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ABSTRACT 
 
The lifting scheme is a useful tool to create different types 
of wavelet decompositions, including adaptive and 
nonlinear. Generalized lifting is more flexible and can 
improve lifting results, but the design of generalized 
prediction and update steps remains difficult for a given 
application. A design strategy to optimize the prediction 
step according to the image statistics is established. The 
criterion aims to minimize the detail signal coefficients 
energy. The scheme is used for lossless compression of 
several classes of images without any book-keeping or 
side information requirements. Promising results are 
reported for certain classes of images. 

 
1. INTRODUCTION 

 
Adaptive and non-linear decompositions can describe 
images in a sparser way than classical wavelets do. The 
lifting scheme [1] is an excellent tool for developing such 
decompositions, mainly because the lifting structure itself 
assures reversibility. In [2], a generalization of the lifting 
scheme was proposed in order to allow more flexible 
nonlinear decompositions. However, nonlinear processing 
has a fundamental drawback in the context of 
compression: filter design for an embedded lossy-to-
lossless code is very difficult. In this paper1, we focus on 
lossless compression. There are many applications 
requiring compression in which the original image should 
be exactly recovered, as in medical imaging because of 
regulatory issues or in remote sensing. 

In [3], we proposed an optimization criterion to design 
generalized prediction. The goal of the criterion is to 
minimize the energy of the detail coefficients energy. 
Promising results were demonstrated but the drawback of 
the approach is that the some statistical property of the 
image such as its probability density function (pdf) has to 
be known in advance. In some application, this is not a 
problem since the pdf can be fixed for a specific class of 
images and a specific lifting can be designed for this 
application. In this paper, we extend the previous 

                                                 
1 This material is based upon work partly supported by the IST program  
of the EU in the project IST-2000-32795 SCHEMA. 

approach [3] by avoiding the necessity of knowing the pdf 
beforehand. The solution consists of using adaptive 
generalized prediction steps in the lifting. More precisely, 
we propose a scheme that iteratively updates an optimized 
prediction design within the discrete generalized lifting 
framework. This prediction applied to natural images 
performs close to the LeGall wavelet via lifting used in the 
Jpeg2000 standard for lossy-to-lossless compression. For 
those images with a pdf diverging from that of natural 
images promising coding gains are obtained. Concretely, 
we apply the new prediction step to biomedical 
(mammography), remote sensing (sea surface temperature, 
SST) and synthetic images and evaluate the gains provided 
by the proposed prediction.  

In section 2, the classical and the generalized lifting 
are briefly reviewed. Section 3 focuses on the design of 
the prediction step. Results are reported in section 4 and, 
finally, conclusions are established in section 5. 

 
2. GENERALIZED LIFTING 

 
The lifting scheme (Figure 1) introduced in [1] is a well-
known method to create bi-orthogonal wavelet filters from 
other ones. Usually, a polyphase decomposition (or Lazy 
Wavelet Transform, LWT) of the input signal xo is initially 
done, obtaining an approximation x and a detail signal y. 
Then, lifting steps are performed by predicting the detail 
signal from the x samples (1) and updating the 
approximation signal with the y samples (2). The so-called 
prediction and update lifting steps improve the initial 
wavelet properties 
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Inspired in [4], a generalization of the lifting scheme 
was proposed in [2]. As can be seen in Figure 2, the 
generalized prediction and update steps combine the 
filtering stage as well as the addition of classical lifting. 
This leads to a more general framework, allowing more 
complex and possibly nonlinear operations.  

