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Abstract

We present a recurrent model for semantic instance seg-
mentation that sequentially generates pairs of masks and
their associated class probabilities for every object in an
image. Our proposed system is trainable end-to-end, does
not require post-processing steps on its output and is con-
ceptually simpler than current methods relying on object
proposals. We observe that our model learns to follow a
consistent pattern to generate object sequences, which cor-
relates with the activations learned in the encoder part of
our network. We achieve competitive results on three differ-
ent instance segmentation benchmarks (Pascal VOC 2012,
Cityscapes and CVPPP Plant Leaf Segmentation). Code is
available at https://imatge-upc.github.io/rsis.

1. Introduction

Recurrent Neural Networks (RNNs) have been widely
used in computer vision problems in which it is necessary
to deal with sequential data (e.g. video action classification
[13, 43], image captioning [40, 21] or visual question an-
swering [2]). Although images are rarely treated as sequen-
tial data, the human exploration of static visual inputs is
actually a sequential process [32, 1] that involves reasoning
about objects that compose the scene and their relationships.

In this work, we postulate that the semantic instance seg-
mentation task can be learned end-to-end with a recurrent
neural network. Semantic instance segmentation aims at as-
signing a binary mask and a categorical label to each object
in an image. It is often understood as an extension of object
detection where, instead of bounding boxes, accurate binary
masks must be predicted. Semantic instance segmentation
can benefit from recurrent methods because, thanks to their
ability to retain previous information, they can deal with
complex object distributions, handle occluded instances and
make predictions that are coherent with each other based on
what objects have been found and what objects are yet to be
discovered.

Current state of the art methods for semantic instance
segmentation are, however, not based on recurrent architec-
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Figure 1. Recurrent model for semantic instance segmentation.
Given an RGB image, an encoder extracts relevant features and
a recurrent decoder learns to decompose the image by segmenting
one instance at a time.

tures. Most methods [17, 18, 24, 23, 11, 19] extend object
detection pipelines based on object proposals (e.g. Faster
R-CNN [35]). Typically, these proposals outnumber the ac-
tual objects that appear in the image by a significant margin,
meaning that most of them are redundant and therefore re-
quire a post-processing step such as non-maximum suppres-
sion (NMS) to discard potential duplicates. Other works
[6, 12, 34] involve training deep neural networks to produce
a reduced set of binary masks per image, hence avoiding re-
dundant predictions. However, categorical labels for each
mask are obtained by mapping them onto a semantic seg-
mentation of the image obtained with a separate network
that introduces an additional computation overhead.

In this paper, we argue that both ranking thousands
of object-prominent regions [17, 18, 24, 23, 11, 19] or
decomposing the problem into two independent modules
[6, 12, 34] are unnatural approaches that are far away from
the sequential exploration that we as humans follow to
solve related tasks such as visual search [1] or counting
[33]. Existing solutions of recurrent instance segmentation
[31, 36, 34] generate sequences of class-agnostic masks,
from which we take a step further and develop a truly end-
to-end recurrent system that directly provides a sequence
of semantic instances as an output (i.e. both binary masks
and categorical labels for all objects in the image). In ad-
dition, our model incorporates skip connections, that have
been shown beneficial for the semantic segmentation task
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[27, 37], but are rarely used for the related task of semantic
instance segmentation.

The contributions of this work are threefold: (a) we
present an end-to-end recurrent model for semantic instance
segmentation that does not require further post-processing
and is conceptually simpler than current methods, (b) we
show its competitive performance in three instance segmen-
tation benchmarks, and (c) we thoroughly analyze its behav-
ior in terms of the object discovery patterns that it follows.

2. Related Work
Most works on semantic instance segmentation inherit

their foundations from object detection solutions. These
typically involve two-stage pipelines where a set of object-
prominent locations are predicted and subsequently classi-
fied and ranked. Hariharan et al. [17] trained a two-branch
network to simultaneously learn to classify bounding-box
and segment proposals from [3]. This work was further ex-
tended in [18], where local activations in all convolutional
layers in the network are used to refine the input segments.
Chen et al. [8] present a post-processing stage for occlusion
handling to refine the predictions from [17].

