SURFACE RECONSTRUCTION BY RESTRICTED AND ORIENTED PROPAGATION

Xavier Suau

Josep R. Casas

Javier Ruiz-Hidalgo

Signal Theory and Communications Department, Technical University of Catalonia
UPC-Campus Nord, C/ Jordi Girona, 1-3, 08034, Barcelona
E-Mail: {xavier.suau, josep.ramon.casas, j.ruiz} @upc.edu

ABSTRACT

This paper considers the problem of reconstructing a surface
from a point set. More specifically, we propose a method which fo-
cuses on obtaining fast surface reconstructions for visual purposes.
The proposed scheme is based on propagation in a voxelized space,
which is performed in the directions defined by a propagation pat-
tern, during an optimal number of iterations. Real-time applications
are conceivable thanks to a low execution time and computational
cost, keeping an acceptable visual quality of the reconstruction.

Index Terms— Surface Reconstruction, Mesh generation, Point
Sets, Propagation

I. INTRODUCTION

Point sets defining surfaces are very common in many recent
applications due to technical improvements in scanners and z-cams.
The size of such point sets (PS) may vary from some hundreds to
some millions of points. Therefore, computation time becomes an
important bottleneck of any PS processing algorithm. We present
in this article a novel method to obtain meshed surfaces from point
sets in a very fast, up to real-time, way.

The proposed algorithm may perform in applications where a
low computation time is essential. For example, one may think of
scene reconstruction in a multicamera environment, providing a 3D
meshed version of the scene close to real-time. Surface reconstruc-
tion of huge models (millions of points) may also be performed
in a reasonable, user-friendly time. In general, most applications
derived from reconstructed surfaces are related to visualization
of the obtained 3D object. Thus, mathematical properties of the
meshes are not as important as calculation time or first glance
appearance, for example.

Many surface reconstruction techniques have been developped
over the past years. Bernardini et al. [1] proposed the ball-pivoting
algorithm where a virtual ball of a user-specified radius scans the
PS. When the ball touches three points without containing any other
point, a triangular face is found. Poisson Reconstruction proposed
by Kazhdan ef al. in [2] solves a Poisson equation trying to best
approximate the vector field defined by the samples. In [3], Guen-
nebaud and Gross exploit Algebraic Point Set Surfaces (APSS),
which are an extension of the Point Set Surfaces representation
technique developped by Alexa et al. in [4] and [5]. A technique
to render APSS is presented by Guennebaud er al. in [6]. The
Poisson Reconstruction scheme leads to a very smooth surface
which is not able to deal with sharp features. APSS Rendering and
Ball-Pivoting are precise with sharp details but their computational
cost is prohibitive for applications close to real-time. These three
methods are implemented for the MeshLab software presented by
Cignoni et al. in [7].

Our proposal relies on a prior voxelization of the subspace in
which the PS is confined. Spatial resolution, or voxel size, is a
parameter of the algorithm, which is related to the reconstruction

This work has been partly supported by the project TEC2007-
66858/TCM PROVEC of the Spanish Government

(b)

Fig. 1. (a) Meshed surface of the hand PS (327K points) obtained
in 5.44 s with the proposed method. Ball-Pivoting, Poisson Re-
construction and APSS Rendering took 1513s, 30s and 413 s
respectively to mesh this PS. (b) Finger tips detail.

accuracy. Spatial resolution may be arbitrarily chosen by the user
depending on the required reconstruction quality and memory
resources. A second parameter of our scheme is called propagation
pattern. We will see how a smart choice for the propagation
pattern may strongly reduce the computation time while preserving
reconstruction quality.

Several PS of different sizes are used to test the proposed
algorithm for surface reconstruction. Experimental results (meshed
surfaces) obtained with our method are evaluated and compared
with the state-of-the-art methods cited above. Accuracy of the
resulting surface is measured as the Hausdorff Distance to a
groundtruth surface as proposed in [8] by Aspert et al. for their
M.E.S.H. software.

The remainder of this paper is organized as follows. In the
next section, voxelization details, the propagation algorithm and
a propagation stop threshold are presented. In Section III, the
results and performance obtained by our system are discussed and
compared to the other existing methods. Finally, in the last section,
conclusions are drawn and the direction of our future work in this
subject is presented.

II. PROPAGATION ALGORITHM

The proposed method is divided into 3 steps; voxelization,
propagation and stop, which are depicted hereafter.

