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ABSTRACT

This paper discusses hierarchical region-based representation using
Binary Partition Tree in the framework of hyperspectral data. Based
on region merging techniques, this region-based representation re-
duces the number of elementary primitives compared to the pixel-
based representation and allows a more robust filtering, segmen-
tation, classification or information retrieval. The work presented
here proposes a strategy for merging hyperspectral regions using a
new association measure depending on canonical correlations relat-
ing principal coordinates. To demonstrate an example of BPT use-
fulness, a pruning strategy aiming at object detection is discussed.
Experimental results demonstrate the good performances of BPT.

Index Terms— Hyperspectral imaging, Binary Partition Tree,
canonical correlations, segmentation, object detection

1. INTRODUCTION

Hyperspectral sensors collect multivariate discrete images in series
of narrow and contiguous wavelength bands. The resulting datasets
enable the characterization of regions based on their spectral prop-
erties which provides a rich amount of information. Conventional
analysis techniques have traditionally considered these images as an
unordered array of spectral measurements. In the last few years,
the importance of the spatial information considering, in particular,
spatial correlation and connectivity in the image has been proved.
This information turns out to be essential to interpret objects in nat-
ural scenes. Hence, hyperspectral analysis tools should take into
account both the spatial and the spectral spaces. However, the num-
ber of wavelengths per spectrum and pixel per image as well as the
complexity of handling spatial and spectral correlation explain why
this approach is still a largely open research issue. Recently, an ab-
straction from the pixel-spectrum-based representation has been pro-
posed using Binary Partition trees (BPT) [1]. This representation [2]
stores hierarchically a region-based representation in a tree structure.
This provides a hierarchy of regions at different levels of resolution
to cover a wide range of applications. This generic representation
can be based on an iterative region merging algorithm. Hence, a
good region similarity metric and a region model are needed to es-
tablish the merging order between hyperspectral regions.
Working with hyperspectral data, the definition of both concepts is
not straighforward. Regarding the region model, a non parametric
statistical model is used (that is a histogram) [3]. This leads us to
define a robust distance between histograms taking into account the
correlation between bands. The work presented here introduces a
new association measure depending on canonical correlations relat-
ing principal coordinates.

The BPT is a generic representation, indepently from its construc-
tion, it can be used in many different applications such as segmenta-
tion [4], classification [1], indexing, filtering, compression or object
recognition. This paper focuses on object detection and recogni-
tion as this is an important challenge in remote sensing images. The
automated selection of results in hierarchical segmentations com-
bining spectral/spatial information has been previously studied [5].
Despite of some interesting results, problems regarding under and
over-segmentation remained. Our study also proposes a technique to
extract results combining spectral and spatial features. However, the
object extraction is based on the study of the descriptors computed
for each node of the BPT.
In this paper, experiments are conducted to evaluate the performance
of the BPT construction. Moreover, a second set of experiments
studies a powerful object detection using the BPT representation The
organization of this paper is as follows: Section 2 gives a brief intro-
duction on BPT, explaining the details of its construction and pro-
poses the new merging criterion. The BPT pruning for object recog-
nition is discussed in section 3. Experimental results are shown in
section 4. Finally, conclusions are drawn in section 5.

2. CONSTRUCTION OF THE BPT

From an image containing n pixels, a BPT generates a tree struc-
ture containing 2n-1 nodes. In this tree representation, three types of
nodes can be found: Firstly, leaves nodes representing the original
image pixels, secondly, the root node representing the entire image
support and finally, the remaining tree nodes representing image re-
gions formed by the merging of their two child nodes corresponding
to two adjacent regions. A possible way to construct a BPT is to
use an iterative region merging algorithm that merges, at each step,
the pair of most similar neighboring regions. The BPT is then built
by keeping track of the merging steps. Following an iterative region
merging algorithm, the most similar adjacent regions are merged at
each step. Fig. 1 shows an example of BPT construction starting
from an original partition. In the sequel, this initial partition will be
the partition of individual pixels.