More recent works build upon Faster R-CNN [35], a
state of the art object detection architecture that learns to
predict box-level object proposals and subsequently pro-
duces classification scores for each one of them. Building
from this architecture, Dai et al. [11, 10] propose multi-task
network cascades where box coordinates, binary masks and
class scores are predicted in chain, allowing the network to
reuse information learned in previous stages. Liang et al.
[24] extend the architecture in [11] with an iterative binary
mask refinement. In contrast with cascade-based methods
[11, 24, 10], He et al. [19] design an architecture that pre-
dicts bonding boxes, segments and class scores in parallel
given the output of a fully convolutional network (hence, no
chain reliance is imposed).

While proposal-based methods have shown impressive
performance, they generate a large set of predictions that are
independent from each other and thus highly redundant. In
practice, this means that most of the predictions are thrown
away in post-processing (e.g. NMS). In contrast, by using
a recurrent approach, the outputs of our network are depen-
dent from each other, which allows us to solve the task with
a small number of predictions.

Other works in the literature have presented alternative
methods to the proposal-based pipelines by treating the im-
age holistically. Arnab & Torr [5] combine the outputs of
an object detection and a semantic segmentation network
with Conditional Random Fields (CRFs) to output a class
and an instance label for each pixel in the image. Bai &
Urtasun [6] learn a watershed transform using the output of
a semantic segmentation network, where the obtained en-
ergy basis constitute the different object instances in the im-

age. Brabandere et al. [12] use a metric learning objective
that projects each pixel into a high-dimensional space where
pixels that belong to the same object are mapped close to-
gether (or far apart otherwise). However, this method re-
quires a post-processing stage to compose masks based on
the clustering of similar pixels.

Our model is closer to recent proposals that formulate
the problem of instance segmentation with recurrent ap-
proaches, where different object instances are predicted one
at a time. Park & Berg [31] present a model composed of
different RNN units (one per class) that receive a spatial
class score map and learn to separate the different instances
that are included in the input. However, their method does
not scale well for datasets with a large number of cate-
gories, since a separate RNN needs to be trained for each
of them. Romera-Paredes & Torr [36] train a model com-
posed of Convolutional LSTMs [41] that receives convolu-
tional features from a pretrained FCN [27] and outputs the
separate object segments for the image. A post-processing
based on CRFs is applied to their final masks. Ren & Zemel
[34] propose a complex multi-task recurrent pipeline for in-
stance segmentation that predicts the box coordinates for
a different object at each time step. These object coordi-
nates are then used to extract a sub-region of the image
from which a binary mask is predicted. Both [36, 34] are
class-agnostic methods and, while [34] reports results for
semantic instance segmentation benchmarks, class proba-
bilities for their predicted segments are obtained from the
output of a FCN [27] trained for semantic segmentation.
To the best of our knowledge, our proposed method is the
first to directly tackle semantic instance segmentation with
a fully end-to-end recurrent approach.

3. Model

We design an encoder-decoder architecture for semantic
instance segmentation, which we depict in Figure 1. Our
architecture resembles typical ones from the state of the
art for semantic segmentation [27, 37], where skip connec-
tions from the layers in the encoder are used to recover low
level features that are helpful to obtain accurate segmenta-
tion outputs. The main difference between these works and
ours is that our decoder is recurrent, enabling the predic-
tion of one instance at a time instead of a single semantic
segmentation map where all objects are present.

First, the encoder extracts relevant features from the im-
age, which are used in the decoder to generate accurate bi-
nary masks and their class probabilities. The decoder is a
recurrent neural network that learns to decompose the dif-
ferent objects in the image and outputs them one at a time.

3.1. Encoder

We use a ResNet-101 [20] model pretrained with Ima-
geNet [38] for image classification as the encoder. We trun-
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cate the network at the last convolutional layer, thus remov-
ing the last pooling layer and the final classification layer.
The encoder takes an RGB image x ∈ Rh×w×3 and extracts
features from the different convolutional blocks of the base
network F = encoder(x). F contains the output of the dif-
ferent convolutional blocks F = [f0, f1, f2, f3, f4], where
f0 corresponds to the output of the deepest block, and f4 is
the output of the block whose input is the image.

