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Abstract

This paper presents a variational framework for obtaining super-resolved video-sequences, based on the observa-
tion that reconstruction-based Super-Resolution (SR) algorithms are limited by two factors: registration exactitude
and Point Spread Function (PSF) estimation accuracy. To minimize the impact of the first limiting factor, a small-
scale linear inpainting algorithm is proposed to provide smooth SR video frames. To improve the second limiting
factor, a fast PSF local estimation and total variation-based denoising is proposed. Experimental results reflect the
improvements provided by the proposed method when compared to classic SR approaches.

1 Introduction

Image and video Super-Resolution (SR) has been a very active research topic during the last three decades [12, 5, 1].
The purpose of the vast amount of techniques contributing to this field is indeed very attractive: a high-quality capture
of a scene can be computed by applying signal processing algorithms on a number of severly corrupted captures
(e.g. with low-resolution, aliased, noisy, defocused), based on exploiting accurate image formation models.

The above technqgiues are more precisely classified as reconstruction-based SR, as opposed to example-based SR
[2, 9], where the image (or video) enhancement is obtained by exploiting prior knowledge on the capture process or the
scene structure. The main limiting factors of reconstruction-based SR are errors due to inaccurate image registration
and errors in the estimation of the blur kernel or Point Spread Function (PSF). [6] shows how the problem of blind
deconvolution (deblurring with unknown kernel) can benefit from exploiting the asimetry (between the number of
unknowns and a reasonable number of available pixels) when attempting to estimate the blur kernel (PSF) separately
from deblurring the image.

Interest in reconstruction-based SR is still high due to the fact that, in presence of notable aliasing and noise, robust
reconstruction-based techniques [1] can be better suited. Example-based SR does not, in general, reconstruct actual
fine detail but rather synthesizes plausible one. Furthermore, new achievements can be integrated in hybrid approaches,
extending e.g. [3].

The reconstruction-based SR technique proposed in this paper is based on an image formation model given by the
well-known expression y; = D;B;F;x + n;, where y; are low-resolution captures, D, is a decimation operator, B;
models the image blur, F; is the sub-pixel displacement, x is the desired high-resolution image and n; is additive
noise. Then, we subdivide the video SR problem in (1) estimating the sub-pixel shifts between video frames (registra-
tion); (2) warping neighbor frames following the registration results and inpainting empty gaps in the resulting image
(reconstruction); (3) estimating the PSF; (4) applying the previous PSF for deblurring; and (5) denoising based on total
variation (TV) [8]. This is done in order to apply a suitable conditioning to each stage, rather than assuming a single
arbitrary regularizer suits the conditions of all subproblems. This paper is organized as follows; Section 2 explains
steps (1) registration and (2) reconstruction of the proposed method. Section 3 focuses on steps (3) PSF estimation, (4)
deblurring and (5) denoising. Section 4 shows some experimental results. Finally, conclusions are drawn in Section 5.



Table 1. Registration error (average endpoint, in pixels) of different optical flow approaches
with global and local motion

Sequence Type ‘ PLK HS C+NL
camman rigid 0.0032 0.4658 0.0018
teddy non-rigid | 3.80 1.51 0.49

HS C+NL

Figure 1. Detail of the color-encoded estimated optical flow in a scene with complex motion.
C+NL contains a clearly reduced amount of outliers

2 Registration and Reconstruction

The goal of these two stages is to combine the available information in a set of N temporally close video frames
in order to generate the super-resolved version of each frame in the video sequence. We will first obtain the sub-pixel
misalignment of each pixel in each of the involved frames (by using a contemporary optical-flow estimation scheme)
and then warp each frame using this registration in order to fill-in a high-resolution (HR) grid. Finally, missing data in
the HR grid is obtained by means of a small-scale inpainting approach.

2.1 Registration

In our tests, we have compared the performance of Classic Non-Local Optical Flow (C+NL) [10] to that of Horn-
Schunck (HS) [4] (dense motion) and also to Pyramidal Lucas-Kanade (PLK) [7].

