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ABSTRACT

In this work, an image representation based on Binary Par-
tition Tree is proposed for object detection in hyperspectral
images. The BPT representation defines a search space for
constructing a robust object identification scheme. Spatial
and spectral information are integrated in order to analyze
hyperspectral images with a region-based perspective. Ex-
perimental results demonstrate the good performances of this
BPT-based approach.

Index Terms— Object detection, Region-based image
analysis, BPT, hyperspectral

1. INTRODUCTION

Automatic object recognition to map urban areas is gaining
increasing interest. In the hyperspectral literature, object de-
tection techniques have been mainly developed in the context
of pixel-wise spectral classification. The drawbacks of pixel-
wise analysis is well-known in remote sensing [5]. Because of
the pixel-based model limitations, research on region-based
object detection algorithms has recently received much atten-
tion. In this context, the ECognition software [7] was de-
veloped. It relies on hierarchical segmentation and produces
an image partition on which various region descriptors can
be computed. These descriptors are then used as region fea-
tures for the recognition of objets in the image. One of the
main limitations of this strategy is that it assumes that the best
partition corresponds to one level of the previously computed
hierarchical segmentation. Unfortunately, this assumption is
rarely true and, very often, coherent objects can be found at
different levels of the hierarchy [8][2].

Ideally, a robust strategy should study the features in the com-
plete hierarchy to detect the best regions representing the ob-
ject. Instead of using a classical hierarchical segmentation
approach which produces a single partition, a solution to ad-
dress the need of multiscale analysis relies on image repre-
sentations based on regions trees. These representations are
useful because beside allowing the study of internal region
properties (color, texture, shape, etc.), they also permit the
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study of external relations such as adjacency, inclusion, sim-
ilarity of properties, etc. Furthermore, a tree is essentially a
hierarchical structure and therefore supports multiscale anal-
ysis of regions. The multiscale nature of trees provides flex-
ibility to situations where a given image has to be studied at
different scales depending on the processing purpose.

The work presented here proposes to initially generate a hier-
archical region-based representation of the image and, then,
to use this representation as search space for the object detec-
tion (therefore avoiding the creation of a partition on which
objects are searched as in [1, 7]). A Binary Partition Tree [2]
(BPT) is used as hyperspectral image representation.

For object detection, the use of BPT has been introduced
in [10] where a simple top-down analysis of the tree branches
was done. During this analysis, the objects were detected by
selecting the largest nodes having the appropriate features.
However, the best region representing the object is not al-
ways the largest one with the appropriate features. Here, we
present a more robust strategy that studies all BPT nodes to
detect the best ones representing the sought object. The paper
organization is as follows: Section 2 introduces the BPT and
its construction. The BPT analysis for object detection is
discussed in Section 3. Experimental results are reported in
Section 4. Finally, conclusions are drawn in Section 5.

2. BPT CONSTRUCTION

This BPT is a structured representation of a set of hierarchi-
cal partitions which is usually obtained through a bottom-up
region merging algorithm. Starting from individual pixels or
any other initial partition, the tree is constructed by an itera-
tive process in which regions are iteratively merged. Each it-
eration requires three different tasks: 1) the pair of most simi-
lar neighboring regions is merged, 2) a new region containing
the union of the merged regions is formed, 3) the algorithm
updates the distance between the newly created region with
its neighboring regions. Fig.1 shows an example of BPT con-
struction created from an initial partition.

Region merging algorithms are specified by: 1) a merging cri-
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Fig. 1: Example of BPT image representation

terion, defining the similarity between pair of neighboring re-
gions; and 2) a region model that determines how to represent
a region and the union of two regions. Working with hyper-
spectral data, the definition of a region model and a merging
criterion has been previously studied in [9]. Following this
work, the BPT construction has been constructed here fol-
lowing the strategy presented in [10].

3. OBJECT DETECTION STRATEGY

As instantiations of the object of interest, O, may have many
different visual appearances, the detection relies on a set of
features, (2, characterizing O. Based on these features, the
likelihood of each BPT node P(O|R;) to be an instantiation
of O is assessed and assigned to the node. Once the BPT has
been populated with these likelihood, a search is performed
to detect the most probable instantiations of the object of in-
terest.

3.1. Populating of BPT

For each node R;, the likelihood P(O|R;) is computed by us-
ing a set of spectral and spatial features Qp = {F}, Fb, ...
Based on these features, the likelihood of each node to be an
instantiation of O can be estimated by the Bayes rule. The a
priori probability of the object P(O) is being equally proba-
ble to observed (uniformed prior) and the probability of the
evidence P(2p) can be viewed as a normalizing constant.
Thus, considering independent the K local features computed
at each R;, the P(O|R;) can be defined by

K
P(O|R;) ~ P(QF|O) ~ H (F,|0) (1)

