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ABSTRACT

The work presented here proposes a new Binary Partition Tree prun-
ing strategy aimed at the segmentation of hyperspectral images. The
BPT is a region-based representation of images that involves a re-
duced number of elementary primitives and therefore allows to de-
sign a robust and efficient segmentation algorithm. Here, the re-
gions contained in the BPT branches are studied by recursive spec-
tral graph partitioning. The goal is to remove subtrees composed of
nodes which are considered to be similar. To this end, affinity ma-
trices on the tree branches are computed using a new distance-based
measure depending on canonical correlations relating principal co-
ordinates. Experimental results have demonstrated the good perfor-
mances of BPT construction and pruning.

Index Terms— Hyperspectral imaging , Binary Partition Tree,
canonical correlations, segmentation, graph partitioning

1. INTRODUCTION

Hyperspectral imaging has enabled the characterization of regions
based on their spectral properties. This had led to the use of such
images in a growing number of applications, such as remote sens-
ing, food safety, healthcare or medical research. Hence, a great deal
of research is invested in the field of hyperspectral image segmenta-
tion. The number of wavelengths per spectrum and pixels per image
as well as the complexity of handling spatial and spectral correlation
explain why this approach is still a largely open research issue.
Recently, an abstraction from the pixel-spectrum-based represen-
tation has been proposed using Binary Partition trees (BPT) [1].
This representation [2] stores a hierarchical region-based represen-
tation in a tree structure. This provides a hierarchy of regions at
different levels of resolution to cover a wide range of applications.
This generic representation, independently from its construction, can
be used in many different applications such as segmentation [3],
classification [1], indexing, filtering, compression or object recog-
nition. This paper focuses on the problem of image segmentation by
processing an already constructed BPT. The processing of the BPT
consists in the analysis of all the different BPT branches and in the
pruning of some of these branches. The analysis proposed here is
based on the construction of the affinity matrices using the similar-
ity measure used in the BPT construction. It corresponds to a new
distance-based measure depending on canonical correlations relat-
ing principal coordinates. Thus, a recursive spectral graph partition-
ing algorithm enabling a minimal cut is proposed as BPT pruning..
The organization of this paper is given as follows: Section 2 gives
a brief introduction on BPT, explaining the details of its construc-
tion. The BPT pruning for hyperspectral segmentation is discussed
in section 3. Experimental results are shown in section 4. Finally,
conclusions are drawn in section 5.

2. CONSTRUCTION OF THE BPT

From an image containing n pixels, a BPT generates a tree struc-
ture containing 2n-1 nodes. In this tree representation, three types of
nodes can be found: Firstly, leaves nodes representing the original
image pixels, secondly, the root node representing the entire image
support and finally, the remaining tree nodes representing image re-
gions formed by the merging of their two child nodes corresponding
to two adjacent regions. A possible way to construct a BPT is to
use an iterative region merging algorithm that merges, at each step,
the pair of most similar neighboring regions. The BPT is then built
by keeping track of the merging steps. Fig. 1 shows an example of
BPT construction starting from an original partition involving 4 re-
gions. In the following, this initial partition will be the partition of
individual pixels.
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Figure 1: Example of BPT construction

The creation of BPT relies on two important notions. The first
one is the region model MR which specifies how regions are rep-
resented and how to model the union of two regions. The second
notion is the merging criterion O(Ri, Rj), which defines the simi-
larity between neighboring regions and hence determines the order
in which regions are merged.

