with the percep-
tual variability, a semantic class can be decomposed into
its simpler parts (parts forming the object) and the relations
among these parts. In turn, these simpler parts are instances
of simpler semantic classes (e.g.: every wheel in the de-
scription of the semantic class ”car” is the instance of the
simpler semantic class ”wheel”). In this work, the relations
among simpler parts are assumed to be only structural. The
structural model that represents the instances of these sim-
pler semantic entities and their Structural Relations (SRs)
is described by means of a graph, the so-called Description
Graph. This concept is illustrated in Fig. 1, where an ex-
ample of description graph is presented. In it, instances of
simpler semantic classes are represented by white circles
while rhombi correspond to structural relations.

The description of a semantic class, however complex,
ultimately relies on a set of perceptual models. Every in-
stance in a description graph is associated to a simpler se-
mantic class that may be described by a perceptual or/and a
structural model. If the simpler semantic class is described
only by a structural model, the previous decomposition can
be iterated until reaching the simplest possible level of se-
mantic classes which can only be described by perceptual
models. This concept is illustrated in Fig. 2.

3. REGION-BASED REPRESENTATION OF
IMAGES: THE BINARY PARTITION TREE

In most object analysis tasks, one of the first difficulties to
be faced is related to the raw representation of the original
data built around a rectangular array of pixels. Detecting ob-
jects directly on this representation is difficult in particular
because one has to detect not only the presence of the object
but also its position and its scale. In this section, we discuss
the interest of Binary Partition Trees [11] as a region-based
representation that can be used for a large number of object
analysis and recognition applications. The idea is to per-
form a first step of abstraction from the signal by defining a
reduced set of regions at various scales of resolution that are
moreover representative of the perceptual features of the im-
age. Instead of looking at all possible pixel locations and all
possible scales, the object recognition algorithm will base
its analysis strategy on this reduced set of candidate regions.

An example of Binary Partition Tree is shown in Fig. 3.
The lower part of the figure presents an original image (left)
and an initial partition corresponding to this image (center).
The image obtained by filling the regions of the initial parti-
tion with their mean gray value is shown in the right part of
Fig. 3. As can be seen, almost all details of the original im-
age are visible. Information about the similarity is encoded
in the tree shown in the upper part of the figure. The tree
leaves represent the regions of the initial partition. The re-
maining tree nodes are parent nodes. They represent regions
that can be obtained by merging the regions represented by
the child nodes. As a result, the similarity between regions
represented in the lower (upper) part of the tree is very high
(rather low).

Several approaches can be followed to create the tree.
An attractive solution relies on a region-based merging al-
gorithm that follows a bottom-up approach. Tree leaves
represent the regions of an initial partition. The remaining
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Fig. 3. Example of Binary Partition Tree (top) together with the original image (left), the initial partition with 100 regions (center) and the
regions of the initial partition represented by their mean value (right).

nodes represent the regions that are obtained by merging the
regions associated to the two children nodes.

Using region-based merging algorithms such as [2, 6],
the Binary Partition Tree is created by keeping track of the
regions that are merged at each iteration. The homogeneity
criterion used in the example of Fig. 3 is based on color sim-
ilarity. Note that in any cases, if the criteria used to create
the tree are generic, it is unlikely that complex objects be
represented as individual nodes. Only simple objects that
are homogeneous in terms of the criteria used to compute
the tree can be expected to be represented in the tree as sin-
gle nodes. The notion of extended nodes discussed in sec-
tion 4.3 can be used to tackle this issue.

Once the tree has been created, the remaining analysis
steps directly work on its nodes. The number of nodes is
dramatically smaller than the number of pixels and the set
of nodes spans all possible scales in terms of regions.

4. PERCEPTUAL MODEL

The purpose of the perceptual modeling is to describe a se-
mantic class, here an object, using features that can be di-
rectly measured on the signal. The detection of an instance
of a given object is done by extracting and analyzing the
low-level features, such as pixel distributions or geometrical
features, that indicate the presence of the object of interest.

The definition of a semantic class by a perceptual model
involves then the selection of a set of useful features fol-
lowed by a learning stage where these attributes are de-
scribed by statistical or other kind of models using sample
data. Finally, a combination rule has to be defined to merge
the information provided by the individual features.

