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ABSTRACT 

Lifting scheme is a useful tool to create different types of  
wavelets, including adaptive and nonlinear decompositions. 
Generalized lifting scheme is more flexible and can improve 
lifting results, but the design of generalized prediction and 
update is a difficult task. This paper proposes a design strategy 
to optimize the prediction step, in the sense of minimizing 
detail signal energy, and shows some possible applications. 
Promising results are reported for certain classes of images.  

1. INTRODUCTION 

Wavelet multi-resolution decomposition of images have 
shown their efficiency in many image processing areas, 
and specifically in compression. However, due to the 
non-stationarity of the image signal, efforts were 
naturally focused on the creation of adaptive schemes 
that modify the transform according to local signal 
characteristics [1]. The main goal is to adaptively 
choose a good wavelet basis for each sample of the 
image so that local statistics are taken into account. As a 
result, a compact representation is obtained for all kind 
of areas because wavelet transform is adapted to every 
signal point.  

Lifting scheme is a suitable framework for 
developing time-varying/nonlinear wavelet filter banks, 
mainly because the lifting structure itself assures 
reversibility. In [2], a generalization of the lifting 
scheme was proposed in order to include information 
given by the same branch to be filtered and to allow 
nonlinear combinations of the samples between the two 
branches. Moreover, new conditions to assure 
reversibility were required and established. The 
generalized lifting scheme may potentially improve the 
transform properties, but the framework is essentially 
devoted to nonlinear processing and it implies two 
fundamental drawbacks. First, the wavelet multi-
resolution framework of nested subspaces for signal 
description is lost. Second, in the context of 
compression, filter design for an embedded lossy-to-
lossless code becomes very difficult, since frequency-
band notion disappears and inter-band relations are less 

obvious. In addition, the output may not be a continuous 
function of the input samples and so, quantification 
errors may be magnified.  

In [2], we also proposed a generalized discrete 
prediction step and discussed its interest for lossless 
compression. In this paper we formulate the design of 
the prediction step as an optimization problem that 
depends on the probability density function of the 
signal. Moreover, we apply the resulting lifting for 
biomedical images (mammography) and remote sensing 
images (sea surface temperature) and evaluate the gains 
provided by the proposed prediction.  

The organization of this paper is as follows: In 
Section 2, the classical, the adaptive and the generalized 
lifting are briefly reviewed. Section 3 focuses on the 
optimization of the prediction step. Experiments are 
reported in section 4 and, finally, conclusions are 
established in section 5. 

2. LIFTING SCHEME, ADAPTIVE LIFTING 
AND GENERALIZED LIFTING 

The lifting scheme (Figure 1) introduced by Sweldens 
[3] is a well-known method to create bi-orthogonal 
wavelet filters from other ones. Usually, a polyphase 
decomposition (LWT) of the input signal xo is initially 
done, obtaining an approximation signal x and a detail 
signal y. Then, lifting steps are performed by predicting 
the detail signal from the x samples (1) and updating the 
approximation signal with the y samples (2). The so-
called prediction and update lifting steps improve the 
initial wavelet properties 

[ ] [ ] [ ]xPnyny −='                        (1) 
[ ] [ ] [ ]'' yUnxnx +=                        (2) 

Several lifting steps may be concatenated in order to 
reach the desired properties for the wavelet basis. These 
prediction and update operators may be a linear 
combination of x and y, respectively, or any nonlinear 
operation, since by construction the lifting scheme is 
always reversible.  
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Figure 1. Lifting Scheme 

The adaptive lifting scheme [4] is a modification of 
the classical lifting. Figure 2 illustrates an example of 
adaptive update step followed by a fixed prediction step. 
At each sample n, an update operator is chosen 
according to a decision function that depends on y, but 
that might also depend on the sample [ ] xnx ∈  being 
updated. In this case, a problem arises because the 
decoder does not know the sample x[n] used at the coder 
for the decision. Instead, the decoder has access to x'[n], 
the updated version of x[n] through an unknown update 
filter. Therefore, the challenge is to find a decision 
function and a set of filters which allow reproducing the 
decision at the decoder, thus obtaining a reversible 
decomposition scheme.  
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Figure 2.  Adaptive Update Lifting Scheme 

