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1. Introduction
Semantic instance segmentation is defined as the task

of assigning a binary mask and a categorical label to each
object in an image. It is often understood as an exten-
sion of object detection where, instead of bounding boxes,
accurate binary masks must be predicted. Current state
of the art methods for semantic instance segmentation
[7, 8, 11, 10, 4, 9] extend object detection pipelines based on
object proposals [16] by incorporating an additional mod-
ule that is trained to generate a binary mask for each object
proposal. Such architectures follow a two-stage procedure,
i.e. a set of object-prominent proposal locations are selected
first, and then each of them is given a score, a categorical
label and a binary mask. Typically, the number of selected
locations is much greater than the actual number of objects
that appear in the image, meaning that post-processing is
needed to select the subset of predictions that better cov-
ers all the objects.Although in most recent works the two
different stages (i.e. proposal generation and scoring) are
optimized jointly [11, 10, 4, 9], the objective function still
does not model the target task, but a surrogate one which is
easier to handle at the cost of an additional filtering step.

While most systems analyze images in a single step, the
human exploration of static visual inputs is actually a se-
quential process [14, 1] that involves reasoning about ob-
jects that compose the scene and their relationships. In-
spired by this behavior, we design a model that performs a
sequential analysis of the scene to deal with complex object
distributions.

Recent works [17, 15] have also proposed sequential
solutions for instance segmentation. Romera-Paredes &
Torr [17] train a model composed of Convolutional LSTMs
[21] that receives convolutional features from a pretrained
FCN [12] and outputs the separate object segments for the
image. A post-processing based on CRFs is applied to
their final masks. Ren & Zemel [15] propose a complex
multi-task recurrent pipeline for instance segmentation that
predicts the box coordinates for a different object at each
time step. These object coordinates are then used to ex-
tract a sub-region of the image from which a binary mask

is predicted. Both [17, 15] are class-agnostic methods and,
while [15] reports results for semantic instance segmenta-
tion benchmarks, class probabilities for their predicted seg-
ments are obtained from the output of a FCN [12] trained
for semantic segmentation. To the best of our knowledge,
our method is the first to directly tackle semantic instance
segmentation with a fully end-to-end recurrent approach.

2. Model
Given an input image x, the goal of semantic instance

segmentation is to provide a set of masks and their cor-
responding class labels, y = {y1, . . . , yn}. The cardinal-
ity of the output set, i.e. the number of instances, depends
on the input image and thus the model needs to be able
to handle variable length outputs. This poses a challenge
for feedforward architectures, which emit outputs of fixed
size. Similarly to previous works involving sets [20, 19, 17],
we propose a recurrent architecture that outputs a sequence
of masks and labels, ŷ = (ŷ1, . . . , ŷn̂). At any given
time step t ∈ {1, . . . , n̂}, the prediction is of the form
ŷt = {ŷm, ŷb, ŷc, ŷs}, where ŷm ∈ [0, 1]h×w is the bi-
nary mask, ŷb ∈ [0, 1]4 are the bounding box coordinates
normalized by the image dimensions, ŷc ∈ [0, 1]C are the
probabilities for the C different categories, and ŷs ∈ [0, 1]
represents the objectness score, which is the stopping crite-
rion at test time. Obtaining bounding box annotations from
the segmentation masks is straightforward and it adds an ad-
ditional training signal, which resulted in better performing
models in our experiments.

We design an encoder-decoder architecture that resem-
bles typical ones from semantic segmentation works [12,
18], where skip connections from the layers in the encoder
are used to recover low level features that are helpful to ob-
tain accurate segmentation outputs. The main difference be-
tween these works and ours is that our decoder is recurrent,
enabling the prediction of one instance at a time instead of
a single semantic segmentation map where all objects are
present, thus allowing to naturally handle variable length
outputs. Figure 1 shows the details of the recurrent decoder
for a single time step.
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Figure 1: Our proposed recurrent architecture for semantic instance segmentation.

Rec Cls Pascal VOC CVPPP Cityscapes
APperson,50 SBD ↑ DiC ↓ AP AP50 APcar APcar,50

Ren [15] 7 7 − 84.9(±4.8) 0.8(±1.0) 9.5 18.9 27.5 41.9
Romera-Paredes [17] 3 7 46.6 56.8(±8.2) 1.1(±0.9) − − − −
Romera-Paredes [17] + CRF 3 7 50.1 66.6(±8.7) 1.1(±0.9) − − − −
Ours 3 3 60.7 74.7(±5.9) 1.1(±0.9) 7.8 17.0 25.8 45.7

Table 1: Comparison against state of the art sequential methods for semantic instance segmentation. We specify whether the
method is recurrent (Rec) and produces categorical probabilities (Cls).

3. Experiments

We evaluate our models on three benchmarks previously
used for semantic instance segmentation (Pascal VOC 2012
[6], CVPPP Plant Leaf Segmentation [13] and Cityscapes
[3]) that differ from each other in terms of the average
amount of objects per image. Table 1 compares our results
against Romera-Paredes & Torr [17], and Ren & Zemel
[15].

We first train and evaluate our model with the Pascal
VOC dataset. In Table 1 we compare our method with the
recurrent model in [17], whose approach is the most sim-
ilar to ours. However, since they train and evaluate their
method on the person category only, we report the results
for this category separately despite that our model is trained
for all 20 categories. We outperform their results by a sig-
nificant margin (AP50 of 46.6 vs. 60.7), even in the case in
which they use a post processing based on CRFs, reaching
an AP50 of 50.1.

In the case of the CVPPP dataset, our method also out-
performs the one in [17] by a significant margin. How-
ever, the sequential model in [15] obtains better results in
this benchmark. Their method incorporates an input pre-
processing stage and involves multi-stage training with dif-
ferent levels of supervision. In contrast with [15], our
method directly predicts binary masks from image pixels
without imposing any constraints regarding the intermedi-
ate feature representation. Although the number of objects
is much higher in this benchmark than in Pascal VOC, our
model is able to accurately output one object at a time.

Our performance on Cityscapes is comparable to the re-
sults of the only sequential method previously evaluated on
this dataset [15], but does not meet state of the art results
obtained by non-sequential methods, which reach AP50 fig-
ures of 58.1 [9], 35.9 [5] and 35.3 [2]. It is also worth noting
that the classification scores in [15] are provided by a sepa-
rate module trained for the task of semantic segmentation.
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