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Abstract

In the last years, neural networks (NN) have evolved from laboratory environments
to the state-of-the-art for many real-world problems. It was shown that NN models
(i.e., their weights and biases) evolve on unique trajectories in weight space during
training. Following, a population of such neural network models (referred to as
model zoo) would form structures in weight space. We think that the geometry,
curvature and smoothness of these structures contain information about the state
of training and can reveal latent properties of individual models. With such model
zoos, one could investigate novel approaches for (i) model analysis, (ii) discover
unknown learning dynamics, (iii) learn rich representations of such populations,
or (iv) exploit the model zoos for generative modelling of NN weights and biases.
Unfortunately, the lack of standardized model zoos and available benchmarks
significantly increases the friction for further research about populations of NNs.
With this work, we publish a novel dataset of model zoos containing systematically
generated and diverse populations of NN models for further research. In total
the proposed model zoo dataset is based on eight image datasets, consists of 27
model zoos trained with varying hyperparameter combinations and includes 50’360
unique NN models as well as their sparsified twins, resulting in over 3’844’360
collected model states. Additionally, to the model zoo data we provide an in-depth
analysis of the zoos and provide benchmarks for multiple downstream tasks. The
dataset can be found at www.modelzoos.cc.

1 Introduction

The success of Neural Networks (NN) is surprising, considering the hard optimization problem to
be solved during training of NNs. Specifically, NN training is NP-complete [2], the loss surface and
optimization problem are non-convex [9, 17, 31] and the parameter space to fit during training is high
dimensional [3]. Additionally, NN training is sensitive to random initialization and hyperparameter
selection [19, 32]. Together, this leads to an interesting characteristic of NN training: given a dataset
and an architecture, different random initializations or hyperparameters lead to different minima
on the loss surface and therefore result in different model parameters (i.e., weights and biases).
Consequently, multiple training results in different NN models. The resulting population of NN
(referred to as model zoo) is an interesting object to study: Do individual models of the model zoo
have something in common? Do they form structures in weight space? What can we infer from
such structures? Can we learn representations of them? Lastly, can such structures be exploited to
generate new models with controllable properties?

These questions have been partially answered in prior work. Theoretical and empirical work demon-
strates increasingly well-behaved loss surfaces for growing number of parameters [17, 8, 32]. The
shape of the loss surface and the starting point is determined by hyperparameters and the initialization,
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Figure 1: The proposed dataset of model zoos is trained on several image dataset with two CNN architectures
and a multiple configurations of hyperparameters. The resulting population of neural network models is
vectorized and made available with all meta-data such as the generating factors of the model zoo as well as
the model properties such as accuracy, generalization gap and other. Potential use cases are (a) model property
prediction, (b) inference of learning dynamics, (c) representation learning, or (d) model generation.

respectively [32]. NN training navigates the loss surface with iterative, gradient-based update schemes
smoothed by momentum. The step length along a trajectory as well as the curvature are determined
by the change of the loss as well as how aligned the subsequent updates are [4, 49]. Together,
these findings suggest that populations of NN models evolve on unique and smooth trajectories in
weight space. Related work has empirically confirmed the existence of such structures in NNs [11],
demonstrated the feasibility to learn representations of them, showed that they encode information
on model properties [55, 12, 50] and can be used to generate unseen models with desirable proper-
ties [52, 51, 64, 26] To thoroughly answer the questions above, a large and systematically created
dataset of model weights is necessary.

Unfortunately, so far only few model zoos with specific properties have been published [55, 12, 54, 50].
While many machine learning domains have standardized datasets, there is no model zoo nor a
benchmark to evaluate and compare against. The lack of a standardized model zoos has three
significant disadvantages: (i), existing model zoos are usually designed for a specific purpose and of
limited general utility. Their design space is rather sparse, covering only small portions of all available
hyperparameter combinations. Moreover, some existing zoos are generated on synthetic tasks and
are small, containing only a small population of models; (ii), researchers have to choose between
using an existing zoo or generating a new one for each new experiment, weighing disadvantages of
existing zoos against the effort and computational resources required to generate a new zoo; (iii), a
new model zoo causes subsequent work to lose comparability to existing research. Therefore, the
lack of a benchmark model zoo significantly increases the friction for new research.

Our contributions: To study the behaviour of populations of NNs, we publish a large-scale model zoo
of diverse populations of neural network models with controlled generating factors of model training.
Special care has been taken in their design and the used protocols for training. To do so, we have de-
fined and restricted the generating factors of model zoo training to achieve desired zoo characteristics.

The zoos are trained on eight standard image classification datasets, with a broad range of hyper-
parameters and contain thousands of configurations. Further, we add sparsified model zoo twins to
each of these zoos. All together, the zoos include a total of 50’360 unique image classification NNs,
resulting in over 3’844’360 collected model states.

Potential use-cases for the model zoo include (a) model analysis for reliability, bias, fairness, or
adversarial vulnerability, (b) inference of learning dynamics for efficiency gain, model selection or
early stopping, (c) representation learning of such populations, or (d) model generation. Additionally,
we present an analysis of the model zoos and a set of experimental setups for benchmarks on these
use-cases and initial results as foundation for evaluation and comparison.