3.2. Decoder

The decoder receives as input the convolutional features
F and outputs a set of To predictions, being To variable for
each input image. At any given time step t, the prediction is
of the form {om,t, oc,t, os,t}, where om,t ∈ [0, 1]h×w is the
binary mask, oc,t ∈ [0, 1]C are the probabilities for the C
different categories, and os,t ∈ [0, 1] represents the object-
ness score, which is the stopping criterion at test time.

Similarly to [36], we use the Convolutional Long Short-
term Memory Units [41] as the basic block of our de-
coder, in order to naturally handle 3-dimensional convo-
lutional features as input and preserve spatial information.
We design an upsampling network composed of a series of
ConvLSTM layers, whose outputs are subsequently merged
with the side outputs F from the encoder. This merging
can be seen as a form of skip connection that bypasses the
previous recurrent layers. Such architecture allows the de-
coder to reuse low level features from the encoder to refine
the final segmentation. Additionally, since we are using a
recurrent decoder, the reliance on these features can change
across different time steps. Intuitively, the decoder might
ignore low-level features in the input to segment an object
that shares features with previously segmented objects (e.g.
an object of the same category as the previous one), while
it might choose to use them to segment objects that do not
share similarities with earlier predictions.

For a time step t, hi,t represents the output of the ith

ConvLSTM layer, which is obtained using the equation:

hi,t = ConvLSTMi( [ B2(hi−1,t) | Si ] ) (1)

where B2 is the bilinear upsampling operator by a factor
of 2, hi−1,t is the hidden state of the previous ConvLSTM
layer and Si is the result of projecting fi to the same dimen-
sion of hi−1,t via a convolutional layer.

Equation 1 is applied in chain for i ∈ {1, . . . , n}, being
n the number of convolutional blocks in the encoder (n = 5
in ResNet). h0,t is obtained by a ConvLSTM with S0 as
input (i.e. no skip connection):

h0,t = ConvLSTM0(S0) (2)

The number of channels of each ConvLSTM layer is de-
termined based on its depth in the decoder. We set the first
two ConvLSTM layers to have dimensionD, and set the di-
mension of the remaining oens to be the one in the previous

layer divided by a factor of 2. We set D = 128 for Pascal
and Cityscapes, and D = 64 for CVPPP. All ConvLSTM
layers use 3× 3 kernels. Finally, a single-kernel 1× 1 con-
volutional layer with sigmoid activation is used to obtain a
final binary mask of the same resolution as the input image.

The class and stop prediction branches consist of two
fully connected layers: one to predict the category of the
segmented object at time step t and one to predict a stop-
ping signal once all objects have been found. These receive
the same input hc,t, which is given by the concatenation of
the max-pooled hidden states of all ConvLSTM layers in
the network . Figure 2 shows the details of the recurrent
decoder for a single time step.

3.3. Training

The parameters of our model are estimated by adopting
a multi-task approach formulated with a cost function com-
posed of three different terms:
Segmentation loss. Similarly to other works [36, 34], we
use the soft intersection over union loss (sIoU) as the cost
function between the mask predicted by our network m1

and the ground truth mask m2:

sIoU(m1,m2) = 1−

M∑
i=1

m1,im2,i

M∑
i=1

m1,i +m2,i −m1,im2,i

(3)

where M is the number of elements in both m1 and m2.
We do not impose any specific instance order to match

the predictions of our model with the objects in the ground
truth. Instead, we let the model decide which output per-
mutation is the best and sort the ground truth accordingly.
We assign a prediction for each of the ground truth masks
by means of the Hungarian algorithm, using the sIoU as
the cost function. Given a sequence of predicted masks
om = {om,1, ..., om,To} and the list of ground truth masks
gm = {gm,1, ..., gm,Tg}, the segmentation loss Lm can be
expressed as:

Lm(om, gm, δ) =

To∑
t=1

Tg∑
t′=1

sIoU(om,t, gm,t′)δt,t′ (4)

where δ is the matrix of assignments. δt,t′ is 1 when
the predicted and ground truth masks om,t and gm,t′ are
matched and 0 otherwise. In the case where To > Tg , gra-
dients for predictions at t > Tg are ignored.
Classification loss. Our network outputs class probabili-
ties for each of the predicted masks. Given the sequence
of class probabilities oc = {oc,1, ..., oc,To} and the ground
truth one-hot class vectors gc = {gc,1, ..., gc,Tg

}, the clas-
sification loss is computed as the negative log likelihood
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Figure 2. Proposed architecture for end-to-end semantic instance segmentation.

between the matched pairs determined by δ:

Lc(oc, gc, δ) = −
To∑
t=1

Tg∑
t′=1

gc,t′ log(oc,t)δt,t′ (5)

Stop loss. Finally, we optimize our model to learn to stop
once all objects have been found in the image.

Ls(os, gs) = −
Tg+1∑
t=1

gs,tlog(os,t)+(1−gs,t)log(os,t) (6)

where ts,t = 1 for t ∈ {1, ..., Tt} and 0 otherwise.
The total loss is the weighted sum of the three terms:

Lt = Lm + λLc + γLs.

4. Experiments
In this section we introduce the datasets and metrics used

to evaluate our method, describe the implementation details
and discuss the results of our proposed approach.

4.1. Datasets and metrics

We evaluate our models on three benchmarks previously
used for semantic instance segmentation:
CVPPP Plant Leaf Segmentation [29]: Small dataset of
images of different plants. We follow the same scheme as
in [36, 34], using only 128 images from the A1 subset for
training. Results are evaluated by the dataset authors over
33 test images.
Pascal VOC 2012 [14]: Contains objects of 20 different
categories. We use the additional annotations from [16] to
train our models and we evaluate on the original VOC 2012
validation set, composed of 1,449 images.

Cityscapes [9]: 5,000 street-view images containing ob-
jects of 8 different categories. The dataset is split in 2,975
images for training, 500 for validation and 1,525 for testing.

Models trained for the CVPPP dataset are evaluated with
the symmetric best dice (SBD) and the difference in count
(DiC) metric, as in [29]. For Cityscapes and Pascal VOC,
we use common evaluation practices in [17] and use the
average precision AP at different IoU thresholds.

4.2. Experimental setup

We use the Adam optimizer [22] with a learning rate of
10−3 for all layers in the decoder, 10−6 for the layers in
the encoder, and a weight decay of 10−6 in all layers in the
network. Our models are implemented in PyTorch.

We train our multi-task model by subsequently adding
penalty terms to the loss function one at a time as train-
ing progresses. In our experiments we observe that while
the penalty term for instance classification Lc quickly con-
verges, the task of segmenting one object at a time is much
more challenging to learn. We hypothesize that this is
mainly due to the fact that the encoder we use is pretrained
for image classification and not segmentation. To facilitate
convergence, we first train the network for 20 epochs with
λ = 0 and set it to 0.1 after 20 epochs. Similarly, the penalty
term Ls also converges quickly, therefore we set it to 0 and
activate it after the model converges for Lt = Lm + 0.1Lc.
Finally we add the stopping loss termLs to the cost function
with γ = 0.5 for Pascal, γ = 0.1 for CVPPP and γ = 1.0
for Cityscapes and resume training until convergence.

We resize images to 256 × 256 pixels for Pascal, 256 ×
512 for Cityscapes and 400×400 for CVPPP. We use typical
data augmentation strategies during training.

When training for datasets with a high number of objects
per image (i.e. Cityscapes and CVPPP) we use curriculum
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R SBD ↑ DiC ↓
MSU [39] 66.7 (±7.6) 2.3 (±1.6)
Nottingham [39] 68.3 (±6.3) 3.8 (±2.0)
Wageningnen [42] 71.1 (±6.2) 2.2 (±1.6)
IPK [30] 74.4 (±4.3) 2.6 (±1.8)
PRIAn [15] - 1.3 (±1.2)
Brabandere et al. [12] 84.2 (-) 0.8 (-)
RIS + CRF [36] X 66.6 (±8.7) 1.1 (±0.9)
Ren & Zemel [34] X 84.9 (±4.8) 0.8 (±1.0)
Ours X 70.6 (±11.2) 1.2 (±1.1)