II-A. Voxel Filling

The subspace B, of size [Bs, By, B.] € R?, which contains the
point set S is divided into N, x Ny, x N_ voxels as defined in
(1). Therefore, the resulting voxels are cubes with edges of length
dV, which is a parameter of our system. Voxel size dV is directly
our spatial resolution, its choice being crucial since it states a
compromise between resolution and computational load. Indeed,
reducing dV will increase spatial resolution, which offers more
texture detail and sharp features preservation. On the other hand,
high resolution implies a high computational load and memory
requirements.

The choice of dV is done by the user and should take into
account many terms such as the dimensions of the 3D model, the
density of S, the demanded resolution or the available memory
amongst others.

B .
N; = "dV-‘ it =x,Y,% (1)
Once B has been voxelized, one may proceed to associate each 3D
point in S to a voxel. As usual, every point p; € S consists of a
position P; = (z,y, z) and a color C; = (r, g, b). Three situations
may be considered depending on the number of points which are
associated to a given voxel vy:

0 points in voxel :
picvk=v— 2

1 point in voxel :
Pi € Vg = Vg < ('P»“Cz)

m points in voxel : - B
We may calculate the mean position 7 and mean color C
as (P,C) = L > (Ps,C;) of the m points associated
to vk. Then : v, — (P,C)

After the filling step, every voxel containing at least one point
is labeled as seed voxel or v°. Such voxels are characterized by
a pair (P, C) containing the interpolated position and color of the
points p; € v°. Seed voxels will perform as propagation sources
during the propagation phase.

II-B. Propagation steps

The objective of the propagation algorithm is to find the closest
points of every point in S. In order to do so, an iterative algorithm
which propagates our seed voxels is proposed.

A propagation pattern is a set of positions relative to a propaga-
tion source or seed voxel. The most common and intuitive patterns
are the 6, 18 and 26 omnidirectional (OMNI) patterns shown in
Figure 2.(a-c), which propagate seed voxels in all directions. A
more intelligent pattern may perform propagation in a 3D octant
of the space, like our 6-OCT pattern presented in Figure 2.(d).

As a matter of fact, we are trying to find pairs of neighbours,
which present a reciprocity property. Indeed, direction of neighbour
finding is of no importance. For example, when a point P is prop-
agated and encounters its neighbour Q, both know their respective
neighbour (noted P «~ Q); so the result is the same than when
point Q finds point P. Knowing this, we rapidly see that 6, 18
and 26 OMNI patterns are redundant since they propagate in all
directions.

Every pair of found neighbours will define a mesh edge, a post-
processing step being necessary to extract triangular faces from

the resulting edges. The proposed 6-OCT pattern will be used
in the experiments presented in Section III since it limits the
number redundant edges and faces of the output mesh and avoids
unnecessary calculations.

Fig. 2. The red triangle at the origin represents the source voxel,
while blue squares shape the propagation pattern. (a) 6-OMNI
pattern. (b) 18-OMNI pattern. (c) 26-OMNI voxel pattern. (d) 6-
OCT pattern.

During the first propagation iteration, those voxels surrounding
(pattern dependant) every seed voxel v° are filled. These recently
checked voxels are saved as new propagation sources for the next
iteration. The group of voxels relative to a same vy are called
seed volume or V. As iterations increase, seed volumes grow,
eventually intersecting other seed volumes. Two seed voxels v?
and vf are neighbours when their respective seed volumes V; and
V; intersect. Thus, points p; and p;, which originated both seed
voxels are neighbours too (2), a mesh edge has been found between
these two points.

ViNV; #@ = p; e Dj 2)

II-C. Stop Threshold

Propagation iterations should be stopped at the appropriate mo-
ment to avoid finding far neighbours which may create redundant
edges. The number of created edges per iteration is called edge
density or D.. Such magnitude presents a maximum D at a
low number of iterations Kmax, SO that De(Kmax) = De,op- We
choose to stop propagation when the two conditions in (3) are
verified (see the example in Figure 3).

€max

De 2 Deax
1 | Stop at iteration 5 |
A
3= VaDe, .,
K max 2-Kax iteration

Fig. 3. Example of automatic propagation stop. Propagation stops
at iteration 5 where the two conditions in (3) are verified.

(@ (b)

(d

Fig. 4. Surface reconstruction with the proposed ReOP method with (b) dV = 0.03, (c) dV = 0.01, (d) dV = 0.006. (a) Initial Dragon

data set consisting of 437,645 points.

1
(K > 2Kmax)) A (De(n) < ZDemax) = stopatiteration k (3)

As a result, since iterations are Restricted and Propagation is
directionally Oriented, the proposed method is named ReOP.