The creation of BPT relies on two important notions. The first
one is the region model MR which specifies how regions are rep-
resented and how to model the union of two regions. The second
notion is the merging criterion O(Ri, Rj), which defines the simi-
larity between neighboring regions and hence determines the order
in which regions are merged.
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Figure 1: Example of BPT construction using a region merging al-
gorithm

2.1. Region Model: Non-parametric statistical model

This region model MR assumes that a region is a set of connected
pixels with independent identically distributed (i.i.d) spectral val-
ues characterized by the corresponding probability distribution [3].
Then, the region model is represented by a set of non parametric
probability density functions (pdfs) with no assumptions about the
nature of the regions nor the shape of the pdfs. Using this model with
an hyperspectral image containing {λ1, λ2, ..., λN} bands, regions
are modeled as N arbitrary discrete distributions, directly estimated
from the pixel values.

MR = {Hλ1
R , Hλ2

R , ..., HλN
R } (1)

Fig. 2 shows the non parametric statistical model interpretation.
It can be observed how MR is a matrix where each cell represents the
probability of the region pixels to have a radiance value as in a spe-
cific band λk. The region model is formed by the rows of the matrix

H
λk
R . It corresponds to the empirical spatial distribution (histogram)

of the region R in the band λk.
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Figure 2: Non parametric statistical model interpretation

Note that this model can also be defined when tree leaves are
single pixels by using the image self-similarity [6].

2.2. Merging criterion: Association measure via Multidimen-
sional Scaling

We are interested in defining a measure of association between two
non parametric statistical models defined by MRi and MRj . The
proposed measure is based on the distances between wavebands and
canonical correlations[7]. The main idea is to analyze the inter-
waveband similarity relationships for each data set MR via metric
scaling and principal coordinates, and then to establish an associa-
tion measure correlating the principal axis of both data sets obtained

via multidimensional scaling. Fig.3 summarizes the proposed pro-
cedure.
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Figure 3: Association measure via Multidimensional Scaling

Multidimensional scaling (MDS) [8] represents a set of objects
as a set of points in a map of chosen dimensionality, based on their
interpoint distances. The objective is to maximize the agreement be-
tween the displayed interpoint distances and the given ones. Thus,
MDS attempts to locate n objects as points in Euclidean space E
where the geometric differences between pairs of points in E agree,
as closely as possible, with the true differences between the n ob-
jects.
In our case, the n objects correspond to the N probability distri-
butions of each MR. Thus, the probability distribution similarities
(or dissimiliarties) of MR can be represented by a N x N distance
matrix ΔR= (δkl), where δkl = δlk ≥0 is computed by

δkl = e(K(H
λk
R

,H
λl
R

)) − 1 (2)

where K(H
λk
R , H

λl
R ) is the diffusion distance [9] measured be-

tween the probability distributions k and l.
Hence, being A the matrix with entries A = −( 1

2
)δ2

kl and the cen-

tering matrix H = In − 1
n
11′ , the so-called inner product matrix

BR associated to ΔR can be computed by BR = HAH for each
MR[8]. The inner product matrix BR is NxN symmetric matrix
which can be spectrally decomposed as BR = URΛ2

RU ′
R. Assum-

ing the eigenvalues in ΛR are arranged in descending order, the ma-
trix UR contains the standard coordinates of region R where the s
first columns are the most representatives coordinates. The aim of
MDS is to represent MR in a reduced dimension, by taking the first
standard coordinates.
Given two regions defined by MRi and MRj , our interest is to mea-
sure the multivariate association between their s first standard co-
ordinates. Therefore, two distance matrices ΔRi and ΔRj to find

BRi = URiΛ
2
Ri

U ′
Ri

and BRj = URj Λ
2
Rj

U ′
Rj

should be computed
using the explained procedure.