 

A generalization of the lifting scheme was proposed 
in [2]. As can be seen in Figure 3, the generalized 
prediction and update steps combine the filtering stage 
as well as the addition of classical lifting. This leads to a 
more general framework, allowing more complex, 
possibly adaptive or nonlinear operations. 
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Figure 3.  Generalized Lifting Scheme 

 

To establish a formal definition of the generalized 
prediction and update, let A be the set of functions a 
from kℜ×ℜ to itself: 

kkaAa ℜ×ℜ→ℜ×ℜ⇔∈ : , such that: 
{z1’[n], z2’[n-n1], …, z2’[n-nk]} = 
                         a {z1[n], z2[n-n1], …, z2[n-nk]}       
We denote the samples by z in order to maintain the 

same definition for both the prediction and the update 
steps. For the prediction (update) step, it is assumed that 
z1[n]=y[n] and z2[n]=x[n] (z1[n]=x[n] and z2[n]=y[n]). Let 

A0 be the subset of A containing all functions that do not 
modify z2[n], that is, for which the restriction to kℜ  is 
the identity: { }IdaAaA kko =⊆=

ℜ→ℜ|
| . Then, a 

generalized lifting step is any function belonging to A0.  
In order to have a reversible scheme, the generalized 

prediction and update cannot be chosen arbitrarily. To 
attain reversibility the generalized steps must be 
bijective functions of A0. 

As presented, the scheme assumes that the values 
taken by x and y are real numbers. However, the proper 
design of the resulting generalized prediction and update 
steps is very difficult to handle. A possible solution is to 
consider the discrete version of the generalized lifting 
scheme. To this goal, we assume that the values taken by 
x and y are integers, and that the generalized steps 
outputs are also integers.  We consider the framework 
for discrete gray-scale images where each pixel is 
represented by 8 bits. Without loss of generality, we 
assume that sample values range from -128 to 127. Let 
us call Z255 the set of integers that belong to the interval 
[ ]127,128− . The discrete generalized update and 
prediction are now functions from the kZZ 255255 ×  space 
to itself that can only modify the first component. Note 
that the output values are also restricted to the interval   
[-128,127]. The statements made for the real case are 
still valid. In particular, reversibility is obtained if the 
following  a mappings are bijective: 
{z1’[n], z2[n-n1],…, z2[n-nk]}=a{z1[n], z2[n-n1],…, z2[n-nk]} 

 

For z2[n-n1], …, z2[n-nk] fixed, the set of all possible 
values of z1[n] describes a column in the 2

255255 ZZ ×  
space. Let 

kZi
C

255∈
denote such a column: 

[ ] [ ] [ ]{ }kkZi
innzinnznzC k =−=−=

∈ 21121 ,,,
255

K  

As the generalized update and prediction can only 
modify the first component z1[n], they map the column 

kZi
C

255∈
to itself. In order to have a reversible scheme, the 

mapping of 
kZi

C
255∈

to itself should be bijective for all 

columns. Figure 4  illustrates the case where k=2.  

mapping

z2 [n+1]

z2 [n]

z1[n]

z2 [n+1]

z2 [n]

z’1 [n]

C’j,k
Cj,k

mappingmapping

z2 [n+1]

z2 [n]

z1[n]

z2 [n+1]

z2 [n]

z’1 [n]

C’j,k
Cj,k

 
 

Figure 4. Discrete mapping from 2
255255 ZZ ×  to itself. 

The lifting step is reversible if all mappings from every 
column Cj,k ( kZi

C
255∈

) to itself are bijective. 