Table 1. Results on the CVPPP plant leaf segmentation bench-
mark. We report values for both SBD (the higher the better) and
DiC (the lower the better). The R column indicates whether the
method is recurrent.

learning [7] to guide the optimization process, where we
begin optimizing the model to predict only two objects and
increase this value by one once the validation loss plateaus.
In practice, we have found this approach to be effective for
these two datasets, but unnecessary in the case of the Pascal
dataset where images have fewer objects.

4.3. Single-class instance segmentation

We first evaluate our models in the CVPPP Plant Leaf
Segmentation dataset. We compare with participants to the
CVPPP challenge [39, 42, 30, 15], the two recurrent mod-
els in [36, 34] and the metric learning based approach from
[12]. Table 1 summarizes the results. Our method outper-
forms the one by Romera-Paredes & Torr [36], whose ap-
proach is also recurrent and their network is the most sim-
ilar to ours (i.e. they use a fully convolutional neural net-
work whose input is the raw image and the output are the
consecutive masks). The recurrent model in [34] obtains
better results in this challenge, especially in terms of SBD.
However, [34] uses a complex pipeline consisting of sev-
eral modules, including a foreground prediction, detection
of instances, and finally their segmentations. In contrast,
our method directly predicts binary masks from image fea-
tures without using bounding box supervision. In Figure 3
we show examples of predictions obtained by our model for
images in the dataset. In the first row, some good exam-
ples from the test set are depicted, and in the second row we
show some typical mistakes of our network, such as predict-
ing the same leaf twice or merging two leaves in the output
of the same time step.

4.4. Multi-class instance segmentation

Next we evaluate our approach in two challeng-
ing benchmarks for semantic instance segmentation:
Cityscapes and Pascal VOC 2012.

Table 2 shows the results for Cityscapes. Although our
accuracy does not meet state of the art methods [19, 12, 6],
we find that for the car class category we are comparable to

Color sequence:

Figure 3. Example predictions for CVPPP dataset.

R AP AP50 AP100m AP50m

Mask R-CNN [19] 32.0 58.1 45.8 49.5
DWT [6] 19.4 35.3 31.4 36.8
Brabandere et al. [12] 17.5 35.9 27.8 31.0
MCG + RCNN [9] 4.6 12.9 7.7 10.3
Ren & Zemel [34] X 9.5 18.9 16.8 20.9
Ours X 5.8 13.8 10.2 11.7
Mask R-CNN [19] 49.1 71.8 69.9 67.9
DWT [6] 31.5 48.5 53.5 50.8
Brabandere et al. [12] 24.4 43.2 40.0 44.0
MCG + RCNN [9] 10.5 26.0 21.2 17.5
Ren & Zemel [34] X 27.5 41.9 54.2 46.8
Ours X 23.8 42.6 39.3 44.7
Table 2. Results for the Cityscapes dataset. We compare against
state-of-the art methods, reporting the average for all categories
and separately for cars. The R column indicates whether the ap-
proach is recurrent or not.

[34], which is the only other work that has assessed a recur-
rent method on this dataset. However, their classification
scores are provided by a separate module trained for the
task of semantic instance segmentation. Our method pre-
dicts both the binary mask and the categorical label for each
instance. In Figure 4 we show some sample predictions of
our model for this dataset. While our model works well for
cars and other simpler and dominant objects such as people,
it misses most bicycles or motorbikes, which turn out to be
the most difficult categories of this dataset. We believe that
this behavior can be explained with the fact that [34] relies
on a more complex model that adds more supervision with
both bounding box and mask penalty terms.

Finally, we train and evaluate our model with the Pas-
cal dataset. While images in this dataset do not have as
many object instances as the other two, they are far more
complex and different from each other. This poses an addi-
tional challenge to our model, which must adapt the scan-
ning pattern to the image layout. Table 3 summarizes the
results. In general, our approach achieves competitive per-
formance against state of the art methods. Our approach
outperforms early proposal-based methods in [17, 8] by a
significant margin across all IoU thresholds. Compared to
more recent works [24, 4, 25, 5], our method falls behind
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Figure 4. Sample predictions for the Cityscapes dataset.