With this work we provide a standardized dataset of diverse model zoos connected to popular image
datasets, its corresponding meta-data and performance evaluations to the machine learning research
community. All data is made publicly available to foster community building around the topic and to
provide a ground for use beyond the defined benchmark tasks. An overview of the proposed dataset
and benchmark as well as potential use-cases can be found in Fig. 1
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2 Existing Populations of Neural Networks Models

With the increase in usage of neural networks, requirements for evaluation, testing and certification
have grown. Methods to analyze NN models may attempt to visualize salient features for a given
class [62, 25, 61], investigate the robustness of models to specific types of noise [66, 7], predict model
properties from model features [58, 24, 6] or compare models based on their activations [46, 42, 44]
However, while most of these methods rely on common (image) datasets to train and evaluate their
models, there is no common dataset of neural network models to compare the evaluation methods on.
Model zoos as common evaluation datasets can be a step up to evaluate the evaluation methods.

There are only few publications who use model zoos. In [35], zoos of pre-trained models are used as
teacher models to train a target model. Similarly, [53] propose a method to learn a combination of the
weights of models from a zoo for a new task. [65] uses a zoo of GAN models trained with different
methods to accelerate GAN training. To facilitate continual learning, [47] propose to generate zoos
of models trained on different tasks or experiences, and to ensemble them for future tasks.

Larger model zoos containing a few thousand models are used in [55] to predict the accuracy of the
models from their weights. Similarly, [12] use zoos of larger models to predict hyperparameters from
the weights. In [16], a large collection of 3x3 convolutional filters trained on different datasets is
presented and analysed. Other work identifies structures in the form of subspaces with beneficial prop-
erties [37, 56, 1]. [50] use zoos to learn self-supervised representations on the weights of the models in
the zoo. The authors demonstrate that the learned representations have high predictive capabilities for
model properties such as accuracy, generalization gap, epoch and various hyperparameters. Further,
they investigate the impact of the generating factors of model zoos on their properties. [52, 51] demon-
strate that learned representations can be instantiated in new models, as initialization for fine-tuning
or transfer learning. This work systematically extends their zoos to more datasets and architectures.

3 Model Zoo Generation

The proposed model zoo datasets contain systematically generated and diverse populations of neural
networks. Since the applicability of the model zoos for downstream tasks largely depends on the com-
position and properties of the zoos, special care has to be taken in their design and the used protocol
for training. The entire procedure can be considered as defining and restricting the generating factors
of model zoo training with respect to their latent relation of desired zoo characteristics. The described
procedure and protocol could be also used as general blueprint for the generation of model zoos.

In our paper, the term architecture means the structure of a NN, i.e., set of operations and their
connectivity. We use ’model’ to denote an instantiating of an architecture with weights over all stages
of training, ’model state’ to denote the model with the specific state of weights at a specific training
epoch, and the weights w to denote all trainable parameters (weights and biases).

3.1 Model Zoo Design

Generating Factors Following [55], we define the tuple {D,�,A} as a configuration of a model
zoo’s generating factors. We denote the dataset of image samples with their corresponding labels
as D. The NN architecture is denoted by A. We denote the set of hyperparameters used for training,
(e.g., loss function, optimizer, learning rate, weight initialization, seed, batch-size, epochs) as
�. While dataset D and architecture A are fixed for a model zoo, � provides not only the set of
hyperparameters but also configures the ranges for individual hyperparameter such as learning
rate for model zoo generation. Training with such differing configurations {D,�,A} results in a
population of NN models i.e., the model zoo. We convert the weights and biases of each model to
a vectorized form. In the resulting model zoo W = {w1, ....,wM}, wi denotes the flattened vector
of the weights and biases of one trained NN model from the set of M models of the zoo.

Configurations & Diversity The model zoos have to be representative of real world models, but
also diverse and span an interesting range of properties. The definition of diversity of model zoos, as
well as the choice of how much diversity to include, is as difficult as in image datasets, e.g. [10, 13].
Model zoos can be diverse in their properties (i.e., performance) as well as in their generating factors
�, or in their weights w. We aim at generating model zoos with a rich set of models and diversity in
these aspects. As these zoo properties are effects of the generating factors, we tune the diversity of
the generating factors and evaluate the diversity in Section 4.
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Table 1: Generating factors of the model zoos. Several values for each parameter define the grid. Arch
denotes the architecture: CNN (s) - small CNN architecture, CNN (m) - medium CNN architecture,
RN-18 - ResNet-18. Init denotes the initalization methods: U - uniform, N - normal, KU - Kaiming
Uniform, KN - Kaiming Normal. Activation denotes the activation function: T - Tanh, S - Sigmoid,
R - ReLU, G - GeLU. Optim denotes the optimizer: AD - Adam, SGD - Stochastic Gradient Descent.
Models with learning rates denoted with * have been trained with a one-cycle LR scheduler, the listed
LR is the maximum value.