The specific choice of features depends on the reference
object. Here, four features are used: the region class mem-
bership homogeneity, the spectral class probability distribu-
tion Pr, [2] , the region area and the area of the smallest
oriented bounding box containing the region. For the features
related to class membership, we assume that a certain num-
ber of spectral classes ¢, defining different types of materials

aFK}

have been defined and that a SVM classifier has been trained
for these classes and used on the region mean spectrum. As
a result, the class probability distribution {Pg, (cs)}1<s<n.
is available for each node. The four feature probabilities are
detailed in the following:

3.1.1. Class membership homogeneity

This feature evaluates the region homogeneity in terms of
class membership. Note that if a region is an object, all its
pixels ideally belong to the same class. This term is important
in the BPT context, as nodes close to the root node represent
regions combining many different classes. It is defined as:

Z Pr; (e
where ng and PR r, are the class probability distributions of
the left and the right child nodes of R;. N, represents the
number of different classes ¢, used to train the SVM classifier.
Note that if two sibling nodes have similar class probability
distributions, their union will also have a similar distribution,
i.e. the object is in the process of being formed.

P(F1|R;) A (cs) 2)

3.1.2. Region area

This feature corresponds to the number of pixels forming the
region contained in each BPT node. The goal of this feature is
to prevent the detection of small or large meaningless regions.
It is done by assuming that the area interval [A,,in, Amaz] Of
the object of interest is known. P(F5|O) is then defined as
a uniform distribution between [A,,in, Amaz]. The defini-
tion of A,,4, is important to detect individual objects as the
union of two identical objects can result into a similar object
of larger size.

3.1.3. Spectral class probability

This term P(F3|O) corresponds to the probability P, (C)
that the region R; has to belong to the material class C of the
object of interest. For instance, for the road detection applica-
tion, this probability is the likelihood that the region belongs
to the asphalt class. This probability is directly extracted from
the class probability distribution Pp, estimated by the SVM.

3.1.4. Area of the smallest oriented bounding box

This last feature is used to compute a probability related to
the region shape. In this work, two different P(F4|O) have
been used to deal with two different object detection appli-
cations. Both are based on the same assumption : the use of
a measure normalized between [0, 1] as a shape probability
distribution. In the case of building detection, P(Fy|O) mea-
sures the region compactness and is the ratio between the area
of the region and the area of the smallest oriented bounding
box including the region.
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3.2. Processing populated BPT

At this stage, the BPT processing consists in detecting the
nodes which are the most likely to be the sought objects.
This strategy assumes that the objects of interest appear as
individual nodes. The goal is to use the P(O|R) values to
discard nodes that significantly differ from the object of in-
terest and to detect the best object representations. At this
point, it should be remembered that the BPT structure repre-
sents inclusion relationships between regions. As a result, it
is likely that nodes belonging to the same tree branch have
similar P(O|R) values than their parent or child nodes. As
our goal is to detect non overlapping regions representing in-
stantiations of the object of interest, only the best node R* on
the branch should be detected.
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Fig. 2: Example of P(O|R) evolution along a BPT branch

Taking into account these considerations, the approach used
here is based on the analysis of the P(O|R) evolution dur-
ing the object formation along the branch. If we draw the
P(O|R) values along a BPT branch containing an object of
interest starting from the leaf node, the first interesting point
of the curve arrives when the smaller regions start having a
high P(O|R) value. After this, a stable range of values where
no important change concerning P(O|R) is generally ob-
served. Finally, the last important step occurs when P(O|R)
suffers an important decrease after a specific merging step.
At this point, the resulting region usually corresponds to a
non-meaningful object of the image. In these situations, the
best object representation R* is found just before the impor-
tant decrease. An example of this typical evolution can be
observed in Fig. 2 where the curve of P(O|R) values from a
leaf to the root is represented. The horizontal axis indicates
the level on the BPT branch the left side corresponds to the
leaf and the right side to the root node) whereas the vertical
axis indicates to probability values. We have observed that
this behavior is really typical of branches containing the ob-
ject of interest. Accordingly, the detection of R* in a BPT
branch is given by

R = m}%n P(O|R") — P(O|R) 3)
with P(O|R) > 7 4)

where R is the parent node of R and dr is the thresh-
old used to decide if a region may be considered as a candi-

date of the sought object. Because of the inclusion relation-
ship described by the BPT, the detection process described
above may result in several detections of R* along unique
BPT branch. Hence, a decision should be taken in order to
avoid overlapping regions in the final result.

Here, it has been considered that the region analysis is more
reliable for large regions. Accordingly, in case of overlap,
the R* corresponding to the closest region to the root is kept.
Following this pruning strategy, the selection of the R* corre-
sponding to the sought objects is done in a top-down fashion:
the BPT is analyzed from the root to the leaves by selecting
the first nodes found as R*.

4. EXPERIMENTAL RESULTS

This section addresses the evaluation of the object detection
strategy proposed in Section 3. The goal of the experiments is
to compare the results of the proposed strategy with a classi-
cal pixel-wise method such as SVM classification. The eval-
uation is performed on two different portions shown in Fig. 3.
Both hyperspectral images were acquired over Pavia (Italy)
by the ROSIS sensor having a 1.3m spatial resolution. It cor-
responds to a urban area and the hyperspectral data involves
102 spectral bands. The experiment targets the detection of
buildings. On these hyperspectral images, the BPTs are com-
puted with the procedure described in Section 2.