3. PREDICTION DESIGN  

Once the previous definitions have been stated, the 
critical problem is to design useful generalized lifting 
steps for specific applications. In this paper, we consider 
lossless compression. This section focuses on the design 
of a prediction step, in order to apply an appropriate 
transform to sample y[n] knowing its neighbors, x[n]. In 
this case, we define a column as: 

[ ] [ ] [ ]{ }kkZi
innxinnxnyC k =−=−=

∈
,,, 11
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The filter design problem amounts to find a 
mapping for every column 

kZi
C

255∈
 of the kZZ 255255 ×  

space to the transformed column, noted 
kZi

C
255

'
∈

. 
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For the transform to be reversible, every column 
mapping should be bijective. In addition, columns form 
a partition of the kZZ 255255 ×  space, so the prediction (P) 
mappings are independent Accordingly, every mapping 
(Pi) can be designed independently from each other.    
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Given kZi 255∈ , the transform relates every input 
value [ ] 255Zny ∈  one-to-one to every output 
value [ ] 255' Zny ∈ . So the output values for each i are 
related to the input values simply through a permutation 
matrix. 

iii CPC ='  

The prediction step can be seen as the union of 
card(Z255

k) permutation matrix, iP . Consequently, the 

complexity associated to this formulation grows rapidly 
with k. In practice, one has to use a low value of k  (i.e., 
a reduced number of context values x[n]) or to take 
advantage of the similarities between permutation 
matrices that may arise. 

State-of-the-art entropy coders profit from several 
characteristics of wavelet coefficients. Specifically, they 
tend to increase their performance when the coefficients 
energy is minimized. As a result, we aim at designing a 
mapping that minimizes the expected energy of the 
detail signal, y'[n]. 
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Second equality is due to the independency of columns. 
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So, the design of the prediction function reduces to 
the definition of the optimal column mapping Pi  ( or 

permutation matrix iP ) for all columns: 
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This equation, because of Pi is an isomorphism, can be 
expressed as 
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Where ( ) ( )( )ixyPixyPvi ===−== |127...|128 . 
Introducing the permutation matrix, we obtain 
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which is minimized when permutation relates input 
values of high probabilities with small output values.  

Then, assuming that the pdf is known, a column 
map is created by constructing a vector with input 
values sorted by their probability in descending order. 
The first element of this vector, which is the more 
probable input sample for the given context, is assigned 
(mapped) to a 0 output value (the minimum energy 
output). Following, 1 is assigned to the vector second 
element, –1 to the third, 2 to the fourth and so on. In 
conclusion, a prediction step is performed by column 
mappings which are look-up-tables that re-order input 
values according to their probabilities. These look-up-
tables are different and more practical representations of 
permutation matrices.  

4. EXPERIMENTS AND RESULTS 

In this section, we apply the previous design strategy to 
three kind of images, natural, biomedical images 
(mammography) and remote sensing images (sea 
surface temperature, SST). The last two image classes 
have been chosen because of their pdf, which 
considerably differs from that of natural images. We 
restrict ourselves to k=2, that is, the probability 
distribution function of a sample used for the prediction 
design is estimated conditioned to its two neighbors.  

The decomposition is followed by an entropy coder. 
Two are used for the experiments: SPIHT [5] and the 
EBCOT from the JPEG2000 standard [6]. Although 
frequency-band interpretation is not valid for this 
nonlinear scheme, we consider here a transform band as 
a subset of samples from which we expect to share the 
same  statistics, and these bands are coded as if they 
were obtained from the usual time-frequency wavelet 
decomposition. This assumption is surely not optimal, 
but it does not seem to worsen performance 
significantly.  



 

Figure 5. Pdf (histogram) of y[n] (x axis) conditioned to 
the mean value of its two vertical neighbors (y axis) for 

the set of natural images. 
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Figure 6.  Mapping for natural images. Vertical line 

at -28 marks the value of neighbor samples. A linear 
part on the left hand side (input values between -128 
and 72) and a nonlinear part on the right hand side 
(input values between 73 and 127) can be observed.  