Dataset Arch Config Init Activation Otpim LR WD Dropout Seed

MNIST
CNN (s) Seed U T AD 3e-4 0 0 1-1000
CNN (s) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-3, 1e-4 0, 0.5 ⇠ 10
CNN (s) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-3, 1e-4 0, 0.5 1-10

F-MNIST
CNN (s) Seed U T AD 3e-4 0 0 1-1000
CNN (s) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-3, 1e-4 0, 0.5 ⇠ 10
CNN (s) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-3, 1e-4 0, 0.5 1-10

SVHN
CNN (s) Seed U T AD 3e-3 0 0 1-1000
CNN (s) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-3, 1e-4, 0 0, 0.3, 0.5 ⇠ 10
CNN (s) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-3, 1e-4, 0 0, 0.3, 0.5 1-10

USPS
CNN (s) Seed U T AD 3e-4 1e-3 0 1-1000
CNN (s) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-2, 1e-3 0, 0.5 ⇠ 10
CNN (s) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-2, 1e-3 0, 0.5 1-10

CIFAR10
CNN (s) Seed KU G AD 1e-4 1e-2 0 1-1000
CNN (s) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3 1e-2, 1e-3 0, 0.5 ⇠ 10
CNN (s) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3 1e-2, 1e-3 0, 0.5 1-10

CIFAR10
CNN (m) Seed KU G AD 1e-4 1e-2 0 1-1000
CNN (m) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3 1e-2, 1e-3 0, 0.5 ⇠ 10
CNN (m) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3 1e-2, 1e-3 0, 0.5 1-10

STL (s)
CNN (s) Seed KU T AD 1e-4 1e-3 0 1-1000
CNN (s) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-2, 1e-3 0, 0.5 ⇠ 10
CNN (s) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-2, 1e-3 0, 0.5 1-10

STL
CNN (m) Seed KU T AD 1e-4 1e-3 0 1-1000
CNN (m) Hyp-10-r U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-2, 1e-3 0, 0.5 ⇠ 10
CNN (m) Hyp-10-f U, N, KU, KN T, S, R, G AD, SGD 1e-3,1e-4 1e-2, 1e-3 0, 0.5 1-10

CIFAR10 RN-18 Seed KU R SGD 1e-4* 5e-4 0 1-1000
CIFAR10 RN-18 Seed KU R SGD 1e-4* 5e-4 0 1-1000
CIFAR10 RN-18 Seed KU R SGD 1e-4* 5e-4 0 1-1000

Prior work discusses the impact of random seeds on properties of model zoos. While [58] use
multiple random seeds for the same hyperparameter configuration, [55] explicitly argues against that
to prevent information leakage between models from train to test set. To achieve diverse model zoos
and disentangle the generating factors (seeds and hyperparameters), we train model zoos in three
different configurations, some with random seeds, others with fixed seeds.

Random Seeds The first configuration, denoted as Hyp-10-rand, varies a broad range of hyperpa-
rameters to define a grid of hyperparameters. To include the effect of different random initializations,
each of the hyperparameter nodes in the grid is repeated with ten randomly drawn seeds. One model
is configured with the combination of hyperparameters and seed, with a total of ten models per
hyperparameter node. It is very unlikely for two models in the zoo share the same random seed. With
this, we achieve the highest amount of diversity in properties, generating factors and weights.

Fixed Seeds The second configuration, denoted as Hyp-10-fix, uses the same hyperparameter
grid as , but repeats each node with ten fixed seeds [1, 2, ..., 10]. Fixing the seeds allows evaluation
methods to control for the seed, isolate the influence of hyperparameter choices and still get robust
results over 10 repetitions. A side effect of the (desired) isolation of factors of influence is, that fixing
the seeds leads to repetitions of the starting point in weight space for models with the same seed and
initialization methods. In the beginning of the training, these models may have similar trajectories.

Fixed Hyperparameters For the third configuration, denoted as Seed, we fix one set of
hyperparameters, and repeat that with 1000 different seeds. With that, we achieve zoos that are very
diverse in weights and covers a broad range in weight space. These zoos and can be used to evaluate
the impact of weights and their starting point on model performance. The hyperparameters for the
Seed zoos are chosen such that there is still a level of diversity in model performance.
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Figure 2: Accuracy distribution over epochs for the F-MNIST Hyp-rand, USPS Hyp-rand and
CIFAR Hyp-rand zoos. All zoos show training progress and considerable performance diversity.

3.2 Specification of Generating Factors for Model Zoos

This section describes the systematic specification of the trained model zoos. Multiple generating
factors define a configuration {D,�,A} for the model zoo generation, detailed in Table 1.

Datasets D: We generate model zoos for the following image classification datasets: MNIST [30],
Fashion-MNIST [57], SVHN [43], CIFAR-10 [28], STL-10 [5], USPS [22], CIFAR-100 [28] and
Tiny Imagenet [29].

Hyperparameter �: varied hyperparameters to train models in zoos are: (1) seed, (2)
initialization method, (3) activation function, (4) dropout, (4) optimization
algorithm, (5) learning rate, and (6) weight decay. The batch-size and number of train-
ing epoch is kept constant within zoos.

