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ABSTRACT

This paper presents a methodology for obtaining a 3D recon-
struction of a dynamic scene in multi-camera settings. Our
target is to derive a compact representation of the 3D scene
which is effective and accurate, whatever the number of cam-
eras and even for very-wide baseline settings. Easing real-
time 3D scene capture has outstanding applications in 2D and
3D content production, free viewpoint video of natural scenes
and interactive video applications.

The method proposed here has several original contribu-
tions on how to accelerate the process: it exploits spatial and
temporal consistency for speeding up reconstruction, divid-
ing the problem in two parts. First, 3D surfaces are effi-
ciently sampled to obtain a silhouette-consistent set of col-
ored surface points and normals, using a novel algorithm pre-
sented in this paper. Then, a fast, greedy meshing algorithm
retrieves topologically correct continuous surfaces from the
dense sets of oriented points, providing a suitable representa-
tion for multi-view video.

Compared to other techniques in the literature, the pre-
sented approach is capable of retrieving 3D surfaces of fore-
ground objects in real-time by exploiting the computing ca-
pabilities of GPUs. This is feasible due to the parallelized
design of the surface sampling algorithm. The reconstructed
surfaces can effectively be used for interactive representa-
tions. The presented methodology also offers good scalability
to large multi-view video settings.

Index Terms— Multi-View, Surface, Mesh, Surfel, Wide-
baseline, Free-Viewpoint Video

1. INTRODUCTION

In recent years, significant research effort has focused on the
exploitation of the richer visual information available in multi-
view video-settings. Two categories of applications exploit
the new techniques derived from this on-going work free-
viewpoint video (FVV) [25] and tele-presence [}, 23].
In the first category, the available visual information from
each camera is conveniently fused to a 3D structure from
which to generate new (uncaptured) views. In the latter, a
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Fig. 1. 3D surfaces corresponding to the foreground elements
of two frames in a multi-view video sequence captured by
16 calibrated cameras. The original data can be downloaded
from the 4D Repository

more realistic perception of face-to-face communication is
obtained, allowing free mobility in virtual conferencing spaces.

Some techniques in the state of the art already make pos-
sible to exploit multi-view data in a variety of scenarios with
a conveniently high density of input views [9]. However, a
more usable scenario for today’s computing capabilities is
that of a controlled environment, like a studio, where the back-
ground is static or slowly varying and we can focus on the
dynamic foreground elements of the scene [8]]. The reason
is that, in such a scenario, the background might be either
replaced by a virtual one or reconstructed by means of other
techniques or even other technologies, like range scanners [[7],
thus allowing for sparser multi-camera settings.

In general, two types of approaches might be considered
for processing multi-view data. In image-based multi-view
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Fig. 2. Proposed free-viewpoint video system for dynamic scenes where a static, known background can be replaced

video rendering [[16} 25], image data and, possibly, additional
geometric data such as camera calibration parameters are used
in order to generate novel views interpolating in space and/or
time the contents of the images captured from the viewpoints
of the multiple cameras. An advantage of this approach is
that, by assuming a small enough baseline between cameras,
even the original background can be interpolated in the novel
views. In practice, however, this is only usable for generating
novel viewpoints in very limited ranges, since current com-
puting capabilities do not allow to use arbitrarily large num-
bers of input views and the highly dense multi-view setting
must therefore be placed in a small solid angle.
Alternatively, reconstruction-based approaches [[L8 2] at-
tempt to recover the 3D structure of the scene by exploiting
image and calibration data and possibly other types of image
features, like automatically extracted foreground silhouettes
[20]. Knowledge about the actual 3D structure of the scene
can be useful for the addition of special effects in content cre-
ation. Another advantage of this approach is that arbitrary
viewpoints can be considered beyond those covered by inter-
polation between cameras. Of course, virtual viewpoints very
far away from the original or large zooms may lead to poten-
tial degradation of the quality of the rendered scene.
Multi-view reconstruction techniques, particularly the so-
called multi-view stereo [19]], are capable of obtaining results

rivaling with those achievable with range-scan techniques, how-

ever their computation times and restricted baseline might
make them difficult to introduce in practical scenarios. One
possible alternative when the information of interest of the
scene is the dynamic foreground, is to obtain silhouette-consis-
tent reconstructions [8]. The advantage of this approach is
that it focuses on a smaller scene volume. A potential draw-
back is the introduction of an additional source of errors from
the automatic foreground silhouette extraction stage.