The object detector based on these models analyzes dif-
ferent candidate regions: for each region it extracts the fea-
tures modeling the semantic class, computes the likelihood
value for each descriptor and then combines these values
into a final class likelihood. The output of the detector is a
list of regions that more likely belong to the class of interest.

4.1. Perceptual Model Definition

4.1.1. Selection of low-level features

The selection of a set of discriminant low-level visual fea-
tures leads to the idea of seeking features that are invariant
to certain transformations of the input signal (translation,
rotation, scale, occlusions, projective distortion, non rigid
deformations, illumination, etc.). The choice of distinguish-
ing features is a critical design step that requires knowledge
about the problem domain. Many different visual features
may be employed to describe a semantic class:

Features related to the pixel distribution take into ac-
count the value of the pixel components and their relative
positions in the area of analysis. The most common ones
are color (for example, characterizing the pixel distribution
in an area by the color histogram) and texture (for example,
using a wavelet or a principal components analysis).

Geometrical featuresaccount for the structural charac-
teristics of the area of support of the object being analyzed.
The most common ones analyze the shape of the various
connected components (for example, using a curvature scale
space representation) and the pattern that these components
may form (for example, using a graph to describe their rela-
tions).

4.1.2. Feature models and decision functions

The next steps in the definition of a perceptual model are
the modeling of the feature values for a set of class repre-
sentatives and the design of a function or decision rule to
evaluate if a candidate region is an instance of the class.

The feature models may be built using prior knowledge
about the class or by a learning process using training data.
When learning is employed, models are usually expressed
in terms of statistics or probability distributions associated
to the values of the descriptors for the sample data. The
training set has to be carefully selected to allow good gener-
alization but to avoid over-training [4]. Following the classi-
fication proposed by Tax [13], the learning of the descriptor



models may be approached with different techniques: Den-
sity methods [1], Boundary methods [13] and Reconstruc-
tion methods [1].

For each visual descriptor, a functionf has to be in-
ferred so that ifx is the value of the descriptor for a given
region,f(x) is an estimate of the likelihood or probability
that the region is an instance of the class.

Density methods estimate the probability density of the
classf(x) = p(x/ω), whereω is the target class. On the
other side, boundary and reconstruction methods fit a model
to the data and define a distance between a test instancex
and the model,f(x) = dω(x) . In some applications, votes
or binary outputs are preferred and the functionf is an in-
dicator function:I(p(x/ω) ≥ θ) or I(dω(x)) ≤ θ) whereθ
is a decision threshold.

4.1.3. Combining rules

As mentioned above, in many cases, it is unlikely that a sin-
gle feature can be used to characterize a class optimally. Us-
ing the best feature (the feature that leads to the maximum
likelihood) and overlooking the other descriptors might give
poor results. To improve the algorithm performance, differ-
ent descriptors can be combined [13].

The descriptors will be combined using likelihoods. For
descriptors that provide distancesdω(x) instead of proba-
bilities, the distances must first be transformed into likeli-
hoods. This transformation may be done by fitting sam-
ple descriptor values to some distribution or by applying a
mapping likep̃(x/ω) = 1

c1
exp(−dω(x)/c2), which mod-

els a Gaussian distribution around the model ifdω(x) is a
squared Euclidean distance. Typical combination rules are
the weighted sum of estimated likelihoods and the product
combination of likelihoods.

4.2. Object detection

For the detection, our strategy relies on a region-based ap-
proach. Images are segmented into homogeneous regions
and a Binary Partition Tree is constructed from the initial
partition. The set of candidates for the object detection are
the regions represented by the nodes of the tree. For ev-
ery node in the Binary Partition Tree, descriptor values and
likelihoods are computed and likelihoods are combined into
a global class probability. The more likely regions are con-
sidered as object instances. This region-based approach re-
duces the computational burden of an exhaustive search and
increases the robustness of the feature extraction.

4.3. Example: face detection

The proposed approach is illustrated with a human face de-
tector based on a perceptual model of the semantic class
face (frontal faces). A face can be associated with a set of

homogeneous regions. Consequently, it should be possible
to find a face by properly selecting a set of regions from a
segmented image [8].

4.3.1. Selection of candidates with a BPT

The initial image partition is created using a region growing
technique, where regions are merged until a given PSNR is
reached. Then a Binary Partition Tree is built. The merg-
ing order is based on a color similarity measure between
regions. Although the use of color as a similarity measure
helps to construct meaningful regions in the Binary Partition
Tree, the presence of the desired regions (faces) as nodes is
not ensured as they are not homogeneous in color.