Architecture A: To preserve the comparability within a model zoo, each zoo is generated using
a single neural network architecture. One of three standard architectures is used to generate each
zoo. Our intention with this dataset is similar to research communities such as Neural Architecture
Search (NAS), Meta-Learning or Continual Learning (CL), where initial work started small-scale
[64, 47]. Hence, the first two architectures are a small and a slightly larger Convolutional Neural
Network (CNN), both have three convolutional and two fully-connected layers, but different numbers
of channels (details in Appendix A). The third architecture is a standard ResNet-18 [20]. The (1)
small CNN has a total of 20464-20864 parameters, the (2) medium CNN has 100853 parameters, the
(3) ResNet-18 has 11.2M-11.3M parameters.

Compared to (1), the medium architecture (2) provides additional diversity to the collection of model
zoos and performs significantly better on more complex datasets CIFAR-10 and STL-10. These
architectures are similar to the one used in [51]. The ResNet-18 architecture is included to apply
the model zoo blueprint to models of the widely used ResNet family and so facilitate research on
populations of real-world sized models.

3.3 Training of Model Zoos

Neural network models are trained from the previously defined three configurations {D,�,A} (Seed,
Hyp-10-rand, Hyp-10-fix, see Sec 2.1). With the 8 image datasets and the three configurations, this
results in 27 model zoos. The zoos include a total of around 50’360 unique neural network models.

Training Protocol: Every model in the collection of zoos is trained according to the same protocol.
We keep the same train, validation and test splits for each zoo, and train each model for 50 epochs
with gradient descent methods (SGD+momentum or ADAM). At every epoch, the model checkpoint
as well as accuracy and loss of all splits are recorded. Validation and test performance are also
recorded before the first training epoch. This makes 51 checkpoints per model training trajectory
including the starting checkpoint representing the model initialization before training starts. The
ResNet-18 zoos on CIFAR100 and Tiny Imagenet require more updates and are trained for 60 epochs.
In total, this results in a set of 2’585’360 collected model states.

Splits: To enable comparability, this set of models is split into training (70%), validation
(15%), and test (15%) subsets. This split is done such that all individual checkpoints of one model
training (i.e., the 51 checkpoints per training) is entirely in either training, validation, or test
and therefore no information is leaked between these subsets.
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Table 2: Analysis of the diversity of our 27 model zoos (one row per zoo). Mean (std) values in %
per zoo, computed on the last epoch. Agreement is computed using samples from the test split of the
image dataset pairwise over the entire zoo. Higher agreement values indicate more uniform behavior
and less behavioral diversity. Distance in weight space are computed pairwise over the entire zoo.
Higher distance values indicate larger diversity in weight space.

Performance Agreement Weights

Dataset Architecture Config Accuracy aggr cka w l2-dist cos dist

MNIST
CNN (s) Seed 91.1 (0.9) 88.5 (1.3) 77.2 (5.2) 18.9 (58.4) 124.1 (4.9) 77.1 (4.1)
CNN (s) Hyp-10-r 79.9 (30.7) 67.7 (35.5) 58.6 (25.9) 0.4 (46.5) 150.6 (66.5) 98.8 (7.2)
CNN (s) Hyp-10-f 80.3 (30.3) 68.3 (35.3) 58.8 (25.7) 0.3 (46.7) 149.7 (66.8) 97.7 (10.0)

F-MNIST
CNN (s) Seed 72.7 (1.0) 79.8 (2.6) 82.3 (12.6) 22.6 (55.6) 122.0 (4.9) 74.5 (4.4)
CNN (s) Hyp-10-r 68.4 (23.7) 59.9 (29.1) 64.6 (23.5) 1.0 (46.0) 149.6 (62.2) 99.2 (6.8)
CNN (s) Hyp-10-f 68.7 (23.4) 60.4 (28.7) 64.6 (22.7) 0.9 (46.3) 148.5 (61.9) 97.9 (9.9)

SVHN
CNN (s) Seed 71.1 (8.0) 67.2 (10.3) 67.7 (15.7) 7.1 (113.7) 137.6 (8.3) 94.5 (5.1)
CNN (s) Hyp-10-r 35.9 (24.3) 61.6 (35.9) 17.8 (28.0) 1.4 (42.2) 170.5 (149.4) 83.6 (30.4)
CNN (s) Hyp-10-f 36.0 (24.4) 61.4 (36.0) 18.1 (27.9) 1.3 (42.2) 170.0 (149.0) 83.2 (30.7)

USPS
CNN (s) Seed 87.0 (1.7) 87.3 (2.2) 86.7 (6.3) 8.2 (26.9) 123.1 (5.2) 75.9 (5.0)
CNN (s) Hyp-10-r 64.7 (30.8) 55.3 (31.4) 50.9 (30.5) 2.1 (39.6) 155.5 (92.6) 99.1 (8.9)
CNN (s) Hyp-10-f 65.0 (30.7) 55.4 (31.3) 50.4 (30.4) 1.9 (40.1) 154.2 (93.1) 97.3 (13.7)