1.1. Approach

In order to provide FVV and tele-presence for dynamic scenes
captured by multi-camera settings with static or known back-
ground, we propose a system based on a surface reconstruc-
tion scheme like the one depicted as a block diagram in Fig.
In this paper, we will not deal with multi-view capture and
automatic foreground (FG) extraction (first two blocks), and
will focus on the 3D reconstruction and rendering steps.

About the capture system, when restrictions do not allow
obtaining small baselines between views, silhouette informa-
tion proves as a sufficient visual cue for retrieving a good es-
timate of the actual surfaces of FG objects. This holds as long
as the available views are sufficiently dense and evenly dis-
tributed all around the scene. In practice, for scenes with-
out much clutter, it will suffice that angles between view-
ing directions of neighbor cameras are in the order of 60 de-
grees, while it would be much smaller (10-20 degrees) for
image-based interpolation. About FG extraction, some previ-
ous works [[10} [18]] show how the accuracy of FG silhouettes
can be improved in multi-view scenarios by exploiting redun-
dancies among views. Finally, we should add that calibration
information is obtained offline using [4].

However, automatic silhouettes are still prone to errors.
Therefore, the 3D surface reconstruction scheme that will be
presented in Section [2| provides a mechanism for enhanced
robustness, providing conservative surface estimates repre-
sented as dense sets of oriented, colored 3D points (also called
surface patches or surfels in the literature [12]]) in multi-view
video sequences. The next block in our system, presented
in Section |3} provides continuous surfaces out of the discrete
representation provided by the previous stage, represented as
polygon meshes. Finally, a suitable visualization module, an
example of which is presented in Sectiond] provides FVV or
tele-presence capabilities and adds background information
and special effects to the dynamic scene, if requested.

2. SURFACE RECONSTRUCTION

In order to obtain a set of oriented 3D points lying on the sur-
faces of FG objects, we interpret the reconstruction problem
as a search for 3D locations that produce convenient feature
matches between views. This strategy, as shown in this sec-
tion, can be efficiently implemented if we refer to Montecarlo
methods [6] in order to define the search strategy, exploiting
the spatial correlation on the location of surface points.

In outline, the algorithm works as follows: given a set of
(noisy) FG silhouettes corresponding to the images captured
at a certain time instant, a set of randomly generated 3D points
will be chosen as lying on the surface based on the result of a
cost function defined over the silhouettes. This cost function
takes into account the possibility that silhouettes can contain
errors in form of misclassified pixels. Let p. be the pixel onto



which a randomly generated 3D point projects in view ¢ and
I.(p.) € {1,0} the image value indicating whether the p,
belongs to the foreground or not. The 4-neighborhood of the
pixel Ny = {p: ||[p — pc||1 = 1}, where || - ||; stands for the
Manhattan distance, is also used to define the cost function

d=1I.1I(pc) - (ZC > pen, (1= Ic(p))). The first term in-

dicates whether the 3D point projects onto a FG pixel for all
views whereas the second indicates wether the 3D point be-
longs to the contour of at least one of the silhouettes. In order
to enhance the robustness of the cost function in presence of
segmentation errors, we define a relaxation of this cost func-
tion as

5= ﬁzmupm A Y a-rm)],
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(1)

where the modification of the first term allows that up to 7 out
of the total N, views classify the projection of a 3D point as
background before deciding the point does not belong to the
silhouette-consistent volume.

By producing small clusters of surface points at small dis-
tances, the surface orientation can be estimated at these dis-
crete locations. This is done by fitting a plane to each of these
clusters, assuming small local curvature at small scales and
extracting the normal as the director vector with its sign set
such that, when projected, it points out of the silhouette for at
least one view.