To overcome this problem and provide the Binary Par-
tition Tree with more flexibility, the tree analysis uses in-
formation from regions associated to tree nodes as well as
from neighboring regions. The strategy relies on the notion
of extended nodes. In an extended node, the area of sup-
port of a node is determined by the shape of the object to
detect, frontal faces in this case. The region corresponding
to a node is extended by enlarging its area of support. The
new area is formed by the regions of the initial partition
contained in a face shape model placed on the node regions.
Fig. 6 illustrates this concept and demonstrates the conve-
nience of the method: an extended node may represent ob-
jects that are not completely represented as individual nodes
in the tree.

4.3.2. Face class modeling

In this work, the face class is defined with the following set
of low-level visual descriptors. In all casesffeat denotes
the normalized decision function derived for the model of
featurefeat.

Color (fc): The descriptor is the mean value of the re-
gion for U and V components in the YUV color space. The
face color distribution is modeled using a Gaussian distri-
bution in the(u, v) space.

Aspect ratio (far): This descriptor measures the aspect
ratio of the bounding box of the region. Its distribution is
also modeled with a Gaussian.

Shape (fsh): A face shape model (A) is compared to the
shape of the extended node (B). This comparison relies on
the modified Hausdorff distance between the contour points
of both shapes:

H(A, B) = max(h(A, B), h(B, A)) (1)

whereh(A,B) is the modified directed Hausdorff dis-
tance proposed in [3]

h(A,B) =
1
|A|

∑

a∈A

minb∈B‖a− b‖ (2)



The last two descriptors are texture features that use
Principal Component Analysis (PCA) to describe the global
appearance of regions. Given a collection ofn by m pixel
training images represented as vectors of sizeN = nm in
an N -dimensional space, the PCA finds a set of orthonor-
mal vectors that capture the variance of the data in an opti-
mal way. The eigenvectors of the data covariance matrix are
computed and those with largest eigenvalues are preserved.
These vectors are used as basis vectors to map the data.

Distance in the feature space (fdifs): A Gaussian model
is assumed for the face class in the subspace spanned by
the firstM eigenvectors of a PCA computed on the training
dataset. The similarity measure between a candidatex and
the face class is the Mahalanobis distance in the subspace
(the distance betweenx and the sample mean̄x).

ddifs(x) =
M∑

i=1

y2
i

λi
(3)

whereyi is the projection of the mean normalized vector
x− x̄ on thei-eigenvector andλi is thei-eigenvalue [9].

Distance from the feature space (fdffs): The face class
is modeled as the subspace spanned by the firstM eigen-
vectors of a PCA. Another similarity measure between a
candidate and the face class is the reconstruction error, the
Euclidean distance between the candidate and its projection
on the subspace [9].

ddffs(x) = ‖x− x̄‖2 −
M∑

i=1

y2
i (4)

The distances defined by these two descriptors are trans-
formed into likelihoods by fitting them to the face class dis-
tributions obtained through the training data (aχ2 distribu-
tion for thedifs (fdifs) and a gamma distribution for thedffs
(fdffs)).

Density methods are used to learn the feature models for
color, shape, aspect ratio anddifs descriptors, whereasdffs
is based on a reconstruction method. The training of the
feature models is performed with a subset of 400 images
from the XM2VTS database [5].M = 5 eigenvectors are
used indifs and dffs. The descriptors are combined by a
product combination of estimated likelihoods.

4.3.3. Face detection

The face detector computes the descriptors for the candi-
dates defined by the Binary Partition Tree. As too small
regions do not contain enough information , nodes smaller
than a given threshold are not analyzed.

The likelihoods are combined and the candidates with
highest confidence values are proposed as face instances.
The result of this procedure is presented in Fig. 4 where the
selected node in the example of Fig. 3 is shown. To show

a b

c d

Fig. 4. Results of the face detection on the example of Fig. 3:
a) detected face, b) region corresponding to the father node of the
face region, c) and d) regions corresponding to the children nodes
of the face region.

Fig. 5. Binary Partition Tree of the original image of Fig. 6.a. The
shaded subtrees correspond to the two face regions (see Fig. 6).

the accuracy of the selected node, Fig. 4.b, c and d present
the father and children nodes of the selected one. As can be
seen, the selected node is the best representation of the face
in the scene that can be obtained.