III. EXPERIMENTAL RESULTS

Experiments are carried out with four 3D models provided by
the Stanford 3D Scanning Repository: Bunny (35,947 points), Hand
(327,323 points), Dragon (437,645 points) and Buddha (543,652
points). A groundtruth meshed surface is provided along with the
PS, which is used for comparison purposes. The proposed ReOP
algorithm is evaluated against the Ball-Pivoting [1], Poisson Recon-
struction' [2] and APSS Rendering [6] algorithms. Experiments are
executed on a 64-bit Intel Xeon CPU @ 3.00GHz processor.

The Hausdorff distance (6z) metric is used to evaluate the
similarity between the obtained surface and a groundtruth surface,
giving an idea of the accuracy of the reconstruction. A second
parameter taken into account is the overall calculation time (to),
which includes memory allocation and mesh writing. Other evalu-
ated features are the number of obtained faces or the visual quality.

Results are summarized in Figure 5, where all the algorithms
are presented on the (0m,to) plane. Thus, the further right an
algorithm is placed, the more accurate the reconstruction is. The
same way, the further up, the faster. Therefore, algorithms placed
close to the upper-right corner are the ones which best accomplish
the accuracy-speed compromise. Remark that to is shown in a
logarithmic scale.

Several implementations of the algorithms are evaluated by tun-
ning the associated precision parameters (octree levels for Poisson
Reconstruction, voxel grid for APSS Rendering and dV' for ReOP).
Figure 4 shows three different implementations of the propagation
algorithm.

The proposed ReOP algorithm clearly overtakes the other tested
methods in the (0, to) plane evaluation. APSS rendering achieves
a similar quality, however its processing time is usually higher (up
to ten times slower than ReOP). Poisson Reconstruction is slightly
faster than APSS but provides a lower accuracy. The Ball-Pivoting
algorithm is enormously time consuming when dealing with large
data sets like those in Figure 5.(b-d).

Our method is the most suitable one to perform for real-time
applications. Furthermore, it has been tested that between 70%
and 80% of the overall time is due to memory allocation. Thus,
getting rid of such task will speed-up our system x5 approximately.
We may think of applications with constant voxelization (memory

MeshLab’s Poisson Reconstruction implementation fails with the Hand
data set.

allocation is done once at initialization), a room or a stage in a
multicamera environment for example, where a meshed reconstruc-
tion of the scene could be done at some frames per second. For the
moment, the current processor and memory set-up allow processing
models of 200% voxels at 2 frames per second with an acceptable
visual quality. Optimization of the code (parallelized execution on
GPU’s as in [9], [10]) and better machines will lead to performant
real-time applications.

\ Method | to[s] | OH | Faces |
Poisson 8 levels 30.8 0.000595 162,270
Poisson 9 levels 65.1 0.000184 631,480
Poisson 10 levels 109 0.000192 | 1,202,802
APSS Grid 600 143 0.000201 | 1,034,902
APSS Grid 800 298 0.000061 | 1,612,044
APSS Grid 1000 520 0.000046 | 2,641,481

ReOP dV = 0.0015 2.38 0.000086 252,329
ReOP dV = 0.0008 7.23 0.000033 735,881
ReOP dV = 0.0005 22.2 0.000025 | 1,367,336

Table I. Results on the Buddha data set (values correspond to those
in Figure 5.(d))

Table I summarizes the number of faces obtained with different
reconstructions of the Buddha PS. The processing time for the
Poisson and APSS algorithms include the PS normal extraction
step, since these methods require points equipped with normals.
Normal extraction takes about 10 to 20 seconds with our hardware.

Poisson reconstruction provides its best mesh at about 1 million
faces with 6 = 0.000184. These results are improved by APSS
rendering at the expense of a bigger output mesh of up to 2.5 mil-
lion faces with 6 = 0.000046. The proposed ReOP approach both
improves the observed results in time and accuracy, fournishing a
mesh of about 1.3 million faces for an accuracy of i = 0.000025.

Since APSS rendering needs a prior voxelization, memory
requirements may be compared to those of the proposed method.
APSS with a grid of 1000 requires 10° voxels, while ReOP with
a dV = 0.0008 (similar 0 accuracy) requires 90 x 200 x 90 =
1.62 - 10° voxels, which is a significant memory reduction. Such
difference in memory requirements may partly explain the variation
in the execution times of both methods.

Manifoldness cannot be ensured for the mesh obtained with
ReOP, which is the main drawback of the proposed scheme. The
other methods here presented do ensure such property. Never-
theless, our main objective is to create fast meshes for visual
applications, mathematical properties being of second order in this

paper.