The number s of dimensions is an important aspect in most mul-
tivariate analysis methods. In MDS, the number of dimensions is
based on the percentage of variability accounted for by the first di-
mensions. Here, a criterion which extends a sequence c defined and
studied in [10] is used to set the value of s. Firstly, a maximum di-
mension Ns suggested by the data should be fixed. Then, being ui

and vi, i = 1, ..., Ns, the first Ns columns of URi and URj , the
sequence ck is defined as

ck =

∑k
t=1

∑k
p=1 λ2

tRi
(u′

tvp)2λ2
tRj∑Ns

t=1

∑Ns
p=1 λ2

tRi
(u′

tvp)2λ2
tRj

k ∈ [1, ..., Ns] (3)
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λ2
tRi

λ2
tRj

are the eigenvalues of BRi and BRj which are pro-
portional to the variances of the corresponding principal axes. Here

Ns is the minimum dimension for which
∑Ns

t=1 λ2
tR∑N

t=1 λ2
tR

≈ 1 and (u′
tvp)2

is just the correlation coefficient between the t-th and p-th coordi-
nates. Thus the numerator in ck is a weighted average of the rela-
tionships between principal axes. Clearly 0 ≤ c1 ≤, ... ≤ cs ≤
, ... ≤ cNs = 1. The dimension s is then chosen such that Cs is
high, for instance Cs = 0.9. At this point, having two regions de-
fined by their standard coordinates URi and URj whose dimensions
are Nxs, the Wilk’s criterion W for testing B=0 in a multivariate
regresion model is given by:

W (Ri, Rj) = det(I − U ′
Rj

URiU
′
Ri

URj ) =
s∏

i=1

(1 − r2
i ) (4)

where det means the determinant and ri corresponds to the
canonical correlation of each axis. Using Eq. 4, an association
measure can be defined as:

AW (Ri, Rj) = 1 − W (Ri, Rj) = 1 −
s∏

i=1

(1 − r2
i ) (5)

satisfying 0 ≤ AW (Ri, Rj) ≤ 1 and AW (Ri, Rj) = 1 if Ri

is equal to Rj . Thus, this leads us to the definition of the proposed
merging criterion:

OMDS(Ri, Rj) = argmin
Ri,Rj

1 − AW (Ri, Rj) (6)

3. OBJECT DETECTION WITH BPT

Hyperspectral object detection has been mainly developed in the
context of pixel-wise spectral classification. The main problem of
this approach is that objects are not only characterized by their spec-
tral signature. Indeed, spatial features such as shape, area, orienta-
tion, etc., can also contribute significantly to the detection.
In order to integrate the spatial and spectral information, BPT is pro-
posed as a search space for constructing a robust object identification
scheme. The strategy is to analyze the BPT using a set of descrip-
tors computed for each node. The work presented here proposes the
analysis of three different descriptors for each node:

D = {Dshape, Dspectral, Darea} (7)

The proposed shape, spectral and area descriptors are related
to the specficic object of interest. Studying D from the leaves to
the root, the approach consists in removing all nodes that signifi-
cantly differ from the characterization proposed by a reference Dref .
Hence, given this reference, the idea consists in considering that the
searched object instances are defined by the closest nodes to the root
node that have descriptors close to the Dref . model. In order to
illustrate the generality of the approach, we describe two detection
examples: roads and building in urban scenes.

3.1. Detection of roads

Roads appear as elongated structures having fairly homogeneous ra-
diance values usually corresponding to asphalt. Given their charac-
teristic shape, Dshape is the elongation of the region. In order to
compute it, we first define the smallest rectangular bounding box

allowed to have an arbitrary orientation that includes the region cor-
responding to the BPT node under study. Dshape is defined as the ra-
tio between the width and the height of the bounding box. Dspectral

is the correlation coefficient between the mean spectrum of the BPT
node and a reference spectrum of the road material. Darea is defined
as the area of the region which should be higher than the minimum
area required to consider that a region can be a road. This minimum
parameter should be set according to the spatial resolution of the im-
age. Computing D for all BPT nodes, the idea is to select the father
nodes closer to the root which have a low elongation, a high correla-
tion between asphalt material and an area higher than a threshold.

3.2. Detection of buildings

Following the same strategy, we consider that the rectangularity of a
region is an important characteristic for buildings. Then, a rectangu-
larity descriptor is proposed as Dshape. It is computed by the ratio of
the area of the BPT node and the area of the smallest bounding box
including the region (as in the previous application, the bounding
box can have arbitrary orientation). Dshape=1 for perfectly rectan-
gular regions. Dspectral also corresponds to the correlation coeffi-
cient measured between the mean spectrum of the BPT node and a
reference spectrum of the building material. Darea is the required
area to consider that a region can be a building.. The procedure of
the detection is the same as the roads.