2.1. Region Model: Non-parametric statistical model

This region model MR assumes that a region is a set of connected
pixels with independent identically distributed (i.i.d) spectral val-
ues characterized by the corresponding probability distribution [4].
Considering an hyperspectral image containing {λ1, λ2, ..., λN}
bands, regions are modeled as N arbitrary discrete distributions
MR = {Hλ1

R , Hλ2
R , ..., HλN

R }, directly estimated from the pixel
values. Fig. 2 shows the non parametric statistical model interpre-
tation. It can be observed how MR is a matrix where each cell
represents the probability of the region pixels to have a radiance
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value as in a specific band λk. The region model is then formed by
the rows of the matrix H

λk
R . It corresponds to the empirical spatial

distribution (histogram) of the region R in the band λk.
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Figure 2: Non parametric statistical model interpretation

2.2. Merging criterion: Association measure via Multidimen-
sional Scaling

We are interested in defining a measure of association between two
non parametric statistical models defined by MRi and MRj . The
proposed measure is based on the distances between wavebands and
canonical correlations [5]. The main idea is to analyze the inter-
waveband similarity relationships for each data set MR via metric
scaling and principal coordinates, and then to establish an associa-
tion measure correlating the principal axis of both data sets obtained
via multidimensional scaling.
Multidimensional scaling (MDS) [6] represents a set of objects as a
set of points in a map of chosen dimensionality, based on their inter-
point distances. The objective is to maximize the agreement between
the displayed interpoint distances and the given ones. Thus, MDS at-
tempts to locate n objects as points in Euclidean space E where the
geometric differences between pairs of points in E agree, as closely
as possible, with the true differences between the n objects.
In our case, the n objects correspond to the N probability distri-
butions of each MR. Thus, the probability distribution similari-
ties (or dissimiliarties) of MR can be represented by a N x N dis-
tance matrix ∆R= (δkl), where δkl = δlk ≥0 is computed by δkl =

e(K(H
λk
R

,H
λl
R

)) − 1, where K(H
λk
R , H

λl
R ) is the diffusion distance

[7] measured between the probability distributions k and l.
Hence, being A the matrix with entries A = −( 1

2
)δ2

kl and the cen-
tering matrix H = In − 1

n
11′ , the so-called inner product matrix

BR associated with ∆R can be computed by BR = HAH for each
MR[6]. The inner product matrix BR is NxN symmetric matrix
which can be spectrally decomposed as BR = URΛ2

RU ′
R. Assum-

ing the eigenvalues in ΛR are arranged in descending order, the ma-
trix UR contains the standard coordinates of region R where the s
first columns are the most representatives coordinates. The aim of
MDS is to represent MR in a reduced dimension, by taking the first
standard coordinates. Given two regions defined by MRi and MRj ,
our interest is to measure the multivariate association between their s
first standard coordinates. Therefore, two distance matrices ∆Ri and
∆Rj to find BRi = URiΛ

2
Ri

U ′
Ri

and BRj = URj Λ
2
Rj

U ′
Rj

should
be computed using the explained procedure. The number s of dimen-
sions is an important aspect in most multivariate analysis methods.
In MDS, the number of dimensions is based on the percentage of
variability accounted for by the first dimensions. Here, a criterion
which extends a sequence c defined and studied in [8] is used to set
the value of s. Firstly, a maximum dimension Ns suggested by the
data should be fixed. Then, being ui and vi, i = 1, ..., Ns, the first
Ns columns of URi and URj , the sequence ck is defined as

ck =

Pk
t=1

Pk
p=1 λ2

tRi
(u′tvp)2λ2

tRjPNs
t=1

PNs
p=1 λ2

tRi
(u′tvp)2λ2

tRj

k ∈ [1, ..., Ns] (1)

λ2
tRi

λ2
tRj

are the eigenvalues of BRi and BRj which are pro-
portional to the variances of the corresponding principal axes. Here

Ns is the minimum dimension for which
PNs

t=1 λ2
tRPN

t=1 λ2
tR

≈ 1 and (u′tvp)2

is just the correlation coefficient between the t-th and p-th coordi-
nates. Thus the numerator in ck is a weighted average of the rela-
tionships between principal axes. Clearly 0 ≤ c1 ≤, ... ≤ cs ≤
, ... ≤ cNs = 1. The dimension s is then chosen such that cs is
high, for instance cs = 0.9. At this point, having two regions de-
fined by their standard coordinates URi and URj whose dimensions
are Nxs, the Wilk’s criterion W for testing B=0 in a multivariate
regresion model is given by:

W (Ri, Rj) = det(I − U ′
Rj

URiU
′
Ri

URj ) =

sY
i=1

(1− r2
i ) (2)

where det means the determinant and ri corresponds to the
canonical correlation of each axis. Using Eq. 2, an association
measure can be defined as:

AW (Ri, Rj) = 1−W (Ri, Rj) = 1−
sY

i=1

(1− r2
i ) (3)

satisfying 0 ≤ AW (Ri, Rj) ≤ 1 and AW (Ri, Rj) = 1 if Ri

is equal to Rj . Thus, this leads us to the definition of the proposed
merging criterion:

OMDS(Ri, Rj) = argmin
Ri,Rj

1 − AW (Ri, Rj) (4)

3. PROCESSING OF THE BPT

.
The processing of the tree can be seen as a pruning strategy aim-

ing to remove subtrees composed of nodes which are considered to
be homogeneous with respect to some criterion of interest (homo-
geneity criterion, e.g., intensity or texture). This task can be per-
formed by analyzing a pruning criterion along the tree branches to be
able to find the nodes of largest area fulfilling the criterion. This tree
analysis may follow a bottom-up or a top-down strategy. Here, the
definition of a pruning strategy is presented by a bottom-up analysis
of the BPT. Having a BPT such as the example of Fig. 3, the analysis
starts by studying all the BPT branches containing different leaves.
In the case of Fig. 3, this consists in studying 5 different branches.
The purpose is to assign to each node N , a set of LN descriptors
N (li) indicating whether the leaves li of the subtree hanging from
N have to be removed (0) or preserved (1).

Hence, a weight WN =

LNX
i=0

N (li) can be then defined as the num-

ber of leaves contained inN which consider that the nodeN should
be removed. This definition leads to define a simple easy greedy al-
gorithm by selecting the highest BPT nodes whose conditionWN >
LN
2

is true. According to this criterion, the pruned tree correspond-
ing to Fig. 3 does not contain the branches which hang from N2.
The key of the BPT pruning according to WN is based on how the
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N (li) descriptors area assigned. Given a branch B, this should be
done by analysing the different partitions obtained by cutting B at
the different BPT levels. In our study, this analysis is done by inter-
preting each B as a connected graph. Thus, the optimal cut in the
branch can be solved as a spectral graph partitioning problem.

• Weighted degree matrix: Let di =
∑

wij be the dotal connection from
node i to all its neighbor nodes. Then the weighted degree matrix D

is the diagonal matrix with d on its diagonal.

• Laplacian matrix: The laplacian matrix of a graph G is computed
from L(G) = (D − A), where D is the weighted degree matrix and A

is the similarity matrix.

0.2 Graph partitioning

In the past, Wu and Leahy [25] proposed the optimal bipartitioning of a
graph based on minimizing next cut criterion

cut(A, B) =
∑

i∈A,j∈B

wij (1)

It has been proved that this minimum cut criteria favors cutting small
sets of isolated nodes in the graph. Hence, introducing a normalizing term,
Normalized Cuts [20] were proposed as a criterion for partitioning graphs
avoiding the bias towards undersized cuts.

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)

assoc(B, V )
(2)

where assoc(A, V ) =
∑

i∈A,j∈V wij is the total cost edge from nodes to
A to all the nodes V .
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Figure 3: (a) BPT example. (b) Node decisions

3.1. Tree Branch B as a connected graph

Let PB be the set of NB BPT nodes in the branch B forming a par-
tition of the image. Given a leaf l0, a local pruning of B regarding
l0 consists in deciding which nodes belonging to PB should be re-
moved with l0. To answer this question, we propose to represent
each PB space as a weighted undirected graph G, where each edge
is formed between every pair of BPT nodes in B. Fig. 4(a) illus-
trates the branch example of the leaf l3 in Fig. 3. For this exam-
ple, the graph interpretation corresponds to Fig. 4(b). Having a NB
possible regions to be merged with a leaf, the idea is to study the
similarities/dissimilarities between these regions to assure a cut bi-
partitioning the set PB into two disjoint non-empty sets (A,B). In
the resulting space, l0 ⊂ A and such that similarity among nodes in
A is high and similarity across A and B is low.

l3 l4

l5

N3

3

(a) BPT branch B

• Weighted degree matrix: Let di =
∑

wij be the dotal connection from
node i to all its neighbor nodes. Then the weighted degree matrix D

is the diagonal matrix with d on its diagonal.