To establish a formal definition of the generalized 
steps, let A be the set of functions a from kℜ×ℜ to itself; 

kkaAa ℜ×ℜ→ℜ×ℜ⇔∈ : , such that: 
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Fig. 1. Lifting Scheme 
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Fig. 2.  Generalized Lifting Scheme 
 
{z1’[n], z2’[n-n1],.., z2’[n-nk]}= a{z1[n], z2[n-n1],.., z2[n-nk]}      

We denote the samples by z in order to maintain the 
same definition for both the prediction and the update 
steps. For the prediction (update) step, it is assumed that 
z1[n]=y[n] and z2[n]=x[n] (z1[n]=x[n] and z2[n]=y[n]). Let 
A0 be the subset of A containing all functions that do not 
modify z2[n], that is, for which the restriction to kℜ  is the 
identity: { }IdaAaA kko =⊆=

ℜ→ℜ|
| . Then, a generalized 

lifting step is any function belonging to A0.  
In order to have a reversible scheme, the generalized 

prediction and update can not be chosen arbitrarily. To get 
reversibility the generalized steps must be bijective 
functions of A0. 

As presented, the scheme assumes that the values 
taken by x and y are real numbers. However, for lossless 
compression, it is useful to consider the discrete version of 
the generalized scheme in which it is assumed that the 
input and output values of the lifting steps are integers. 
Concretely, working in the framework of discrete gray-
scale images where each pixel is represented by 8 bits, we 
assume that sample values range from -128 to 127. Let us 
call Z255 the set of integers that belong to [-128,127]. 
Then, the discrete generalized steps are functions from the 

kZZ 255255 ×  space to itself that can only modify the first 
component. Note that the output values are also restricted 
to the interval [-128,127]. The statements made for the real 
case are still valid. In particular, reversibility is obtained if 
the following a mappings are bijective: 

 

{z1’[n], z2[n-n1],…, z2[n-nk]}=a{z1[n], z2[n-n1],…, z2[n-nk]} 

For z2[n-n1], …, z2[n-nk] fixed, the set of all possible 
values of z1[n] describes a column in the 2

255255 ZZ ×  space.  
Let 

kZi
C

255∈
denote such a column: 
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As the generalized update and prediction can only modify 
the first component z1[n], they map any column 

kZi
C

255∈
to 

itself. In order to have a reversible scheme, this mapping 
should be bijective for all columns. Figure 3 illustrates the 
case where k=2.  
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Fig. 3. Discrete mapping from 2
255255 ZZ ×  to itself. The lifting 

step is reversible if all mappings from every column Cj,k 
(

kZi
C

255∈
) to itself are bijective. 

 
3. ADAPTIVE OPTIMIZED PREDICTION 

 
The optimized prediction is a transform applied to a 
sample y[n] knowing its k neighbors, x[n]. In this case, a 
column is defined as follows: 
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The filter design problem amounts to find a bijective 
mapping for every column 

kZi
C

255∈
 of the kZZ 255255 ×  space 

to the transformed column, noted 
kZi

C
255

'
∈

.Columns form a 

partition of the kZZ 255255 ×  space, so the prediction (P) 
mappings are independent. Accordingly, every mapping 
(Pi) can be designed independently from each other:    
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Given kZi 255∈ , the transform relates every input 
value y[n] one-to-one with every output value y'[n]. So, 
the output values for each i are related to the input values 
simply through a permutation matrix iP :  iii CPC =' . 

The prediction step can be seen as the union of 
card(Z255

k) permutation matrices. Thus, the complexity 
associated to this formulation grows rapidly with k. In 
practice, one has to use a low value of k (i.e., a reduced 
number of context values x[n]) or to take advantage of the 
similarities between permutation matrices that may arise.  

 
3.1. Optimized Prediction Design 
 
We aim at designing a mapping that minimizes the 

expected energy of the detail signal coefficients,  y'[n]: 
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Second equality is due to the independency of 
columns. Then, the design of the prediction function 
reduces to the definition of the optimal column mapping Pi 
(or permutation matrix iP ) for every column: 
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Fig. 4. Example of a mapping for natural images of the proposed 
prediction (solid line) and LeGall prediction (dash-dot line). 
Vertical dotted line indicates the mean value of both neighbors 
(the most probable input).  
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Fig. 5. An optimized mapping (solid line) for SST images class 
and the LeGall prediction (diagonal dash-dot straight line) for the 
same context (vertical dot lines indicate both neighbors values).  
 