Fig. 3: False color composition of two portions of the Pavia
urban hyperspectral data used for building detection

Once the BPT has been computed, the four features presented
in Section 3 are computed. The class probability distribution
{Pr, (cs) }1<s<n, is estimated with a SVM Gaussian kernel
function constructed through a training step. This step follows
the classical cross-validation strategy. The SVM training step
is done by selecting randomly 20% of samples for each class
from the available reference data. Once the kernel function is
constructed, it is used to assign to each BPT node their class
probability distribution {Pg, (¢s)}. In order to classify nodes
corresponding to regions with several pixels, the region mean
spectrum is used as input to the SVM classifier.

The constructed SVM kernel function is also used to perform
a pixel-wise classification. The corresponding classification
results obtained for the class of buildings are shown in Fig. 4.
As can be seen, these classification results are rather noisy.
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Fig. 4: Pixel-wise SVM classification on Pavia urban data

The results obtained by the proposed BPT-based strategy are
shown in Fig. 5. In this case, the 7 parameter is set to 0.65
and the range [Amin, Amaz] is set to [30,1000]. As can be
seen, most of the rectangular buildings have been precisely
detected. These results corroborate the advantage of using
the BPT representation. The use of spectral as well as spa-
tial descriptors of BPT nodes clearly outperforms the classical
pixel-wise detection using only spectral information. On the
other hand, it should be also remarked that the results shown
in Fig. 5 are also comparable with the results obtained by [1],
where a building detection map is also presented by the using
the same hyperspectral Pavia image.
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Fig. 5: BPT-based detection of building on Pavia urban data

5. CONCLUSIONS

An automatic hyperspectral object detection methodology
using a BPT image representation has been detailed in this
work. It has been illustrated how BPT can be a powerful
image representation which provides a hierarchically struc-
tured search space for object recognition applications where
the spectral and the spatial information can be incorporated
in the search of a reference object. The obtained results
show the interest of studying the objects of the scene with
a region-based perspective. Future works will be conducted
on the detection of other urban structures using the presented
methodology.

6. REFERENCES

[1] H.G. Akay and S. Aksoy. Automatic detection of
geospatial objects using multiple hierarchical segmenta-

4101

(2]

(3]

[4]

(5]

(6]

(7]

(9]

[10]

(11]

tions. In IEEE Trans. on Geoscience and Remote Sens-
ing, vol. 46(7), pp. 2097-2111, July 2008.

A. Alonso-Gonzlez, S. Valero, J. Chanussot, C. Lopez-
Martinez and P. Salembier. Processing Multidimen-
sional SAR and Hyperspectral Images With Binary Par-
tition Tree. In Proceedings of the IEEE, vol. 101(3), pp.
723-747, 2013.

F. Calderero and F. Marqués. Region-merging Tech-
niques Using Information Theory Statistical Measures.
In IEEE Trans. on Image Processing, vol.19(6), pp.
1567-1586, 2010.

T.F. Cox and M.A. Cox. Multidimensional Scaling. In
K. Fernandez and A. Morineau (Ed.),Chapman & Hal,
London,1994.

T. Blaschke and J. Strobl. What’s wrong with pixels?
some recent developments interfacing remote sensing
and gis. Proceedings of GIS, Zeitschrift fur Geoinfor-
mationsystemte, pp. 12-17, 2001.

C.M. Cuadras, S. Valero, D. Cuadras, P. Salembier and
J. Chanussot. Distance-based measures of association
with applications in relating hyperspectral images. Com-

munications in Statistics - Theory and Method, vol.41,
pp. 2342-2355, 2012.

A. Darwish, K. Leukert, and W. Reinhardt. Image seg-
mentation for the purpose of object-based classification.
In IEEE Proc. of IGARSS, pp. 2039-2041, 2003.

A. Plaza and J. Tilton. Automated selection of results
in hierarchical segmentations of remotely sensed hyper-
spectral images. In IEEE Proc. of IGARSS, pp. 4946-
4949, 2005.

S. Valero, P. Salembier and J. Chanussot. Hyperspectral
image representation and processing with Binary Parti-
tion Trees. In the IEEE Trans. on Image Processing, vol.
22(4), pp. 1430-1443, 2013.

S. Valero, P. Salembier, J. Chanussot and C.M. Cuadras.
Improved Binary Partition Tree Construction for hy-
perspectral images: Application to object detection. In
IEEE Proc. of IGARSS, pp. 2515-2518, 2011.

Y. Tarabalka, J.C. Tilton, J.A. Benediktsson and J.
Chanussot. A Marker-Based Approach for the Auto-
mated Selection of a Single Segmentation From a Hi-
erarchical Set of Image Segmentations. IEEE JSTARS,
vol. 5, pp: 262 - 272 ,2012.