• Laplacian matrix: The laplacian matrix of a graph G is computed
from L(G) = (D − A), where D is the weighted degree matrix and A

is the similarity matrix.

0.2 Graph partitioning

In the past, Wu and Leahy [25] proposed the optimal bipartitioning of a
graph based on minimizing next cut criterion

cut(A, B) =
∑

i∈A,j∈B

wij (1)

It has been proved that this minimum cut criteria favors cutting small
sets of isolated nodes in the graph. Hence, introducing a normalizing term,
Normalized Cuts [20] were proposed as a criterion for partitioning graphs
avoiding the bias towards undersized cuts.

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)

assoc(B, V )
(2)

where assoc(A, V ) =
∑

i∈A,j∈V wij is the total cost edge from nodes to
A to all the nodes V .
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Figure 4: Example of PB space

The graph G is weighted by wij , which measures the similarity
of an edge linking a pair of nodes Ni and Nj . These values form a
matrix W and are given by Eq. 5, where d is the distance between
regions presented in Section 2 and σ controls the size of the neigh-
borhood.

wij =

(
e−

d(Ni,Nj)
σ if i 6= j,

0 otherwise
(5)

Let D be the diagonal matrix whose values in the diagonal
are the total number of connections from each node i to all its

neighbor nodes di =
P

wij . Given a graph G defined by its
D and W , its normalized Laplacian matrix is then computed as
L = D

−1
2 (D −W )D

−1
2 . Using L, a solution for the graph parti-

tioning problem solving the normalized min-cut of G was proposed
in Shi and Malik [9]. The method consists in partitioning the graph
into two pieces using the eigenvector E of L associated to the sec-
ond smallest eigenvalue. This can be done by using the signs of
the values of E which can determine exactly how to bi-partition
the graph. In the exemple of Fig. 4, let be E = {l3, l4, l5,N3} =
{+1, +1, +1,−1}, this result describes how to cut the graph into
two pieces: {l3, l4, l5} and {N3}. Having this cut example, nodes
will be populated by N1(l3) and N2(l3) to 1, whereas N4(l3) to 0.
However, it can not be assumed that the best cut will be performed
in a first cut. Thus, we propose a recursive graph partitioning al-
gorithm for each leaf li to detect the best cut in the branch. Given
a leaf li, the method consists in preserving at each iteration the
closer BPT neighboring nodes to li sharing the same sign of E .
For instance, having an E such as E = {N1,N2,N6,N7,N8} =
{+1, +1, +1,−1, +1}, the method only preserves in this iteration:
N1, N2 and N6. Computing at each iteration Ncut [9] associated
to this cut relating the first sign change. The recursive algorithm
stops when this value is higher than a set threshold. The algorithm
for each li is given by

1: NB = hanging nodes from li until the root
2: while NB > 2 and END is not true do
3: Compute the Laplacian matrix relating li with all their possi-

ble NB
4: Compute the graph cut level k according to the closer BPT

nodes on the branch having the same sign than E(li).
5: Compute Ncut between the first nodes arriving to level k and

the remaining NB
6: if Ncut < maximum allowed Ncut then
7: LCut is equal to k
8: else
9: END is true

10: end if
11: Next Laplacian matrix to study is given by the hanging nodes

until level k, then NB = k
12: end while

At the end of the algorithm, the optimal cut on the branch will
be retained in LCut. Thus, this information is used to populate the
BPT nodes on the studied branch. Starting from a leaf li, all father
nodes formed in its branch until the level LCut, will have a positive
weight N (li) = 1 (See Fig. 3). Contrarily, fathers nodes formed
in a level higher than LCut will have a zero weight in the decision.
Note that once a BPT is pruned, a segmentation result is obtained by
selecting the leaf nodes of the pruned BPT.