In Table 1, we can observe how, even for rigid camera motion (camman), C+NL outperforms the classical ap-
proaches. When motion becomes more complex, C+NL also clearly outperforms HS with a greatly reduced amount
of outliers, as shown in Fig. 1, while PLK just provides an estimate of the average scene motion over the whole image.
Thus, our choice for providing the registration in video sequences with complex motion is C+NL, which basically
consists in a multi-scale variation of the original Horn-Schunck method with a novel non-linear regularizer (extending
the functionality of a median filter) instead of the original smooth one.

2.2 Reconstruction

Our proposed reconstruction scheme is based on, first, warping the neighbor frames with the registration results
and, then, inpainting empty pixels in the resulting high-resolution image.

Warping. Neighbor frames are forward-warped into an initially empty HR grid with a number of pixels equal to
the desired size of the SR image. The contribution to each of the four closest pixels is modulated by bilinear weights
regarding their proximity to the warped and scaled position (e.g. (z — |z]|)(y — |y]) for the bottom-right pixel). After
accumulating the contributions from all frames, the resulting HR grid is normalized by the accumulated weights and a
mask M is obtained, indicating where a pixel has not received any contribution.

Small scale inpainting. Our small-scale inpainter is simply formulated as X, := miny_ R(x, ), with the only varying
elements of x, (the vectorized reconstructed image) being those where the mask M obtained in the previous stage



equals one. R() is a regularizer regarding a-priori assumptions about the image structure. After experimenting with
TV and Tikhonov regularizers, we assessed the latter was better conditioned for this task. The method employed to
obtain the result is gradient descent x! ™1 := x! — M (Ax!) with constant update step /. A is the Laplacian operator.
With this approach for small-scale inpanting, we implicitly assume noiseless warped pixels (noise is treated at a later
stage with a dedicated suitable regularizer) and we simplify the variational formulation by removing the data term.

3 Restoration

The outcome of the method described in the previous section is a smooth image containing a richer amount of detail
than any of the single frames employed for obtaining it, but with the problem of potentially containing a substantial
amount of blur and additive noise. Therefore, with the techniques presented in this section we aim at restoring a
high-quality SR image by deblurring and denoising.

3.1 PSF estimation

Prior to attempting to deblur the image, we need a suitable estimate of the PSF (or blur kernel). Please note that
the estimation also benefits from the choice of a linear regularizer in the previous stage, for a linear process can be
properly described by means of a convolution kernel (this would not hold with e.g. TV regularization, which would
require more complex deblurring techniques [11]).

In order to estimate the PSF, we follow an approach similar to that described in [6], but with practical modifica-
tions in two important parts. First, an estimate of the sharp image is obtained with a simpler strategy (which in our
experiments appears to be robuster when processing images with very low resolution), consisting in: (1) Canny edge
detection; (2) edge-transversal local binarization (to the maximum and minimum pixel values at each side of the edge)
and (3) elimination of the linear transition between the extrema. This responds to the fact that, in heavily downsampled
images, a single pixel already covers a large area around a contour point.

Once the sharp image x4 has been estimated (around edges) by this method, it is used for estimating the PSF in a
direct formulation (possible by resorting to a Tikhonov —linear— regularizer). This contrasts with the gradient descent
approach chosen in [6] and provides a closed-form solution. For the sake of readability, in the following formulas we
avoid referring to indicator functions (masks) for estimated sharp pixels in the neighborhood of contour points.

Let h be the PSF to be estimated, x,. the reconstructed SR image and R(h) a Tikhonov regularizer. We look for
h := miny, ||z, — x4 * h||2 + AnR(h). We note that the convolution z4xh is identical to x4, which leads to a closed-
form solution when we formulate it as a matrix-vector product. It can be shown that h = (X7X 4 + A\, A) 71X 7 x,,
where h is the vectorized estimated PSF, X is the convolution matrix form of the estimated sharp image (containing
as many warps of the image —columns— as elements has ) and A is a linear operator obtained from the matrix form
of the forward-difference derivative operators (A := Df D, + Dg D, with D, x = vec(V,x) being the vectorized
horizontal gradient and D, x the corresponding vectorized vertical gradient).