CIFAR10
CNN (s) Seed 48.7 (1.4) 65.7 (3.1) 72.9 (11.3) 1.1 (11.0) 138.7 (5.6) 96.3 (5.1)
CNN (s) Hyp-10-r 35.1 (16.3) 33.3 (22.9) 47.5 (34.0) -0.2 (17.0) 155.6 (71.0) 97.5 (10.8)
CNN (s) Hyp-10-f 35.1 (16.2) 33.3 (22.8) 47.3 (34.2) -0.2 (16.9) 155.3 (70.0) 97.2 (11.1)

CIFAR10
CNN (m) Seed 61.5 (0.7) 76.0 (1.6) 92.4 (1.7) 0.1 (18.2) 137.0 (7.9) 94.1 (9.2)
CNN (m) Hyp-10-r 39.6 (21.8) 34.5 (27.1) 43.2 (36.5) -0.4 (23.0) 158.9 (79.9) 98.6 (12.2)
CNN (m) Hyp-10-f 39.6 (21.7) 34.4 (26.7) 42.8 (37.8) -0.4 (22.9) 158.1 (77.2) 98.0 (13.1)

STL
CNN (s) Seed 39.0 (1.0) 48.4 (3.0) 81.5 (3.9) -0.1 (19.1) 141.2 (5.0) 99.8 (4.2)
CNN (s) Hyp-10-r 23.1 (12.3) 23.4 (20.9) 39.0 (30.7) 3.0 (40.0) 158.7 (107.3) 98.7 (10.9)
CNN (s) Hyp-10-f 23.0 (12.2) 23.3 (21.1) 38.1 (30.0) 3.0 (39.8) 157.1 (107.2) 96.8 (16.3)

STL
CNN (m) Seed 47.4 (0.9) 53.9 (2.2) 83.3 (2.3) 0.1 (26.6) 141.3 (6.0) 99.9 (5.8)
CNN (m) Hyp-10-r 24.3 (14.7) 23.2 (24.2) 34.1 (30.0) 2.3 (45.7) 159.3 (103.0) 99.1 (12.5)
CNN (m) Hyp-10-f 24.4 (14.7) 23.7 (24.5) 34.6 (30.3) 2.3 (46.5) 157.4 (104.1) 97.6 (20.1)

CIFAR10 ResNet-18 Seed 92.1 (0.2) 93.4 (0.7) –.- (-.-) -0.01 (1.7) 122.1 (3.9) 72.2 (2.3)
CIFAR100 ResNet-18 Seed 74.2 (0.3) 77.6 (1.2) –.- (-.-) -0.1 (1.6) 130.8 (4.1) 83.1 (2.6)
Tiny ImageNet ResNet-18 Seed 63.9 (0.7) 66.1 (1.9) –.- (-.-) -0.1 (1.9) 125.4 (4.9) 77.1 (3.0)

Sparsified Model Zoo Twins: Model sparsification is an effective method to reduce computational
cost of models. However, methods to sparsify models to a high degree while preserving the perfor-
mance are still actively researched [21]. In order to allow systematic studies of sparsification, we are
extending the model zoos with sparsified model zoo twins serving as counterparts to existing zoos in
the dataset. Using Variational Dropout (VD) [41], we sparsify the trained models from existing model
zoos. VD generates a sparsification trajectory for each model, along which we track the performance,
degree of sparsity and the sparsified checkpoint. With 25 sparsification epochs, this yields 1’259’000
sparsification model states.

3.4 Data Management and Accessibility of Model Zoos

The model zoos are made publicly available in an accessible, standardized, and well documented
way to the research community under the Creative Commons Attribution 4.0 license (CC-BY 4.0).
We ensure the technical accessibility of the data by hosting it on Zenodo, where the data will be
hosted for at least 20 years. Further, we take steps to reduce access barriers by providing code
for data loading and preprocessing, to reduce the friction associated with analyzing of the raw zoo
files. All code can be found on the model zoo website www.modelzoos.cc. To ensure conceptional
accessibility, we include detailed insights, visualizations and the analysis of the model zoo (Sec.
4) with each zoo. Further details can be found in Appendix B.
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Figure 3: Visualization of the weights of the large CIFAR model zoos in different configurations.
The weights are reduced to 2d using UMAP, preserving both local and global structure. In the
Seed configuration, the UMAP reduction contains little structure. The Hyp-rand is equally little
structured. In contrast, Hyp-fix contains visible clusters of initialization methods.

4 Model Zoo Analysis

The model zoos have been created aiming at diversity in generating factors, weights and performance.
In this section, we analyse the zoos and their properties. Zoo cards with key values and visualizations
are provided along with the zoos online. We consider models at their last epoch for the analysis. For
all later analysis, non-viable checkpoints are excluded from each zoo. This includes the removal of
every checkpoint with NaN values or values beyond a threshold. The threshold value is set for each
zoo, such that it only excludes diverging models.