4.1. Natural images 

The probability distribution function of a sample y[n] 
conditioned to the value of its two vertical neighbors, 
x[n] and x[n+1], have been extracted from a set of seven 
natural images (those of table 1). Figure 5 partly 
represents this pdf: it is a histogram depicting the 
frequency of apparition of a sample value in function of 
the mean of its two neighbors values. A complete 
representation would have 4 dimensions, since the 
histogram depends of both neighbors values, not only its 
mean. A common pattern has been observed for all 
contexts in this pdf.  Concretely, it has a maximum at 
the mean of the two neighbors, (x[n]+x[n+1])/2, an 
decreases monotonically and symmetrically on both 
sides. This observation allows us to avoid the 
implementation of the prediction step by means of the 
look-up table design described in the previous section.  

Rate (bytes)         2 resolution levels          3 resolution levels
Image / Filter LeGall Opt. Pred. LeGall Opt. Pred.

Lenna 203402 190142 159958 157030
Peppers 212171 215093 172529 172552

Girl 195707 197849 149062 150920
Baboon 235983 224736 210328 211192
Barbara 212913 199905 178565 172672

Cameraman 55100 48273 42524 40892
Goldhill 52731 53262 48545 48390
Mean 166858 161323 137359 136235  

 

Table 1. Natural Image Lossless compression with 
SPIHT coder. 

 

For testing purposes, the seven images have been 
compressed with this one dimension 2-taps prediction 
and a SPIHT coder. Note that no update stage is used. 
The image is first filtered vertically and the 
approximation signal is filtered horizontally, resulting in 
a three-band decomposition. The same prediction is 
used vertically and horizontally for all resolution levels.  

For comparison, results with the LeGall wavelet 
used in JPEG2000 standard for lossy-to-lossless 
compression are also shown. It is worth to note the 
support of these decompositions. While LeGall low-low 
band output samples have a support of 5x5 input 
samples, and 5x3, 3x5 and 3x3 samples the three other 
bands, the proposed scheme is a decimation for the 
approximation band and the other two bands have a 
support of only 3 samples. Despite of this, our 
prediction (table 1) performs better for 2 resolution 
levels and marginally better for 3 resolution levels.  

However, with EBCOT coder very similar results 
were obtained for both decompositions. This suggests 
that the design strategy in the case of natural images 
does not provide a prediction scheme that is 
significantly different from the LeGall linear case. In 
order to clarify this point, let us analyze the prediction 
resulting from the optimization strategy. 

The kind of prediction mapping that arises from the 
pdf of natural images has two differentiated parts, a 
linear and a nonlinear part. Figure 6 shows the 
prediction mapping when the context x[n]=x[n+1]=-28. 
The context value is indicated by a vertical line at -28. 
Input values between -128 and 72 are linearly mapped 
to output values between -100 and 100. This mapping is 
equivalent to the linear combination:  

y'[n] = y[n] - (x[n]+x[n+1])/2 
This linear part of the mapping is due to the pdf that 

has a maximum for (x[n]+x[n+1])/2 and that decreases 
monotonically and symmetrically on both sides. For 
input values above 72, the mapping is highly nonlinear 
but it arises from our choice to work with output values 
between -128 and 127. As a result of this analysis, we 
can see that for most probable input values, the mapping 
is the same as the LeGall filter. Therefore powerful 
coder, as EBCOT, returns practically the same results 
for both decompositions.  



Therefore, there is potentially more compression to be 
gained for those images belonging to a class whose pdf 
differs significantly from that of natural images. Next 
subsections illustrate some results for two classes of 
medical and satellite images. 

4.2. Medical images 

 
To realize the experiment for biomedical images we 
have selected a set of 11 mammography images from 
our database. Figure 7 shows an example. Their size is 
about 1 Mbyte without compression. Six images are 
used to estimate the pdf for this type of images. The 
resulting pdf does not exhibit a regular pattern as in the 
case of natural images.   

As figure 8 shows, mammography images pdf is not 
as structured as natural images pdf. It is not symmetrical 
neither decreases monotonically. Usually, several 
maxima appear and also, the darker values are rather 
probable in most of the contexts. Figure 9 depicts the 
mapping when x[n]=x[n+1]=-88. As can be seen, in this 
case the mapping of the most probable input values 
(values around -88) is already nonlinear.  