Figure 5. Examples of predicted sequences for Pascal.

for lower thresholds, but remains competitive and even su-
perior in some cases for higher thresholds, thanks to the use
of skip-connections in our decoder.

We also compare our method with the recurrent model
in [36], which is trained as a class-agnostic instance seg-
mentation algorithm. Since they train and evaluate their
method only on the person category in the Pascal VOC 2012
validation set, we report the results for this category sep-
arately despite our model is trained for all 20 categories.
We outperform their results by a significant margin when
using a deeper encoder such as ResNet-101. Our method
also performs better when trained using a VGG-16 encoder,
which resembles the encoder they use in terms of number
of parameters. Figure 5 shows examples of predicted object
sequences for Pascal images, which show that our model
can deal with occlusions and objects of different scales and
shapes. Consistently with the previous two datasets, our
model sometimes predicts a single mask for two object in-
stances in the image, which causes ambiguity for the clas-
sification branch in cases where the two objects belong to
different categories (e.g. the two second man in the last im-
age from the first row is segmented together with a bicycle).

4.5. Class-agnostic instance segmentation

We also evaluate our model as a class-agnostic object
proposal algorithm. We compare the masks generated by
our method against those generated by object proposal tech-
niques, including those that provide binary masks and not
only bounding boxes (namely SCG [3], MCG [3] and COB
[28]). For this experiment, we simply ignore output class
probabilities and keep the binary mask obtained at each

R mean AP person AP

IoU threshold: 0.5 0.6 0.7 0.8 0.5

SDS [17] 43.8 34.5 21.3 8.7 47.9
Chen et al. [8] 46.3 38.2 27 13.5 48.3
PFN [25] 58.7 51.3 42.5 31.2 48.4
R2-IOS [24] 66.7 58.1 46.2 - 60.4
Arnab et al. [4] 58.3 52.4 45.4 34.9 58.6
Arnab et al. [5] 61.7 55.5 48.6 39.5 65.6
MPA [26] 60.3 54.6 45.9 34.3 67.6
RIS [36] X - - - - 46.6
RIS + CRF [36] X - - - - 50.1

Ours (VGG16) X 46.2 39.8 33.7 26.2 51.7
Ours (R101) X 57.6 52.5 43.3 38.1 60.9
Table 3. Performance comparison on Pascal VOC 2012 with state
of the art methods for different intersection over union thresholds.
The R column indicates whether the approach is recurrent or not.

time step as an object proposal. Table 4 shows the Aver-
age Recall at different IoU thresholds. Compared to [3, 28],
our method achieves higher recall with a smaller number of
proposals (i.e. N = 10). Although for higher values of N
our performance does not increase in the same proportion
as [3, 28], our proposals are still competitive, and achieve
higher recall for high IoU thresholds. This demonstrates
the suitability of using a recurrent approach for semantic
instance segmentation, which facilitates the prediction of a
small set of objects by design and can still achieve compet-
itive performance.

4.6. Ablation Studies

We perform ablation studies to quantify the effect of
each of the components in our network (encoder, skip-
connections and number of recurrent layers). Table 5
presents the results of these experiments for Pascal.

First, we compare the performance of different pre-
trained image encoders. We find that a deeper encoder
yields better performance, with a 23,87% relative increase
in performance from VGG-16 to ResNet-101. Further,
we analyze the effect of using different skip connection
modes (i.e. summation, concatenation and multiplication),
as well as removing them completely. While there is lit-
tle difference between the different skip-connection modes,
concatenation has better performance and completely re-
moving skip connections causes a drop of performance of
6.6%, which demonstrates the effectiveness of using skip-
connections to obtain accurate segmentation masks.