In practice, attempting to find a dense set of surface points
in this manner is highly inefficient, due to the possibly large
search volume. In the following, we introduce the whole
method with improved efficiency. An initial scouting proce-
dure, out of which a sparse set of surface points is obtained,
is followed by a propagation stage in which arbitrarily dense
sets of surface points are efficiently obtained by exploiting
spatial correlation.

2.1. Multi-resolution scouting

Analyzing the second term in the cost function described by
Equation |1} it can be observed that a decrease of the resolu-
tion of the images will favor the detection of (low-resolution)
surface points. This comes from the fact that the volumet-
ric regions in space corresponding to the back-projection of
a pixel are larger and, therefore, the ratio between the spatial
regions projecting onto silhouette contour pixels and the rest
of the working space increases, making the random scouting
more efficient.

Considering a multi-view setting such that each of the NV,
cameras approximately captures the whole space to be recon-
structed from a different viewpoint, the probability of ran-
domly finding a surface point will be proportional to the ratio
between the number of contour pixels and the total number
of pixels in every image multiplied by the number of views.
Given images with resolution oc p?, the silhouette contour
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Fig. 3. Total reconstruction time vs. initial level of image
decimation in multi-resolution scouting. A decimation of 1 is
equivalent to the default scouting with full-resolution images

will have a length o< p. Therefore, the joint probability is
o« N,/p. Therefore, decreasing the resolution by a factor
¢ produces an increase of the probability of finding a (low-
resolution) surface point of the same factor.

Then, for each low-resolution surface point, a conveniently
sized search region (a ball inscribing the low-resolution 3D
region corresponding to the contour pixel) is used in order to
search the high-resolution surface point, projecting onto the
high-resolution silhouettes. Once the final sparse set of sur-
face points is obtained, the algorithm proceeds with the prop-
agation stage presented in Subsection [2.3] In Fig. [3] the to-
tal computation time for four different sequences downloaded
from [2} [15]] is plotted as a function of ¢, showing the advan-
tage of using multi-resolution scouting.

2.2. Dynamic scouting

When processing video sequences, valuable information about
the scene contents is known from the computation at the pre-
vious time instant. Assuming a limited range of motion be-
tween consecutive time instants parameterized by a spatial
displacement r4, we can improve the costly scouting stage by
setting small search areas (spheres of radius r4) around each
of the initial sparse surface points from the previous time in-
stant. Once the new sparse set of surface points has been ob-
tained with this method, the propagation stage proceeds ob-
taining the dense surface sampling.

Some achievements have been made in 3D motion esti-
mation by separating the shape and motion estimation tasks,
in a scene flow estimation approach of the problem using for
example voxel colors [22] as matching features. However, in
such approaches the shape estimation problem is treated stat-
ically, without exploiting temporal redundancies in order to
speed up the reconstruction, which is the goal of our proposed
scouting strategy.

In Table [} the resulting total computation times for the
same four sequences as in Fig. |3| are shown, using the nor-
mal or blind scouting and the dynamic scouting strategy. The
results do not need much justification, since it is clear that a
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Fig. 4. (a) Rectangular propagation region around a surface
point x, enclosing the space where the probability of find-
ing a new surface point is assumed to be uniform. (b) It fa-
vors propagation on the plane orthogonal to the normal vector
while allowing small surface curvatures with variations of up
to v, along the normal

reduced search space around regions very likely containing
surface points (due to spatial continuity of surfaces immersed
in 3D space) must naturally reduce the required number of
random attempts for finding a surface point.

2.3. Fast propagation

Under the assumption that surfaces are locally flat, spatial cor-
relation can be exploited in order to find dense sets of surface
points out of the sparse set of surface points uniformly dis-
tributed over the surfaces that are obtained by applying any of
the scouting approaches presented before.

The main challenge for this stage is to define a search re-
gion that actually permits reducing the number of operations
required for obtaining a surface sample. In fact, our goal is to
locally model the local distribution of the surface.

Given an oriented surface point, at an average distance
2p, of its immediate neighbors, we model the local surface
distribution as uniform in a spatial region like the shown in
Fig. @] Note that the orientation of the surface point is re-
quired in order to correctly model the local distribution of the
possible locations of close surface points.