Performance To investigate the performance diversity, we consider the accuracy of the models in
the zoo, see Table 2 and Figure 2. As expected, the zoos with variation only in the seed show the
smallest variation in performance. Changing the hyperparameters induces a broader range of variation.
Changing (Hyper-10-rand) or fixing (Hyper-10-fix) the seeds does not affect the accuracy distribution.

Model Agreement To get a more in-depth insights in the diversity of model behavior, we investigate
their pairwise agreement, see Table 2. To that end, we compute the rate of agreement of class
prediction between two models as aggr = 1

N

PN
1=1 �yi . Here yki , y

l
i are the predictions of models

k, l for sample i of N samples. Further, �yi = 1 if yki = yli and otherwise �yi = 0. Further, we
compute the pairwise centered kernel alignment (cka) score between intermediate and last layer
outputs and denote it as cka. The cka score evaluates the correlation of activations, compensating
for equivariances typical for neural networks [44]. In empirical evaluations, we found the cka score
robust for relatively small number of image samples, and compute the scrore using 50 images to
reduce the computational load. Both agreement metrics confirm the expectation and performance
results. Zoos with higher overall performance naturally have a higher agreement on average, as
there fewer samples on which to disagree. Zoos with varying hyperparameters(Hyp-10-rand and
Hyp-10-fix) agree less on average than zoos with changes in seed only (Seed). What is more, the
distribution of aggr and cka in the Seed zoos is unimodal and approximately gaussian. In the
Hyp-10 zoos, the distributions are bi-modal, with one mode around 0.1 (0.0) and the other around
0.9 (0.75) in hard agreement (cka score). In these zoos, models agree to a rather high degree with
some models, and disagree with others.

Weights Lastly, we investigate the diversity of the model zoos in weight space, see again Table 2.
By design, the mean weight value of the zoos varying only in the seed is larger than in the other zoos,
while the standard deviation does not differ greatly (Table 2, column w). To get a better intuition in
the distribution of models in weight space, we compute the pairwise `2(wk,wl) =

kwk�wlk2
2

1/N
PN

n=1 kwnk2
2

and cosine distance cos(wk,wl) = 1 � wl
Twk

kwkk2
2kwlk2

2
, and investigate their distribution. Here, too,

varying the hyperparameters introduces higher amounts of diversity, while changing or fixing the
seeds does not affect the weight diversity much. As these values are computed at the end of model
training, repeated starting points due to fixed seeds appear not to reduce weight diversity significantly.
In a more hands-off approach, we compute 2d reductions of the weight over all epochs using UMAP
[40]. In the 2d reductions (see Figure 3), the zoos varying in seed only show little to no structure.
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Table 3: Benchmark results for predicting model properties from the weights (w) and layer-wise
weight statistics (s(w)) using linear models. We report the prediction R2 for accuracy, generalization
gap (GGap), epoch, learning rate (LR) and dropout (Drop) and prediction accuracy for initalization
method (Init) and activation function (Act). Values reported in %, higher values are better.

Accuracy GGap Epoch Init Act

Dataset Architecture Config w s(w) w s(w) w s(w) w s(w) w s(w)

MNIST
CNN (s) Seed 92.3 98.7 2.1 68.8 87.2 97.8 n/a n/a n/a n/a
CNN (s) Hyp-10-r -11.2 69.4 -49.8 13.7 -95.5 14.3 42.6 77.6 45.5 78.5
CNN (s) Hyp-10-f 66.5 70.1 5.4 12.5 -4.8 14.5 94.3 79.8 81.2 76.8

F-MNIST
CNN (s) Seed 87.5 97.2 20.9 60.5 89.1 97.1 n/a n/a n/a n/a
CNN (s) Hyp-10-r 8.7 76.9 -47.5 13.7 -70.1 18.9 48.4 81.5 47.9 79.6
CNN (s) Hyp-10-f 62.4 75.6 3.9 12.6 -2.0 17.0 95.4 81.6 84.6 77.7

SVHN
CNN (s) Seed 91.0 98.6 -42.8 65.9 66.9 92.5 n/a n/a n/a n/a
CNN (s) Hyp-10-r -8.6 90.3 -55.3 27.6 -30.5 11.1 38.2 58.5 55.7 72.3
CNN (s) Hyp-10-f 64.2 89.9 17.5 27.4 -0.1 11.1 67.3 58.2 76.1 73.6

USPS
CNN (s) Seed 92.5 98.7 44.3 71.8 86.0 98.4 n/a n/a n/a n/a
CNN (s) Hyp-10-r -11.5 70.3 -35.2 13.6 -75.7 21.3 49.2 88.8 43.7 66.2
CNN (s) Hyp-10-f 73.2 70.8 10.8 14.7 18.9 23.0 96.3 88.1 74.5 72.7

CIFAR10
CNN (s) Seed 75.3 96.0 27.0 90.2 68.6 91.1 n/a n/a n/a n/a
CNN (s) Hyp-10-r 50.1 88.0 -4.3 40.5 -2.7 34.2 34.0 50.5 71.5 80.9
CNN (s) Hyp-10-f 67.0 87.9 38.2 42.9 27.0 31.8 72.0 52.2 75.6 80.0