We also quantify the effect of reducing the number of
ConvLSTM layers in the decoder. To remove ConvLSTM
layers, we simply truncate the decoder chain and the out-
put of the last ConvLSTM is upsampled to match the im-
age dimensions and becomes the input to the last convolu-
tional layer that outputs the final mask. Removing ConvL-
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AR@50 AR@70 AR@85

10 50 10 50 10 50
COB [28] 52.4 71.9 36.0 52.8 22.9 35.0
MCG [3] 41.3 63.2 24.4 43.2 12.7 22.6
SCG [3] 41.2 60.8 22.5 38.9 11.2 19.7
Ours 68.2 70.7 55.9 57.6 41.9 42.9

Table 4. Comparison of the Average Recall at different IoU thresh-
olds with state of the art object proposal techniques.

Encoder skip N AP@50 AP@50 person

VGG16 concat 5 46.5 51.7
R50 concat 5 53.0 53.9
R101 concat 5 57.6 60.9

R101 sum 5 56.7 57.8
R101 mult 5 56.1 59.2
R101 none 5 53.8 51.3

R101 concat 4 56.0 59.0
R101 concat 3 56.1 59.5
R101 concat 2 54.5 54.0
R101 - 1 53.3 50.6

Table 5. Ablation studies on Pascal VOC 2012 validation set.

STM layers also means removing the corresponding skip
connection. Results in table 5 show a decrease in perfor-
mance as we remove layers from the decoder, which indi-
cates that both the depth of the decoder and the skip connec-
tions coming from the encoder contribute to the final result.
Notably, keeping the original 5 ConvLSTM layers in the
decoder, but removing the skip connections gives a simi-
lar performance as using a single ConvLSTM layer without
skip-connections (AP of 53.3 against 53.2). This indicates
that a deeper recurrent module composed of several Con-
vLSTM layers can only improve performance if the side
outputs from the encoder are used as additional inputs.

4.7. Object Sorting Patterns

We analyze the sorting patterns learned by the network
to segment one instance at a time by computing their corre-
lation with arbitrary sorting strategies. We define arbitrary
orders, namely: right to left (r2l), bottom to top (b2t) and
large to small (l2s) and check whether our network follows
any of these patterns when predicting objects in a sequential
manner. We take the center of mass of each object to repre-
sent its location, and the sum of the pixels that compose it
as the measure for its size.

We sort the sequence of predicted masks according to
one of the strategies and the obtained permutation indices
are compared with the original ones with the Kendall tau
correlation metric: τ = P−Q

N(N−1)/2 . Given a sequence
of masks x ∈ {x1, ..., xN} and its permutation y ∈
{y1, ..., yN}, P is the number of concordant pairs (i.e. pairs

Pascal VOC Cityscapes CVPPP

r2l 0.4916 0.9499 -0.3601
b2t 0.2788 -0.0408 -0.7212
l2s 0.2739 0.1373 0.0801

Table 6. Kendall tau coefficient τ with arbitrary patterns.

b2
t

l2
s

r2
l

Figure 6. Examples of different sorting patterns. Examples of pre-
dicted object sequences for images in Pascal VOC 2012 validation
set that highly correlate with the different sorting strategies.

that appear in the same order in the two lists) and Q is the
number of discordant pairs. τ ∈ [−1, 1], where 1 indicates
complete correlation, -1 inverse correlation and 0 means
there is no correlation between sequences. Table 6 presents
the results for this experiment. For simplicity, we do not
show the results for the opposite sorting criteria in the table
(i.e. left to right, small to large and top to bottom), since
their τ value would be the same but with the opposite sign.
In the case of Cityscapes and Pascal, we find a strong cor-
relation with the right to left sorting strategy, indicating that
most predictions for images in this dataset follow this pat-
tern. However, in the case of Pascal, the value is lower than
the one for Cityscapes, and correlation values for bottom to
top and large to small sorting strategies are also high. For
CVPPP images, we observe that predicted objects correlate
the most with a top to bottom scanning strategy.

Strong correlation values are coherent with the predic-
tion examples for CVPPP and Cityscapes in Figures 3 and
4, which show a scanning pattern to find objects that is con-
sistent across different images. In the case of Pascal images,
this pattern can vary from one image to the other. Figure
6 shows examples of images that present high correlation
with each of the three sorting strategies. Interestingly, our
model adapts its scanning pattern based on the image con-
tents, choosing to start from one side when objects are next
to each other, or starting from the biggest one when the re-
maining objects are much smaller.