For each existing oriented surface point, 4 new oriented
surface samples are found in the mentioned distribution af-
ter a much smaller number of tries than the one required to
generate the initial sparse representation. Then, in order to
further improve the efficiency of the algorithm, the procedure
proceeds at decreasing scales. More concretely, we reduce

Sequence Default Dynamic
dancer 1.02s 0.46s
children 273s 0.92s
martial 2.35s 0.88 s
kung-fu girl 145 0.56 s

Table 1. Dynamic scouting. Total computation time (scout-
ing+propagation) with normal and dynamic scouting

the size of the propagation region by one half at every itera-
tion. The algorithm stops when the desired number of surface
samples N, has been found.

2.4. Post-processing

In order to both improve and complement the geometric infor-
mation about the surface obtained with the method introduced
above, three post-processing stages are cascaded at the output
of the reconstruction method. These three methods follow the
same design already introduced in [17].

These three stages are: (1) a refinement of the orienta-
tion estimation (by using larger neighborhoods in order to fit
a plane by least squares); (2) an anisotropic smoothing stage
in which each surface point is displaced along the direction of
the surface orientation in order to lie on a plane identically ori-
ented and including the average point of a local neighborhood
while being subject to the relaxed silhouette constraints; and
(3) a coloring stage adding color information to the geomet-
ric description of the surfaces by making a weighted average
of the color viewed by the three best oriented cameras where
each surface point is visible.

By applying these post-processing methods we are, in first
place, effectively smoothing the surface, making the detec-
tion of 3D points robust against geometric errors due to the
discretization of the input images; in second place, we are
adding valuable color information that provides a complete
and compact description of the reconstructed surfaces.

3. MESHING

A continuous surface representation is of interest for two rea-
sons. On the one hand, the complete description of the sur-
face topology can be exploited in post-processing [13]; on
the other, by choosing a proper primitive for describing ele-
mental surface patches, such as triangles, standard rendering
pipelines can be used for quickly rendering the reconstructed
surfaces form any desired viewpoint.

In this section, we present a fast, greedy algorithm that
follows in the category of propagation-based meshing algo-
rithms, a reference of which is the Ball-Pivoting Algorithm
(BPA) [3]. The major difference of our proposed method,
apart from using a different set of rules for guiding the propa-
gation while keeping topological correctness, is the fact that,
by using an efficient and more flexible method for making
spatial queries (nearest neighbors from a kd-tree), our pro-
posed method does not require the iterative application of
the propagation method at different scales, thus avoiding the
topological problems derived from it.

The algorithm that follows is applied iteratively until at
least AN, surface points have been added to the continuous
surface, with A = 0.9 in all our experiments. The purpose
of the iterative method is two-fold: on the one hand, it al-
lows obtaining continuous surfaces out of disconnected sets



Fig. 5. Detailed views of meshing results using (a) Poisson
Reconstruction, (b) BPA and (c) our proposed method, ob-
tained from the oriented vertices of (d) a reference ground-
truth mesh

of surface points; on the other, it provides new propagation
directions for areas that weren’t tessellated from previous di-
rections due to restrictions on the allowed propagation cases.

Similar to BPA, the proposed propagation algorithm starts
by defining a triangle connecting three close coherently ori-
ented surface points and adding the corresponding three edges
(initial surface contour) to an edge queue. Then, the algorithm
processes the edge queue until it is empty. The propagation of
the contour basically consists in connecting the edge extracted
from the queue to a suitable surface point (either a point part
of the current surface contour or an unused one) thus generat-
ing a new triangle and adding up to two new edges to the edge
queue. The set of rules, the details of which have already been
introduced in [[17]], are defined in order to prevent the surface
from folding, by restricting propagation in the forward direc-
tion, and from creating two close, overlapped layers.

The algorithm includes a mechanism for detecting and
correcting topologically incorrect configurations of triangles.
Consisting in removing edges shared by more than two tri-
angles as well as the sharing triangles and proceeding with
the propagation from the resulting contour. This was, in our
experiments, the only source of erroneous topological config-
urations, being the tessellated surface a 2D manifold in 3D
space.