Fig. 5 and 6 show the Binary Partition Tree and the re-
lated images of another example respectively. Two faces are
present in the original image. In the Binary Partition Tree
of Fig. 5, the subtrees associated to the selected nodes are
marked. In this case, the detection of the faces in Fig. 6
illustrates the usefulness of evaluating the extended nodes.
The complete shape of the faces can be extracted thanks to
the extension of the nodes since complete faces do not ap-
pear as single nodes in the tree.

5. STRUCTURAL MODEL

5.1. Definition of structural models with Description Graphs

A second approach for the modeling of semantic classes is
to treat them as a structure of simpler semantic classes in-
stead of as a whole. As shown in Fig. 1, a structural model
of a semantic class is formed by instances of other semantic
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Fig. 6. Example of face detection: a) original image, b) and c) de-
tected face regions corresponding to the shaded subtrees of Fig 5,
d) original partition, e) and f) extended nodes of the two face re-
gions.

classes that satisfy certainStructural Relations (SR)among
them. The proposed approach organizes these instances in
terms of a Description Graph (DG) [7]. A Description
Graph assigns structural relations and instances of seman-
tic classes to its vertices. A SC vertex is represented by a
circle whereas a SR vertex is represented by a rhombus. De-
scription graph edges create connections between the two
types of vertices, creating a complex model that describes
the common structure of the semantic class. The use of
graphs as a tool to express meaning has been widely treated
in the work of Sowa on conceptual graphs [12]. Previous
experiences on object and event modelization (e.g.: [10])
have shown their applications on the indexing of visual data.

Description Graph vertices are classified into necessary
and optional. Necessary vertices correspond to those parts
of the object that must be represented in all instances. On
the other hand, the presence of the optional vertices is not
mandatory but it reinforces the probability of a correct de-
tection. Following the “face” example, a Description Graph
for the structural model of a face could be formed by two
necessary instances of the SC “eye” and a necessary in-
stance of the SC “mouth”, all of them structured with a
SR “triangle”. The model might be completed with an op-
tional instance of the SC “mustache” related with the eyes
and mouth by two optional vertices of a SR “above”. This
example illustrates the fact that although any complete in-
stance of a face must contain two eyes and a mouth and it
may also include a mustache which increases the probabil-
ity of a correct face detection.

5.2. Likelihood function

Analogously to the low-level descriptors of the perceptual
model, Description Graphs also require a likelihood func-

tion to measure theprobability (f) of a set of regions of
being an instance of a semantic class. It combines the in-
dividual probabilities of each vertex with their weights. The
weight (w)of a vertex expresses its relevance in the Descrip-
tion Graph, taking values between 0 and 1, where 0 denotes
irrelevant and 1 very relevant. Weights can be set manually
or as a result of a learning algorithm, and they should be
considered as part of the model.

The proposed likelihood function for Description Graphs
is shown in Equation 5. The globalf is computed by com-
bining the probabilities of the instance vertices weighted ac-
cording to the model. The expression is normalized by the
sum of the weights. Sums for theN necessary vertices and
theO optional vertices are expressed separately for clarity.

f =

N∑
k=0

wkfk +
O∑

l=0

wlfl

N∑
k=0

wk +
O∑

l=0

wl

(5)

While all necessary vertices must be included when com-
putingf , there is no previous information to decide which
optional vertices must be considered. A possible selection
criterion is to consider only those optional vertices whose
inclusion in the expression increasesf . This condition is
accomplished when the likelihood of an optional vertex is
higher than the currentf [7].

5.3. Extraction algorithm

The process of detecting an object in an image can be un-
derstood as a graph matching between a subset of Binary
Partition Tree nodes and the Description Graph vertices de-
scribing a semantic class. For each semantic class vertex
in the Description Graph, the likelihood of every node in
the Binary Partition Tree to be its instance should be com-
puted. Therefore, the number of possible combinations may
be huge, making unadvisable to check every possibility one
by one. For this reason, a heuristic algorithm is proposed.

The approach is based on searching first instances of
the necessary vertices in the model. Only when this pro-
cess is finished, the extraction algorithm starts looking for
instances of the optional vertices. The algorithm starts an-
alyzing the necessary SC vertex with highest weight. If the
associated semantic class is defined by a perceptual model,
the instance likelihood is computed directly on the low-level
descriptors of the Binary Partition Tree node under analysis.