CIFAR10
CNN (l) Seed 83.6 98.2 33.4 92.9 86.5 95.7 n/a n/a n/a n/a
CNN (l) Hyp-10-r 32.6 90.5 -0.9 47 -10.5 35.5 41.6 51.6 69.1 83.1
CNN (l) Hyp-10-f 64.5 91.4 30.4 40.7 29.8 35.3 74.5 54.9 77.7 86.0

STL
CNN (s) Seed 17.8 91.2 2.0 30.2 45.3 95.0 n/a n/a n/a n/a
CNN (s) Hyp-10-r -8.7 77.1 -44.0 9.3 -68.8 19.1 41.3 93.9 46.3 66.8
CNN (s) Hyp-10-f 76.1 76.5 6.7 10.7 21.2 22.4 98.1 91.3 78.1 62.6

STL
CNN (l) Seed -112 94.2 2.8 37.3 5.6 98.7 n/a n/a n/a n/a
CNN (l) Hyp-10-r -79.6 74.1 -118 10.7 -106 18.8 43.8 90.4 49.4 68.3
CNN (l) Hyp-10-f 84.1 77.7 10.4 11.7 14.6 19.1 97.8 92.8 78.8 68.0

CIFAR10 ResNet-18 Seed –.- 96.8 –.- 76.7 –.- 99.6 n/a n/a n/a n/a
CIFAR100 ResNet-18 Seed –.- 97.4 –.- 95.4 –.- 99.9 n/a n/a n/a n/a
t-ImageNet ResNet-18 Seed –.- 96.1 –.- 87.5 –.- 99.9 n/a n/a n/a n/a

Zoos with hyperparameter changes and random seeds are similarly unstructured. Zoos with varying
hyperparameters and fixed seeds show clear clusters with models of the same initialization method and
activation function. These findings are further supported by the predictability of initialization method
and activation function (Table 3). The structures are unsurprising considering that the activation
function is very influential in shaping the loss surface, while initialization method and the seed
determine the starting point on it. Depending on the downstream task, this property can be desirable
or should be avoided, which is why we provide both configurations.

Model Property Prediction As a set of benchmark results on the proposed model zoos and to
further evaluate the zoos, we use linear models to predict hyperparameters or performance values of
the individual models. As features, we use the model weights w or per-layer quintiles of the weights
s(w) as in [55]. Linear models are used to evaluate the properties of the dataset and the quality of the
features. We report these results in Table 3. The layer-wise weight statistics (s(w)) have generally
higher predictive performance than the raw weights w. In particular, s(w) are not affected by using
fixed or random seeds and thus generalize well to unseen seeds. For the ResNet-18 zoos, w becomes
too large to be used as a feature and is therefore omitted. Across all zoos, the accuracy as well as the
hyperparameters can be predicted very accurately. Generalization gap and epoch appear to be more
difficult to predict. These findings hold for all zoos, regardless of the different architectures, model
sizes, task complexity and performance range. w can be used to predict the initialization method and
activation function to very high accuracy, if the seeds are fixed. The performance drops drastically if
seeds are varied. This results confirms our expectation of diversity in weight space induced by fixing
or varying seed. These results show i) that the model weights of our zoos contain rich information on
their properties; ii) confirm the notions of diversity that were design goals for the zoos; and iii) leave
room for improvements on the more difficult properties to predict, in particular the generalization gap.
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5 Potential Use-Cases & Applications

While populations of NNs have been used in previous work, they still are relatively novel as a dataset.
As use-cases for such datasets may not be obvious, this section presents potential use-cases and
applications. For all use-cases, we collect related work that uses model populations. Here, the zoos
may be used as data or to evaluate the methods. For some of the use-cases, the analysis above
provides support. Lastly, we suggest ideas for future work which we hope can inspire the community
to make use of the model zoos.

5.1 Model Analysis

The analysis of trained models is an important and difficult step in the machine learning pipeline.
Commonly, models are applied on hold-out test sets, which may contain difficult cases with specific
properties [31]. Other approaches identify subsections of input data that is relevant for a specific
output [61, 25, 66]. A third group of methods compares the activations of models, e.g. the cka
method used in Sec. 4 to measure diversity [27].

Populations of models have been used to identify commonalities in model weights, activations,
or graph structure which are predictive for model properties. Some methods use the weights,
weight-statistics or eigenvalues of the weight matrices as features to predict a model’s accuracy or
hyper-parameters [55, 12, 39]. Recently, [50] have learned self-supervised representation of the
weights and demonstrate their usefulness for predicting model properties. Other publications use
activations to approximate intermediate margins [58, 24] or graph connectivity features [6] to predict
the generalization gap or test accuracy. Standardized, diverse model zoos may facilitate development
of new methods, or be used as evaluation dataset for existing model analysis, interpretability or
comparison method.