As a difference with volumetric regularization-based mesh-
ing algorithms (Poisson reconstruction being perhaps the
best known example), our method is not designed to be robust
with respect to noisy surface points but, in exchange, it pro-

Method ‘ armadillo  dragon happy
Time 35.64 43.61 49.55
Poisson Mem. 224 640 704
RMS 591 874 1232
Time 347.00 1846.49 2988.64
BPA Mem. 64 192 224
RMS 61 105 144
Time 3.06 10.11 15.44
Proposed Mem. 96 288 320
RMS 40 103 113

Table 2. Performance of two state-of-the-art meshing algo-
rithms and the proposed one with some datasets from the
Stanford 3D scan repository [21]]. Time is measured in sec-
onds, memory usage in MB and RMS is the Root Mean
Square Hausdorff Distance with respect to the ground-truth
mesh

vides a greater accuracy (avoiding over-smoothed results) and
a much smaller computational cost in terms of memory and
computation time.

Two state-of-the-art meshing algorithms, BPA and Pois-
son Reconstruction, both available in Meshlab [3]], and the
proposed method have been used for obtaining continuous
surfaces out of several datasets available in the Stanford 3D
scan repository [21]], for which reference meshes are pro-
vided. These are used as the ground-truth in order to com-
pare the accuracy of each of the tested methods. Besides, the
computation time and memory usage of each method is also
measured. As it is shown in Table [2| the proposed method
is consistently more accurate and faster than the references in
the state-of-the-art, whereas the memory usage is close to that
of the BPA. In Fig. [5] detailed views of the results obtained
with each of the three compared methods can be compared
visually to a ground-truth mesh.

4. EXPERIMENTS

In this section we first compare the proposed surface-based
representation to state-of-the-art techniques in multi-view re-
construction and we show that the proposed methodology is
highly competitive in the target scenario (static background
and wide-baseline setup).

In the second part of our experiments, we present a Free-
Viewpoint Video application that benefits from using the pro-
posed 3D representation for multi-view video sequences. More
concretely, we show how interactive FVV with a suitable qual-
ity level can be achieved by choosing a sufficient surface sam-
pling density for the surface-based representation of the fore-
ground elements of the multi-view video scene.



Fig. 6. Reconstructed surface of a frame in a multi-view sequence with 16 views. From left to right: first, geometry obtained
with EPVH [8]]; second, PMVS2 [9] concatenated with BPA [3]]; and third, the proposed method; fourth, per-vertex colored
surfaces obtained with PMVS2+BPA; and fifth, with the proposed method. Please note that PMVS2 is capable of working
without silhouette information in small-baseline setups; the obtained results just reflect that it is not tailored to the conditions

of our target scenario

Fig. 7. Results obtained with different sequences from the
4D Repository and the Kung-fu Girl sequence, using the pro-
posed method with 100000 surface points (~4fps)

4.1. Validation

We validate the proposed method by qualitatively compar-
ing its performance to that of two state-of-the-art methods,
Exact Polyhedral Visual Hull (EPVH) [8] and Patch-based
Multi-View Stereo (PMVS2) 9], which are typically used in
wide-baseline setups by extracting foreground silhouettes and
small-baseline setups with optional silhouettes, respectively.
Fig. [6]shows how the proposed method produces a surface ge-
ometry that has a more visually appealing look than the one
that can be obtained with EPVH, which is geometrically ex-
act but does not include any regularization or smoothing. This
would be very difficult to apply on the EPVH surfaces, due to
the irregular shape of the mesh triangles.

Multi-view stereo methods, like PMVS?2, are not tailored
to a target scenario with a very wide-baseline setup, and usu-
ally require a high amount of texture to be present in the
input images. As a result, we can assess that our method
compares also favorably to this type of state-of-the-art ap-
proach, although we must remark that the application of our
method would not be possible in more general setups, where
background subtraction is not possible, whereas multi-view
stereo techniques succeed, granted they have a small base-
line. In terms of computation time, the surfaces extracted with
PMVS2 required 28 minutes per frame (on a Intel Xeon 3
GHz), whereas our algorithm is capable of extracting a denser
set of surface points at a frame rate ~4 fps. In our cur-
rent OpenCL implementation, the details of which are not
included in this paper, we achieve real-time, with speed-ups
between 4x and 8x.