4. EXPERIMENTAL RESULTS

We first provide an evaluation of the BPT construction proposed in
Section 2. The experiments have been performed using a portion
of a publicy available HYDICE hyperspectral. After removing wa-
ter absorption and noisy bands, the data contain 167 spectral bands.
Fig. 4(a) shows a RGB combination of three of them. The BPT is
computed by the procedure described in Section 2. The number of
bins to represent the histograms depends of the image range (here
Nbins = 256). The first component dimension found by the se-
quence ck is s = 3. To evaluate the quality of the BPT construction,
we extract a segmentation result involving a given number NR of re-
gions by undoing the last NR − 1 mergings over the initial partition.
In this section, we compare the partition extracted from the BPT
with the classical RHSEG [11]. In the case of RHSEG, the similar-
ity criterion used is SAM with spectral clustering weight 0.1[12]. To
evaluate the resulting partitions, the symmetric distance dsym [13]
is used as a partition quality evaluation. Having a partition P and a
ground truth GT , the symmetric distance corresponds to the mini-
mum number of pixels whose labels should be changed in partition
P to achieve a perfect matching with GT , normalized by the total
number of pixels in the image. The manually created GT is shown
in Fig. 4(b).
Fig. 4(c)(d) show the segmentation results obtained with BPT and
RHSEG, respectively. In both cases, the resulting partitions involve
63 regions. Comparing both results, the quantitive dsym and the
visual evaluation corroborates that the partition extracted from the
BPT are much closer to the ground truth than the one computed with
RHSEG. This experiment has been done with several other images
acquired by different hyperspectral sensors, but, due to space limi-
tations, we can only present one data set. However, the conclusions
were the same on the remaining dataset.

A second set of experiments are conducted now for object de-
tection and recognition. We compare the classical pixel-wise clas-
sification against the strategy proposed in section 3 for building and
road detection. The pixel-wise classification consists in detecting
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(a) RGB (b) GT

(c) BPT, 63 regions (d) RHSEG, 63 regions

Figure 4: (a) Urban Hydice RGB Composition, (b) Manually created
Ground Truth, (c) Partition extracted from BPT leading to dsym =25,
(d) Partition computed with RHSEG [11] leading to dsym =70

pixels in the image having a correlation higher than 0.9 with a refer-
ence spectrum. The first row of Fig. 5 shows the results of road and
building detection having a high correlation coefficient. The sec-
ond row of Fig. 5 illustrates the detected BPT nodes using the two
different Dref . In the case of roads, we are looking for regions hav-
ing an elongation lower than 0.3, with a correlation coefficient with
asphalt higher than 0.9 and an area larger than 15 pixels. Regard-
ing the buildings, we are looking for regions having a rectangularity
higher than 0.4, a correlation coefficient between building material
higher than 0.9 and an area smaller than 15 pixels. The results ob-
tained with the BPT corroborates the advantage of using this image
representation. The use of spectral as well as spatial descriptors of
BPT nodes outperforms the classical pixel-wise detection using only
spectral information.

(a) (b)

(c) (d)

Figure 5: First row: Road (a) and Building (b) detection using pixel
classification. Second row: Road (c) and Building (d) detection
based on BPT representation

5. CONCLUSIONS

In the context of hyperspectral images, Binary Partition Tree con-
struction and processing have been discussed in this paper. Con-

cerning the construction, two concepts have been highlighted to de-
fine the recursive merging algorithm. The first concept is the use of
statistical region models which efficiently deal with the the problem
of spectral variability for clustering hyperspectral data. The second
one is the use of a new distance-based measure depending on canoni-
cal correlations relating principal coordinates. The BPT construction
has been tested comparing partitions extracted from the BPT to par-
titions computed by classical hierarchical segmentation techniques.
The results demonstrated that regions contained in the BPT represent
regions containing a semantic content of the image. Hence, the BPT
enables the definition of a hierarchically structured set of regions to
perform object-based recognition. Here, examples of building and
road detections on BPT have been presented. The results clearly
outperform pixel-wise classification and demonstrate the genericity
of the representation.
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