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ABSTRACT

Illumination changes may lead to false foreground (FG) seg-
mentation and tracking results. Most of the existing FG extraction
algorithms obtain a background (BG) estimation from temporal
statistical parameters. Such algorithms consider a quasi-static BG
which does not change but slowly. Therefore, fast illumination
changes are not taken into account by the BG estimator and they
are considered as FG. The aim of the proposed algorithm is to
reduce illumination effects in video sequences in order to improve
foreground segmentation performances.

Index Terms— Illumination, Foreground Extraction, Video
Surveillance

I. INTRODUCTION

Illumination correction in video sequences is of special interest
when dealing with outdoors scenes. Such sequences are affected
by moving clouds, sunset light variation and other meteorological
phenomena which may strongly modify pixel levels. Modifications
due to this kind of situation may occur fast enough to mislead
the FG extraction algorithm. The abruptly modified pixels (i.e. by
clouds passing by) may be taken into account as FG pixels since
the algorithm does not have enough time to assimilate them as BG.
Therefore, FG objects are detected in still scenes without moving
objects, and the resulting BG model is polluted by the new pixel
levels.

Compensating illumination has been subject of study during
recent years. Multi-Scale Retinex [1] and its variational version
[2], both based on illumination low-pass filtering, help to reduce
the effects of illumination on color. A normalized color space [3]
may also be used to compensate color alteration due to lighting.
Intrinsic images have been used by [4], [5] and [6] combined with
an illumination sub-space. Even if performances are rewarding,
real-time is achieved with difficulty and knowledge of future
illumination situations is required to construct the illumination sub-
space.

Lighting changes in outdoors scenes are random and of great
variety, which implies a random modification of the video sequence
too. However, lighting changes present some common character-
istics that may be exploited in order to compensate the effects
of illumination. Actually, illumination changes usually result in a
zone-wise modification of the image, that is, pixel’s levels will be
modified the same way than in neighbour pixels. Thus, we can
say that illumination changes affect neighbourhoods (or zones) of
pixels by modifying their mean and contrast (as shown in Figure
1). The size of these zones is not defined and may even cover the
whole image.
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Fig. 1. llumination effects on a static outdoors scene

In order to be able to evaluate the performances of the proposed
algorithm our results are compared with those of a typical FG
extraction algorithm. In this paper we have used a Mixture of
Gaussians (MoG) [7] consisting of 3 gaussians with a 25-frame
training period.

The remainder of this paper is organized as follows. In the
next section, we introduce the mean and variance estimation
algorithms and their multi-resolution versions. In Section III, the
Multi-Resolution Illumination Compensation (MIC) algorithm is
presented. In Section IV, the performance obtained by our system
is discussed. Finally, in the last section, conclusions are drawn and
the direction of our future work in this subject is presented.

II. MULTI-RESOLUTION MEAN AND VARIANCE
ESTIMATION

As mentioned above, illumination changes affect video se-
quences by modifying the mean value and variance of certain zones
in each frame, the size of these zones being unknown.

We consider that illumination changes are mainly contained in
the luminance channel Y. If we want to restore the non-lightened
values of an illumination-affected frame, it seems reasonable to
estimate the mean and variance of the illuminated zones in the Y
channel. In order to do so, each frame Y of size (W x H) is
divided into (Dj, x Dj) rectangular sectors.

We subsequently calculate the mean and variance of each zone
Zi; 1,5 € [1...Dy] as follows :
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(W.,H,) = (Dﬂk, Dik) is the size of a zone and x,y € Zone; ;
For each zone Z; ;, we obtain two matrices (Mk and Vi of size
(Dy X Dy), containing the calculated means y;, ; and variances o; ;
respectively. These matrices are resized by a bilinear interpolation
to the size of the original frame. The resulting images are called :

My = bilinear (Mk) 3)
(Dy XDy )— (W x H)

Vi = bilinear (Vk) @
(D XDy )— (W X H)

Since the size of the illuminated zones may vary, we consider a
resolutions set R = {D1, D2, ..., Dr}, each Dy, being the number
of divisions per image side. i.e. Dy, = 4 = 4 X 4 = 16 zones.
For each element D, € R we calculate a mean and variance
estimation, obtaining two sets Ry = {Mi,Mz,...,Mr} and
Rv ={V1,Vz,...,VL} of estimations, which are called Multi-

Resolution Estimation.
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Fig. 2. Multi-Resolution Estimation for R = {4, 16}. (a) Original
luminance. (b) M; for D1 = 4. (¢) V1 for D1 = 4. (d) M2 for

Dy = 16. (e) V2 for Dy = 16. (Remark that (b,d) constitute R s
and (c,e) constitute Ry )
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III. MULTI-RESOLUTION ILLUMINATION
COMPENSATION (MIC)

The main purpose of the research carried out in this paper is to
compensate the effects of illumination changes in a video sequence
in order to improve FG extraction results. Our idea is to exploit
multi-resolution mean and variance masks calculated as explained
in section II to accomplish this objective.