4. EXPERIMENTAL RESULTS

We first provide an evaluation of the BPT pruning proposed in Sec-
tion 3. The experiments have been performed using a portion of
Pavia Center image from hyperspectral ROSIS sensor, acquired by
DLR and provided by Prof. P. Gamba. The data contain 102 spectral
bands. Fig. 5(a) shows a RGB combination of three of them. The
BPT is computed by the procedure described in Section 2. The num-
ber of bins to represent the histograms depends on the image range
(here Nbins = 100). The first component dimension found by the
sequence ck is s = 2. Once the BPT is constructed, we proceed by
pruning the tree using the algorithm presented in Section 3. σ value
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of Eq. 5 is set to 0.01 knowing that the range of the distance defined
in Eq. 4 varies between 0 and 1. The maximum Ncut value allowed
in all the studied branches is 0.3. To evaluate the quality of the BPT
pruning, we compare the obtained results against a trivial pruning
criterion based on the number of regions in the BPT following the
merging sequence [3]. This classical strategy consists in extracting
a segmentation result involving a given number NR of regions. To
evaluate the resulting partitions, the symmetric distance dsym [10]
is used as a partition quality measure. Having a partition P and a
ground truth GT (Fig. 5(b)), the symmetric distance corresponds to
the minimum number of pixels whose labels should be changed in
partition P to achieve a perfect matching with GT , normalized by
the total number of pixels in the image.
Fig. 5(c)(d) show the segmentation results obtained with the triv-
ial and the PBT pruning proposed in this work, respectively. In both
cases, the resulting partitions involve 54 regions. Comparing both re-
sults, the quantitive dsym and the visual evaluation corroborate that
the partition obtained by the pruning proposed in Section 3 is much
closer to the ground truth than the one computed with a simple stop-
ping of the region merging algorithm. On the lower right corner,,
Fig. 5(c) illustrates how various small regions can be retrieved by
using the proposed BPT pruning.

(a) Composed RGB (b) Ground Truth

(c) Pruning by number regions (d) Min Ncut Pruning BPT

Figure 5: (a) Pavia Center ROSIS RGB Composition, (b) Manually
created Ground Truth, (c) Partition extracted from the trivial prun-
ing leading to dsym =40, (d) Partition computed with the proposed
pruning leading to dsym =20

A second experiment is carried out using a portion of a publicly
available HYDICE hyperspectral image. After removing water ab-
sorption and noisy bands, the data contain 167 spectral bands. A
RGB combination of three of them is presented in Fig. 6(a). In this
case, the number of bins representing the histograms is Nbins = 256
and the first component dimension is s = 3. For this second data set,
the quality of the BPT pruning results are compared with the results
obtained by the classical RHSEG [11]. In the case of RHSEG, the
similarity criterion used is SAM with spectral clustering weight 0.1.
Both partitions contain the same number of regions equal to 57. The
results shown in Fig. 6 illustrate the interest of the BPT pruning strat-
egy compared to the state of the art.

5. CONCLUSIONS

In the context of hyperspectral image segmentation, the processing
of Binary Partition Tree has been discussed in this paper. A re-

(a) RGB (b) Pruned BPT (c) RHSEG

Figure 6: (a) Urban Hydice RGB Composition, (b) Partition ex-
tracted from pruned BPT, (c) Partition computed with RHSEG [11]

cursive graph partitioning algorithm has been proposed for studying
BPT branches to perform optimal cuts. The use of BPT with graph
partitioning enables to compute affinity matrices between coherent
regions which is more robust than affinity matrices computed us-
ing the pixel-based representation. Regarding the BPT construction
and pruning, a new distance-based measure depending on canonical
correlations relating principal coordinates has been presented in this
work. Future works will be conducted to optimize the graph inter-
pretation since the knowledge about the merging order could provide
an insightful additional information. The study of affinity matrices
introducing feature descriptors will be also studied in the future.
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