0.1
—M— Propagation
—&—— Poisson
[J] 14 —»4¢— APSS Rendering
£ —@— Ball Pivoting
=
c
K=l
g M
) T
& 10
100 T T T T
0.000500 0.000400 0.000300 0.000200 0.000100 0.000000
RMS Hausdorff Distance
(@)
1
104
[V}
£
=
c “— 0000000
0 100 -
S
=1
o]
9]
X
i}
1000 - —#— Propagation
—&—— Poisson °
—»4¢— APSS Rendering
—@— Ball Pivoting
10000 T T T
0.001200 0.000800 0.000400 0.000000
RMS Hausdorff Distance
©

0.1
1 4
g
= 10 -
c
2
g
] 100 -
X
[}
—M— Propagation
1000 + —»4— APSS Rendering °
—@— Ball Pivoting
10000 T T T
0.020000 0.015000 0.010000 0.005000 0.000000
RMS Hausdorff Distance
(b)
1
—M— Propagation
——— Poisson
—»4¢— APSS Rendering
—@— Ball Pivoting
10 -
[V}
£ A
= \\\\\\
c
.0 100 - é
S
=1 ~—
v} —
5 ™
w M
1000 -
[]
10000 T T T
0.000800 0.000600 0.000400 0.000200 0.000000
RMS Hausdorff Distance

(d

Fig. 5. Positioning of different implementations of the studied algortihms on the Accuracy VS. Time (0, to) plane. (a) Bunny. (b) Hand.

(¢) Dragon. (d) Buddha.

IV. CONCLUSION AND FUTURE WORK

A new method to reconstruct meshed surfaces from point sets
has been presented. A propagation through a voxelized space is
performed to find the closest neighbours of every data point.
Propagation is done following a specific propagation pattern which
exploits reciprocity in neighbour finding. Seed volumes are utilized
to find the closest neighbours of every data point in a fast way.
Every pair of neighbours found defines an edge of the output mesh.

Propagation stops after the first maximum of the edge creation
density, which indicates when the closest surface points have been
found. Such threshold limits the number of redundant faces in
the reconstructed surface and also avoids performing superfluous
operations.

The proposed approach provides a reconstructed surface of a
3D model in a very fast way, up to ten times faster than the
best state-of-the-art methods tested in the experiments. Regarding
the observed execution time, real-time applications are conceivable
using the proposed propagation approach. A moderate size mesh
is obtained, its dimension being comparable to the other existing
methods. Visual assessment, as well as measured quality by Haus-
dorff distance, is similar or better than that provided by other state-
of-the-art solutions.

Adapting the propagation pattern to the topology and density of
every point set is one of the major issues of our future work. Other
tasks will focus on reducing the number of redundant faces and
optimizing the code to obtain faster reconstructions.

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]
[10]

V. REFERENCES

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and
G. Taubin, “The ball-pivoting algorithm for surface recon-
struction,” IEEE Transactions on Visualization and Computer
Graphics, vol. 5, pp. 349-359, 1999.

M. Kazhdan, M. Bolitho, , and H. Hoppe, “Poisson surface
reconstruction,” in Eurographics Symposium on Geometry
Processing, 2006.

G. Guennebaud, , and M. Gross,
surfaces,” in Siggraph, 2007.

M. Marc Alexa, J. Johannes Behr, D. Daniel Cohen-Or,
S. Fleishman, D. Levin, and C.T. Silva, “Point set surfaces,”
in Conference on Visualization, 2001.

M. Marc Alexa, J. Johannes Behr, D. Daniel Cohen-Or,
S. Fleishman, D. Levin, and C.T. Silva, “Computing and
rendering point set surfaces,” in IEEE TVCG, 2003.

G. Guennebaud, M. Germann, and M. Gross, “Dynamic
sampling and rendering of algebraic point set surfaces,” in
EUROGRAPHICS 2008, 2008, vol. 27.

P. Cignoni, M. Corsini, and G. Ranzuglia, “Meshlab: an open-
source 3d mesh processing system,” ERCIM, pp. 47-48, 2008.
N. Aspert, D. Santa-Cruz, and T. Ebrahimi, ‘“Mesh : Mea-
suring errors between surfaces using the hausdorff distance,”
in IEEE International Conference in Multimedia and Expo
(ICME), 705-708, 2002, number 1.

T. R. Halfhill, “Parallel processing with cuda,” Tech. Rep.,
Reed Electronics Group, 2008.

L. Nyland, M. Harris, and J. Prins, “Fast n-body simulation
with cuda,” Tech. Rep., NVIDIA, 2008.

“Algebraic point set