3.2 Deblurring

Once the shape of the PSF is known, we marginalize on the other unknown of the blur model Z.4 := min,, ||z, — 24 * /
with A4 a small regularization factor included for numerical stability and R(z4) a Tikhonov regularizer. By using this
linear regularizer (which has minimal influence on the result) we can once again obtain a closed-form solution, with
better accuracy than gradient methods. Leaving apart considerations about the contour conditions, the solution to this
problem is now X, = (H TH 4+ )\dA)*lH Tx,., where %, is the vectorized deblurred image and H is the convolution
matrix form of the PSF & estimated in the previous stage.

The whole process for PSF estimation and deblurring benefits from being applied to small windows within the
whole image. Indeed, the effect of the camera lens is not uniform across the image, and different types of motion blur
can be present in the image. The practical limitation in this case is the sparser availability of contour data for correctly
estimating the PSF.



Figure 2. SR with rigid motion. SR image using (a) bicubic interpolation; (b) a robust SR method
(Farsiu) [1]; and (c) our approach (better viewed when zoomed in)

3.3 Denoising

In contrast to deblurring, the effect of the regularizer has a clear impact on the obtained results when denoising. TV
is known to be a powerful regularizer for this task. The resulting Lo-TV formulation is &y := ming, ||[zq — (|3 + Af R(:
with R(z ¢) the anisotropic TV regularizer.

The practical consequence of using this type of regularizer is the impossibility of obtaining a closed-form solution.
Here we propose using a gradient-descent approach like the one used for small-scale inpainting, with the differences
of the shape of the regularizer and the inclusion of a data similarity term.

The iteration, in vectorial formulation, is defined as x’}“ = xjc — pt (Q(Xd — x}) + AR (x})) ,with R/(x*) := DT
and D,, and D,, defined as in PSF estimation. Please note that, in this case, we consider an exponentially decaying step

ut. This is done to obtain faster, yet inaccurate initial variations with a large step when we are far from the optimal
solution and slower but accurate final variations, when we aim at stabilizing around the optimal point.

4 Experimental Results

The presented algorithms have been implemented in MATLAB. Even though any real magnification factor can be
applied with our method, we use %2 in our examples, in order to keep it comparable with other approaches. Concretely,
we compare our method to bicubic interpolation of each single frame (bicubic) and the reference Fast and Robust SR
method from [1] (Farsiu).

Using ground-truth data (synthetic sub-pixel-shifted image sequences), as in Fig. 2, we subjectively and quantita-
tively assess that our approach provides better accuracy than both bicubic and Farsiu. Indeed, averaging the results in
6 examples including the cited one, the SSIM index and Y-PSNR are: 0.45 and 18.09 dB for bicubic, 0.56 and 18.41
dB for Farsiu and 0.74 and 22.47 dB for our approach. This experiment, with fairly simple registration, allows us to
assess the quality of the reconstruction and restoration algorithms.

Using real-data (low-quality video), we can also see how our method is capable of retrieving better results than
the other references. This is due to the superior performance of the registration stage and also to the improvements
due to our proposed reconstruction, denoising and deblurring algorithms. An example using a real video sequence
with complex motion is shown in Fig. 3. The chosen registration technique allows to correctly measure the subpixel
misalignment even when some objects move freely in the video sequence.



Figure 3. Detail of SR results with (a) bicubic interpolation, (b) Farsiu and (c) our proposed
method for a real video-sequence (better viewed when zoomed in)

5 Conclusions

We have presented a modular variational approach for solving the subtasks of reconstruction and restoration in
reconstruction-based SR. This, combined with contemporary state-of-the-art optical-flow estimation, allows us to
obtain deblurred and denoised SR frames in video sequences showing spatial aliasing, even in presence of complex
scene motion.

The main advantage of proceeding in a modular manner is that we are able to introduce a suitable regularizer
for each substage. This allows us to obtain closed-form solutions to some of the tasks when employing the right
formulation (e.g. Lo data fidelity term with Tikhonov regularization) and consider costlier non-linear processes when
required (e.g. in denoising).

For our future work, we plan to extend the effective magnification by using our results as input in single-image SR,
with the latter benefiting from reduced aliasing and noise and the recovered high-frequency detail.
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