Because Pi is an isomorphism, this equation can be 
expressed as: 
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Introducing the permutation matrix, we obtain 
{ } ( ) T
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which is minimized when the permutation relates input 
values of high probability with small output values.  

As a result, assuming that the conditional pdf is 
known, a column mapping is created by constructing a 
vector with input values sorted by their probability in 
descending order. Then, the first element of this vector, 
which is the most probable input sample for the given 
context, is mapped to a 0 output value (the minimum 
energy output). Then, the output value -1 is assigned to the 
vector second element, 1 to the third, 2 to the fourth and so 
on. In summary, a prediction step is performed by column 
mapping vectors which form look-up-tables (LUT) that re-
order input values according to their probabilities. LUTs 
are practical representations of the permutation matrices. 

The case of natural images illustrates the behavior of 
the proposed prediction. First, we restrict ourselves to k=2 
(assumption which holds for the rest of the paper), and 
compute the pdf of a sample y[n] given its two neighbors 
x[n] and x[n+1] for a set of natural images. Note that the 

neighbors are the same as the one used in a LeGall 
prediction step used in Jpeg2000 [5]. A clear pattern 
appears for all contexts: The conditional pdf has a 
maximum at the mean of the two neighbors and decreases 
monotonically and symmetrically on both sides. The 
resulting prediction has two parts, a linear one around the 
pdf maximum, and a nonlinear for the remaining values. 

 As Figure 4 shows, this prediction is the same as 
LeGall's, y'[n] = y[n] – [(x[n]+x[n+1])/2] in the linear part 
(input values between -125 and 50), and differs only in the 
nonlinear part, which is indeed, the part of the less 
probable values. For this reason, no gains are obtained 
coding natural images, but compression improvements 
will be attained for images with less regular pdf. Figure 5 
depicts an example where the optimized prediction 
mapping turns out to be very different from the LeGall's 
prediction mapping. In this case, the pdf is not symmetric 
with respect to the mean of the of the two neighbors and 
the optimized prediction significantly reduces detail 
coefficients energy compared to LeGall's prediction. 

 
3.2. Adaptive Probability Estimation 
 
For certain classes of images, like biomedical or 

remote sensing, a reasonable choice is to estimate the 
conditional pdf using several images of the class and then 
construct the LUTs, which should be available at coder 
and decoder in order to perform the transform and the 
inverse transform for other images. For k=2 and taking 
advantage of the symmetry observed in the pdf, such 
LUTs require around 4 Mbytes each one. Reference [3] 
reports compression gains up to 6% and 20% respectively 
for mammography and SST images. Considering that 
these images have a size up to several Mbytes, the coding 
of an even small database would justify the LUTs storage.  

However, it is possible to avoid this a priori 
knowledge if a pdf estimation is performed from the actual 
image to code. The estimation should be updated at each 
sample n in a way that permits the coder and decoder to 
reach the same results, i.e., a synchronized iterative 
estimation. In this case, the prediction is matched to the 
image statistics. Furthermore, the pdf can be estimated for 
each resolution level and each direction reaching finer 
optimization than using a single LUT for all resolution 
levels and directions.  

Non-parametric density estimation methods are suited 
for our application because they model the data without 
making any assumption about the form of the distribution. 
Kernel-based methods represent a subclass of these 
methods which construct the estimation by locating 
weighted kernel-functions at the samples index position. 
Experiments with different kernel shapes and bandwidths 
have been realized leading to similar results. We have 
chosen to use the simplest of them, the histogram, because 
it almost does not worsen results respect to other kernels 



and it has two other interesting properties for our purpose. 
First, it can be demonstrated that histogram pdf estimation 
converges to the optimal pdf which minimizes the detail 
signal energy for the image at the given resolution level 
and filtering direction. Secondly, in practice the choice of 
the histogram avoids an explicit pdf estimation that other 
choices would not allow: since at each sample only one 
histogram bin is modified, it is only necessary to re-order 
that bin in the vector that relates input probabilities with 
output values. In consequence, the time-consuming pdf re-
estimation and the sorting pass of probabilities for 
constructing the input-output vectors are avoided.  