Previous work as well as the experiment results in Sec 4 indicate that even more complex model
properties might be predicted from the weights. By studying populations of models, in-depth
diagnostics of models, such as whether a model learned a specific bias, may be based on the weights
or topology of models. Lastly, model properties as well of the weights may be used to derive a model
’identity’ along the training trajectory, to allow for NN versioning.

5.2 Learning Dynamics

Analysing and utilizing the learning dynamics of models has been a useful practice. For example,
early stopping [15], which determines when to end training at minimal generalization error based on
a cross validation set and has become standard in machine learning practice.

More recently, methods have exploited zoos of models. Population based training [23] evaluates
the performance of model candidates in a population, decides which of the candidates to pursue
further and which to give up. HyperBand evaluates performance metrics for groups of models to
optimize hyperparameters [34, 33]. Research in Neural Architecture Search was greatly simplified by
the NASBench dataset family [59], which contains performance metrics for varying hyperparameter
choices. Our model zoos extend these datasets by adding models including their weights at states
throughout training, which may open new doors for new approaches.

The accuracy distribution of our model zoos become relatively broad if hyperparameters are varied
(Figure 2). For early stopping or population based methods, identifying a good range of hyperparam-
eters to try, and then identifying those candidates that will perform best towards the end of training, is
a challenging and relevant task. Our model zoos may be used to develop and evaluate methods to that
end. Beyond that, diverse model zoos offer the opportunity to make further steps of understanding
and exploiting the learning dynamics of models, i.e., by studying the regularities of generalizing
and overfitting models. The shape and curvature of training trajectories may contain rich information
on the state of model training. Such information could be used to monitor model training, or adjust
hyperparameters to achieve better results. The sparsified model zoos add several potential use-cases.
They may be used to study the sparsification performance on a population level, study emerging
patterns of populations of sparse models, or the relation of full models and their sparse counterparts.
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5.3 Representation Learning

NN models have grown in recent years, and with them the dimensionality of their parameter space.
Empirically, it is more effective to train large models to high performance and distill them in a second
step, than to directly train the small models [21, 36]. This and other related problems raise interesting
questions. What are useful regularities in NN weights? How can the weight space be navigated in a
more efficient way?

Recent work has attempted to learn lower dimensional representations of the weights of NNs [18,
48, 63, 26, 50, 51, 52]. Such representations can reveal the latent structure of NN weights. Other
approaches identify subspaces in the weight space which relate to high performance or generalization
[56, 38, 1]. In [50], representations learned on model zoos achieve higher performance in predicting
model properties than weights or weight statistics. [26] proposes a method to learn from a population
of diverse neural architectures to generate weights for unseen architectures in a single forward pass.

Our model zoos can be either a dataset to train representations on as in [50] or [1], or as common
dataset to validate such methods. Learned representations may bring better understanding of the
weight space and thus help to reduce the computational cost and improve performance of NNs.

5.4 Generating New Models

In conventional machine learning, models are randomly initialized and then trained on data. As that
procedure may require large amounts of data and computational resources, fine-tuning and transfer
learning are more efficient training approaches that re-use already trained models for a different
task or dataset [60, 14]. Other publications have extended the concept of transfer learning from a one-
to-one setup to many-to-one setups [35, 53]. Both approaches attempt to combine learned knowledge
from several source models into a single target model. Most recently, [51, 52] have generated unseen
NN models with desireable properties from representations learned on model zoos. The generated
models were able to outperform random initialization and pretraining in transfer-learning regimes.
In [45], a transformer is trained on a population of models with diffusion to generate model weights.

All these approaches require suitable and diverse models to be available. Further, the exact properties
of models suitable for generative use, transfer learning or ensembles are still in discussion [14].
Population based transfer learning methods such as zoo-tuning [53], knowledge flow [35] or model-
zoo [47] have been demonstrated on populations with only few models. Populations for these methods
ideally are as diverse as possible, so that they provide different features. Investigating the models in the
proposed zoos may help identifying models which lend themselves for transfer learning or ensembling.

6 Conclusion

To enable the investigation of populations of neural network models, we release a novel dataset
of model zoos with this work. These model zoos contain systematically generated and diverse
populations of 50’360 neural network models comprised of 3’844’360 collective model states.
The released model zoos come with a comprehensive analysis and initial benchmarks for multiple
downstream tasks and invite further work in the direction of the following use cases: (i) model
analysis, (ii) learning dynamics, (iii) representation learning and (iv) model generation.
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(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] In the
corresponding github.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Yes, in section A and in the published code.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report mean and standard deviation for all results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Details on the dataset generation
are reported in Appendix A

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] I.e., the image datasets
(b) Did you mention the license of the assets? [No] The image datasets we use are common

machine learning datasets, which is why we refrain from mentioning their license.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

The main contribution is the dataset, which we make available online.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] No personal data was used for this work.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The datasets contain no personal information.
As we use common machine learning datasets they also do not contain offensive
content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] Our experiments do not rely on crowdsourcing nor did we conduct
research on human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A] Our experiments do not rely on crowdsourcing
nor did we conduct research on human subjects

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] Our experiments do not rely on crowdsourc-
ing nor did we conduct research on human subjects
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