The decomposition is performed for the other 5 
images and compressed with the EBCOT. For 
comparison, the same process is realized using the 
LeGall transform. Results (Table 2) are 5 to 6% better 
for the generalized prediction for all resolution levels.  

 

 
 

Figure 7.  Example of a mammography image. 

 
Figure 8. Pdf (histogram) of y[n] (x axis) conditioned to 
the mean value of its two vertical neighbors (y axis) for 

the set of mammography. 
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Figure 9. Example of mapping  for mammography. 
Vertical line marks the value of the two neighbor 

samples (which is the same).  

4.3. SST images 

The last experiment applies the optimized prediction to 
a set of images of  the sea surface temperature (SST) 
obtained with the AVHRR/2&3 sensors from the NOAA 
satellite series. An example is shown in figure 10. 
Images size range from 5 to 7 Mbytes. This specific set 

Table 3. SST images lossless compression with EBCOT. 

Table 2. Mammography. Lossless compression with EBCOT. 

Rate (bytes)                 2 resolution levels               3 resolution levels                4 resolution levels
Image / Filter LeGall (jpg2k) Opt. Pred. LeGall (jpg2k) Opt. Pred. LeGall (jpg2k) Opt. Pred.

Mam-7 400109 388646 376297 364153 371006 358588
Mam-8 446962 428159 418873 399129 412455 392471
Mam-9 409648 401539 382768 374069 376228 367613

Mam-10 240535 217647 215511 192471 209235 186559
Mam-11 255827 230639 228213 202218 220197 194732
Mean 350616 333326 324332 306408 317824 299993

Rate (bytes)                2 resolution levels               3 resolution levels               4 resolution levels
Image / Filter LeGall (jpg2k) Opt. Pred. LeGall (jpg2k) Opt. Pred. LeGall (jpg2k) Opt. Pred.

SST AfricaNW 4 2033824 1682236 2036641 1611577 2036443 1592365
SST AfricaNW 5 1590859 1310141 1590796 1256018 1590782 1242411



is devoted to the African northwest coast and forms a 
huge image corpus, so modeling the pdf is worth 
compared to the gains in compression.  

Three SST images are used to estimate the pdf. The 
resulting mapping is stored in memory and so, 
prediction is performed using look-up tables. The 
conditional pdf (Figure 11) of this kind of images 
significantly differs from that of natural images. The 
most light and dark values are highly probable for all 
context. Earth regions are almost binary. In these 
circumstances LeGall prediction performs poorly, so 
there is much to be gained escaping from the linear 
processing.  Figure 12 shows and example of mapping 
when x[n]=-1 and x[n+1]=12. As can be seen, the 
optimized prediction mappings for these images are 
quite nonlinear.  

Two other SST images where compressed by these 
means followed by EBCOT. A gain of 20% is obtained 
compared to lossless JPEG2000 (Table 3). For the 
SPIHT coder gains are even larger in terms of bit 
saving. For instance, the image SST North Africa 5 is 
compressed to 3034846 bytes with optimal prediction, 
and only to 3451307 bytes with the LeGall 
decomposition.  
 

 
 

Figure 10.  Example of a Sea Surface Temperature (SST) 
image. 

 

Figure 11. Probability distribution function for the set of 
SST images. 
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Figure 12. Example of mapping  for SST images. The 
two vertical lines mark the value of both neighbors  

5. CONCLUSIONS 

The generalized lifting scheme framework is used in 
this paper to derive an optimized prediction step that 
minimizes the detail signal energy.  It is used for the 
decomposition of different types of images. Results are 
promising, and even very good for the SST images. This 
is because they have a pdf that results in a prediction 
step differing considerably from LeGall filter. Even if 
the filter support is smaller, compression gains are up to 
20% better. Anyway, a major difficulty appears at this 
point, since larger supports seem to be difficult to 
handle in practice if the pdf does not show any 
structure. An other solution to improve the results would 
be to design an optimized update step following a 
strategy similar to the one described in this paper for the 
prediction. We will study these points in the future.  
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