Further, we quantify the number of object pairs that are
predicted in each of the arbitrary orders. For a pair of ob-
jects o1 and o2 that are predicted consecutively, we can say
they are sorted in a particular order if their difference in the
axis of interest is greater than 15% (e.g. a pair of consecu-
tive objects follows a right to left pattern if the second object
is to the left of the first by more than 0.15×W pixels, being
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Figure 7. Percentage of consecutive object pairs of different cate-
gories that follow a particular sorting pattern.

W the image width). Figure 7 shows the results for object
pairs separated by category. For clarity, only pairs of objects
that are predicted together at least 20 times are displayed.

We observe a substantial difference between pairs of in-
stances from the same category and pairs of objects of dif-
ferent classes. While same-class pairs seem to be consis-
tently predicted following a horizontal pattern (right to left),
pairs of objects from different categories are found follow-
ing other patterns reflecting the relationships between them.
For example, the pairs motorcycle+person, bicycle+person
or horse+person are often predicted following the vertical
axis, from the bottom to the top of the image, which is co-
herent with the usual spatial distribution of objects of these
categories in Pascal images (horses, bikes and motorbikes
are normally ridden by people).

We also check whether the order of the predicted ob-
ject sequences correlates with the features from the encoder.
Since these are the inputs to the recurrent layers in the de-
coder (which do not change across different time steps), the
network must learn to encode the information of the ob-
ject order in these activations. To test whether this is true,
we permute the object sequence based on the activations
in each of the convolutional layers in the encoder. Table
7 shows the Kendall tau correlation values of predicted se-
quences with these activations, before and after training the
model. We observe that correlation increases after training
the model for our task. The predicted sequences correlate
the most with the activations in the last convolutional block
in the encoder both for Pascal and Cityscapes. This is a rea-
sonable behavior, since those features are the input to the
first ConvLSTM layer in the decoder. In the case of images
from the CVPPP dataset, we find that the predicted object
sequences inversely correlate with the activations in the last
convolutional layer in the encoder, indicating that the se-
quence starts with the least active object. In Figure 8 we dis-
play the most and least active object in the last convolutional
layer in the encoder before and after training the model. For
Pascal images, we observe a shift of the most active objects
from the center of the image to the bottom-right part of the
image, while the least active objects are located in the left
part of the image. In the case of Cityscapes, objects with the

Cityscapes Pascal VOC CVPPP
before after before after before after

f4 -0.091 -0.105 -0.048 -0.062 -0.132 -0.245
f3 0.090 0.034 0.014 -0.005 0.179 0.060
f2 -0.028 0.002 -0.088 -0.125 0.031 -0.070
f1 0.045 0.056 0.008 0.286 0.124 0.232
f0 0.071 0.629 0.274 0.634 -0.152 -0.414

Table 7. Correlation with convolutional activations. Kendall tau
correlation with activations from the different blocks in the en-
coder, before and after training.

Pascal VOC Cityscapes

af
te

r
be

fo
re

Most active Least active

Pascal VOC Cityscapes CVPPP

Most active Least active Least activeMost active

Figure 8. Most and least active objects in last convolutional layer
from the encoder before and after training.

highest activation move from the center to right-most part of
the image after training. Regarding CVPPP, we observe that
the network learns a specific route to predict leaves which
is consistent accross different images. In this case, the most
active object correlates with the last object of the route, that
tends to be in the center of the image, whereas the least ac-
tive correlates with the first object of the sequence that tends
to be in the top-most part of the image.

5. Conclusion

We have presented a recurrent method for end to end se-
mantic instance segmentation that is able to produce com-
petitive results on three different benchmarks. Thanks to
its ability to retain information from previous predictions,
our approach is able to produce a variable number of ob-
jects for every image. Such ability removes the need for
post-processing on the output predictions. We observe that
our model is able to learn coherent scanning patterns to fol-
low while generating object predictions that can vary across
different images depending on their spatial structure.
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