An initial pdf estimation is required when no data is 
available. Different initial estimations could be envisaged, 
for example, an interesting approach is to use the LUT of 
the image class at hand and then refine the pdf on the fly 
for the specific image being coded. In this work, the 
chosen a priori is the pdf corresponding to natural images. 
At a given sample, the pdf estimation is done by adding 
the a priori (pdf of natural images) with the histogram of 
all samples seen until the current one. The estimated pdf is 
then used to optimize the prediction for the current 
sample.  

 
4. RESULTS 

 
For testing purposes, several images have been 
compressed with the proposed 1-D adaptive optimized 
prediction with 2-taps and followed by the EBCOT coder 
[5]. Note that no update stage is used. The image is first 
filtered vertically and then, only approximation signal is 
filtered horizontally, resulting in a three-band 
decomposition. It has been observed that there is no gain 
in applying the horizontal filter on the detail signal. The 
pdf is estimated twice at each resolution level, vertically 
and horizontally. For comparison, images are also coded 
with lossless Jpeg2000 (using LeGall filter with the 
classical lifting scheme) and with the fixed prediction 
(assuming the pdf is available for this image class) and 
followed by EBCOT. Table 1 shows results for 4 
resolution level decompositions.  

As explained, optimized prediction when applied to 
natural images tends to perform slightly worse than LeGall 
filter for all resolution levels. The fixed prediction method 
improves the results by 6% for mammography and 19% 
for SST images respect to Jpeg2000. Adaptive optimized 
prediction performs 4.5% better than Jpeg2000 for 
mammography and 18% better for SST images, that is, 
only slightly worse than fixed method but without the 
drawback of keeping a LUT in memory for every image 
class. For synthetic images (which cannot be treated as a 
class of image) the adaptive prediction gives compression 
rates up to 80% better than LeGall's. Both synthetic image 
examples in table 1 come from the official Jpeg2000 test 
set.  

       
 

Fig. 6. Example of a Sea Surface Temperature image (left) and a 
mammography (right). 
 

Bpp Jpeg2000 Fixed Pred. Adapt. Pred.
SST (3 Images) 2.874 2.325 2.356

Mamnography (5 Im.) 2.444 2.302 2.333
Cmpnd1 2.082 ------- 1.352

Chart 3.088 ------- 3.038  
 

 

Table 1. Mean values for SST and Mammography classes and 
for 2 synthetic images using 4 resolution levels.  Results in Bpp. 

 

5. CONCLUSIONS 
 
The generalized lifting scheme framework is used to 
derive a prediction step that aims to minimize the detail 
signal energy given an estimation of the conditional pdf of 
a sample. In this paper, we have shown how the 
conditional pdf does not need to be known in advance and 
can be estimated iteratively. The proposed prediction is 
nonlinear because of the mapping and adaptive as the pdf 
is progressively estimated while processing the image. 
Good results are obtained for images with a pdf 
considerably different from that of natural images, like 
biomedical or synthetic, and especially good results arise 
when the image is large enough to obtain a precise pdf 
estimation for most of the contexts. In our experiments, 
this happens for the SST images. Even if our filter support 
is smaller than LeGall's, compression gains are up to 20%. 
Note that larger supports seem to be difficult to handle in 
practice if the pdf does not show any structure. Moreover, 
to improve these results, it would be interesting to design 
an optimized update step following a strategy similar to 
the one described for the prediction. This will be the focus 
of our future research. 
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