We assume that the resolutions set R verifies our size constraint
presented in Equation (5). Actually, every image division must
be bigger than the objects to be tracked. Otherwise, it would
be impossible to determine if changes are due to illumination
variations or to objects passing by.

Size(Zoney) > Size(Objects) Vk Q)

III-A. Mean-Variance Normalization

An image I with mean p; and variance o2 can be normalized
to a given mean  and variance o2 by means of the following
expression:

T:(Ifm)-a%+u ©6)

Ideally, every frame of our sequence should be normalized
to a constant illumination no matter the situation to be faced.
However, constant illumination is impossible to achieve since the
real illumination field is unknown (it is precisely what we are
looking for). Instead of using the real illumination and trying to
remove it, our approach is to bring every frame to a constant mean
level and contrast, called nominal illumination or Y. Mean level
and variance of Yy should the chosen in such a way that they cover
the whole dynamic range. Since we work with 256 intensity levels,
the mean value of Yj is then set to o = 128. As for the variance,
we set a nominal standard deviation of oo = 40 in order to adjust
o £ 300 to the 256 levels of the image range.

Yo-{ao:zxo } M

III-B. Illumination compensation

First of all, a resolution set R = {D1, D2, ...Dr} of dimension
L must be defined. Subsequently, we calculate the multi-resolution
estimations Rjps and Ry as seen in Section II. The luminance
channel Y is then normalized according to equation (6)' with every
element of the estimation sets. Each resolution layer is weighted

by pr = i and added-up to the final illumination compensated
luminance Y.
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Y in equation (8) is illumination compensated for a great range
of illumination resolutions®. Actually, we compensate illumination
changes which light zones of size D, € R. Furthermore, the
elements and the dimension of R are to be adapted to each
application depending on the size of the expected illuminated areas
and the size of the target objects.

IV. RESULTS

Tests are effectuated on two types of scenes:

o Static sequences with no moving objects and fast illumination
changes due to clouds passing by (Scenes 1, 2 and 3).

o Dynamic sequences with moving objects such as pedestrians
and vehicles. These scenes will help to confirm tracking
performances after MIC processing.

Results are focused on static scenes for which we ideally expect no
FG detection. However, fast illumination transitions mislead MoG
algorithm, which detects large areas as new FG objects. Actually,
in order to be able to overcome illumination transitions, we may
increase MoG’s learning factor o.. Unfortunately, this solution will
make MoG algorithm /earn slow-moving objects as BG, preventing
a correct FG detection. Two main strategies are compared:

e (MIC+MoG) : Our MIC pre-processing algorithm followed
by MoG with a typical value of o = 0.005. MIC algorithm
is adjusted with a resolutions set of R = {1,4,8,16}

¢ (MoG,) : No frame pre-processing followed by MoG with
a = 0.005,0.2

Figure 3 shows how increasing « reduces the number of detected

FG pixels. Nevertheless, it has been tested in other dynamic

ldivision by (1 4+ V) is done to avoid division by zero
2equation (8) corresponds to our MIC algorithm
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Fig. 3. Sum of FG detected pixels per frame for a static sequence
(Scene 1) with 3 main illumination episodes starting at frames 60,
140 and 240 approx. (ideal detection should be 0 pixels)

sequences that objects are rapidly lost when they stop or move
slowly. Our MIC+MoG solution improves MoG,, in terms of false
FG detections, the peaks due to lighting changes being strongly
smoothed. Throughout the whole sequence, 595754 FG pixels have
been detected with MoGyg.go5, 144049 with MoGy .2 and 66354 with
the MIC+MoG solution, which represents around a 90% and 50%
reduction respectively. Furthermore, we have confirmed that object
detection and tracking is reliable in MIC-processed sequences. A
frame pre-processing with our MIC algorithm followed by a state-
of-the-art FG extraction algorithm such as MoG is an interesting
strategy to overcome heavy illumination variations. Figure 4 con-

Fig. 4. Multi-Resolution Illumination Correction results for Scene
1.(a) Original frame 143. (b) MIC-processed frame 143. (c) Orig-
inal frame 200. (d) MIC-processed frame 200.

tains the resulting MIC-processed images for two different frames
in terms of illumination. It can be apperciated how MIC brings
both images to the Y, reference luminance levels.