On the other hand, if the semantic class associated to
the necessary SC vertex is defined by a structural model,
the algorithm is iterated looking for instances of the vertices
of this new structural model in the subtree below the node
under analysis. Those Binary Partition Tree nodes whose
subtrees contain nodes that match the structural model will
be associated to the instance vertex.
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an object class

As shown in the face example of Fig. 7, structural and
perceptual models complement each other to allow the de-
scription of complex semantic class.

Once the necessary SC vertex with highest weight has
been analyzed, the analysis of the following SC vertex can
be performed relying on the SR vertex information. Struc-
tural relations provide a prior knowledge that reduce the
number of Binary Partition Tree nodes to consider, a restric-
tion that decreases significantly the computation effort.

5.4. Example: face detection

This study case shows a structural approach for the auto-
matic detection of faces in images. In this case, the de-
tection of a face is based on the previous extraction of the
individual facial features, a process driven according to the
algorithm described in the previous section.

Fig. 8 shows the Description Graph of the considered
structural model of face. “Mouth”, “eyes” and “skin” are
chosen as necessary vertices, while “eyebrows” and “nos-
trils” are considered optional because they are not always
visible in a human face image. All semantic classes in the
Description Graph have their own perceptual model based
on color and shape descriptors.

The search for the face starts from the most relevant
among the necessary SC vertex of the Description Graph,
in our case, first the mouth, secondly the eyes and then the
skin. As the eyes must satisfy a triangular structural relation
with respect to the mouth, those regions marked as mouth
candidates are used as anchor points to find the eye candi-
dates. This approach reduces drastically the total amount
of node candidates to be considered. At this point, it is im-
portant to notice that the algorithm considers that a single
Binary Partition Tree node cannot be part of two different
instances (unless one of them is part of the other). This re-
striction is basic to discard many of the candidates. After
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Fig. 8. Description Graph for SC “face” used in the example

Fig. 9. Initial partitions and extracted facial features of four study
cases

the eyes, the algorithm looks for the skin around the mouth
and eyes. When the algorithm has been applied on all nec-
essary vertices, the search for the optional ones starts. In
this example, optional vertices are those related to eyebrows
and nostrils parallel to the eyes. The result of the search is
a list of instance candidates ordered according to their final
probability. Finally, a threshold is applied to select those
candidates accepted as valid instances of the SC “face”

Fig. 9 shows some results of the algorithm on four ex-
amples. The training of the weights was performed with a
subset of 400 images from the XM2VTS database [5], ini-
tially fixing low values to necessary vertices and high values
to the optional ones.

6. CONCLUSIONS

In this paper, we have presented a technique for object de-
tection in images. It relies on a combination of two models
for characterizing the semantic classes: A perceptual model
based on the low-level features, and a structural model that
exploits the decomposition of a semantic class into its sim-
pler parts and their structural relations. The application of
both models for object detection relies on a region-based
description of the image.

The use of a region-based representation of the image
allows reducing the set of candidate positions and scales to



analyze within the image while improving the robustness
of the analysis since all features are estimated on homoge-
neous regions. In this work, a Binary Partition Tree repre-
sentation is chosen.

Complex objects are very unlike to appear in a Binary
Partition Tree as nodes since, commonly, generic criteria
are used for its creation. This difficulty is circumvented by
separating the selection of the positions and scales that are
to be analyzed (node selection) from the definition of the
exact area of analysis (node extension).

The Binary Partition Tree representation is useful as well
when using structural models. The characterization of a
BPT node as an instance of a semantic class represented by
a structural model requires the analysis of the regions that
form this node. The Binary Partition Tree allows the analy-
sis to be restricted to the sub-tree associated to this node.

Perceptual models are used in this work to bridge the se-
mantic gap; that is, to characterize objects by means of low-
level descriptors. In the examples presented in Section 4,
it can be seen that, even for a structured object as a human
face, perceptual models can be very useful.

Structural models are used in this work to cope with the
variability of the instances of complex objects. Description
graphs are used to model complex objects. In these mod-
els, the distinction between necessary and optional vertices
and their non-linear combination lead to a very robust object
characterization.

Finally, it should be stressed that the powerfulness of
the proposed approach is based on the combination of both,
perceptual and structural models.
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