As an example, the frame in Figure 5.(a,b,c) corresponds to an
episode of static Scene 1 with heavy illumination transitions. It

can be clearly seen how MIC+MoG strategy drastically reduces
both the number of detected FG pixels and the number of tracked
objects (ideally, no FG pixel or object should be detected). During
the whole Scene 1 sequence, we have detected 59 false objects
with MoGo.o05 and only 9 false objects with MIC+MoG strategy.
Results for static Scenes 1, 2 and 3 are summarized in Table 1.
As for tracking, objects detected and tracked with MoGyg.o05 and
MIC+MoG strategies are compared. MoGo.o2 strategy is abandoned
because of its tracking problems with slow objects, as shown in
Figure 5.e. On the other hand, MIC+MoG strategy does not reduce
persons, or other objects, tracking capacity (Figure 5.(d.f)).
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Fig. 5. Detected FG pixels and tracked objects for static Scene 1
(a,b) and for dynamic scene with one person (c,d). (a,c) MoGo.oos
output. (b,d) MIC+MoGo.go5 output

Strategy FG pixels | Tracked objects
. MOGO‘OO5 595754 59
Seene 1: oGy, | 144049 -
MIC+MoG 66354 9

Strategy FG pixels | Tracked objects
| MoGo.oo05 843658 25
Seene 2 N 1oGo., | 176354 -
MIC+MoG 35057 1

Strategy FG pixels | Tracked objects
.| MoGog.o05 86464 29
Seene 3 —§15Go. 5363 -
MIC+MoG 2697 11

Table I. Obtained results for 3 static scenes polluted by heavy
illumination changes

The temporal evolution of MoG’s BG model for a given pixel
is presented in Figure 6, which contains the meanzstandard
deviation of each MoG,, gaussian (up to 3 gaussians). We compare
BG models obtained from the original sequence and from the MIC
pre-processed sequence. The stand-alone MoGg.oo5 algorithm uses
the 3 available gaussians throughout almost the whole sequence,



with a great amount of shifting and re-ordering® phases. This
jumping phenomena appear since MoG tries to adapt its BG
model to new pixel intensities. On the other hand, MIC+MoG
strategy uses one single gaussian, illumination effects being barely
visible. MIC+MoG solution strongly smooths the evolution of
MoG gaussians and reduces the number of used gaussians in the
BG model, which gives more degrees of freedom to be able to
account for additional actual BG changes.
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Fig. 6. Evolution of (¢ + o) of MoG gaussians for a given pixel
in Scene 1. The chosen pixel (131,94) is placed on the pavement
of the street in Figure 6.a. (a) MoG on original sequence. (b) MoG
on MIC-processed sequence.

V. CONCLUSIONS AND FUTURE WORK

The proposed MIC algorithm smoothes illumination effects
drastically, which improves FG detection with state-of-the-art al-
gorithms. Even if image contrast is modified, both the number
of wrongly detected pixels and false objects are reduced. What
is more, our frame processing does not affect real objects tracking.

Furthermore, MoG’s background model is modified by our MIC
algorithm, becoming more stable against illumination modifica-
tions. In addition, the BG is represented with a lower number
of gaussians. Reducing the number of used gaussians gives the
system more degrees of freedom to incorporate additional real BG
variations into the model.

Spatial adaption is supplied by the resolutions set R. The
elements in R give an idea of the illumination compensation
resolution, which may be adapted to different applications. The
more elements in R the better the illumination will be corrected,
a larger range of zones being processed. On the other hand,
calculations volume will considerably increase and real-time may
be more difficult to attain. Moreover, size condition (5) must be
veryfied by every element in R in order to preserve tracking
properties.

Future research will be focused on studying the temporal di-
mension of the algorithm, instead of limiting it to a per-frame
processing. The weights pi in Equation (8) may be adapted too,

3MoG gaussians are re-ordered according to their associated weights

with a view to attach importance to particular resolution levels.
Eventually, feed-backing MIC with MoG’s parameters, and vice
versa, is envisaged.
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