In Fig. [7} sample results for the four sequences used in
the experiments in Section [2| are shown. Two of these se-
quences (martial and children) are captured by 16 cameras,
whereas kung-fu is rendered from 25 virtual viewpoints and
dancer is captured by just 8 cameras. In all cases, the method
is capable of providing visually appealing surfaces that suf-
fice for a correct representation in a FVV application. We
observe that the marginal cost of adding a new view to the
reconstruction is sub-linear, due to the correct exploitation of
the spatial correlation, which translates in good scalability for
larger multi-view settings.

4.2. Application

We focus on a Free-Viewpoint Video application, where the
contents of interest of multi-view video sequences (the dy-
namic foreground) are streamed to a visualization application,



Fig. 8. Top: novel viewpoint of an instant of a scene captured
by 8 cameras with a virtual background. Bottom: overlay of
a surface reconstructed from 16 views projected onto one of
the original viewpoints and the original background.

implemented in OpenGL, which sends triangles and color ar-
rays to the standard rendering pipeline. The triangles corre-
spond to the meshes obtained from the meshing algorithm,
whereas the color arrays correspond to the vertices’ colors.
No projective texturing is required, thanks to the density of
the surface representation.

In Fig. [8] two possible uses of our free-viewpoint viewer
are shown. At the top image we have captured an instant of
the dancer sequence from a novel viewpoint using a virtual
background. At the bottom in the same figure, we are pro-
jecting a reconstructed surface from another scene from the
4D Repository onto one of the original viewpoints and over-
laying it with the corresponding original background. A clear
advantage of this representation is that, by sending the back-
ground once per sequence and the 3D surface once per frame,
we can retrieve the complete NV, views in every time instant.

4.3. Required density of surface points

One question that arises is which is the required density of
surface points in order to obtain a good quality representa-
tion. In our experiments, we compare the PSNR of the re-
projection of the reconstructed surfaces on the view with worst
quality against the number of pixels in such view (which in all
of our experiments coincided with the view with larger num-
ber of foreground pixels). Normalizing these figures for the
sequences dancer, children and martial, we obtain the curves
in Fig. Pl which show a saturation on the achievable accuracy.
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Fig. 9. Relative PSNR with respect to the maximum in se-
quences from the dancer, children and martial datasets as a
function of the ratio between the number of surface samples
and the number of foreground pixels in the view where they
take most image pixels

As a consequence of this empirical result, a number of
surface samples of around twice the number of pixels oc-
cupied by the foreground objects in the most limiting view
seems to be a safe, yet economical, choice for representing
scenes with good quality. This rule of thumb reflects that the
method is performing at its best when a density of around one
surface point per pixel is taken, assuming a quasi-cylindrical
symmetry of the 3D objects.

Table [3] shows how the proposed representation is a suit-
able tool for streaming the contents of multi-view video for
real-time applications. We compare the amount of data re-
quired to represent multi-view sequences in a classical image-
based manner (either as individual frames or exploiting tem-
poral redundancies as lossless video sequences) against our
approach. The bandwidth or storage resources for transmit-
ting or storing the contents of multi-view video sequences
with static background can be notably reduced in our case
by introducing a controlled amount of losses. In the table,
FG CTM stands for compressing the reconstructed colored
surfaces using OpenCTM [[11]], which reduces in a factor of
about 10 the required data support, while PSNR figures in the
worst case view are still well above 45 dB. An alternative ap-
proach implementing FVV using standard video coding tools
can be found in [24].

5. CONCLUSIONS

To sum up, we have presented a complete methodology for
extracting and visualizing an alternative representation of the
contents of interest in multi-view video sequences. More con-
cretely, we have presented a fast method for multi-view recon-
struction with arbitrarily wide baseline settings. This method
provides an efficient representation of the dynamic part of the



scene when the static background is known or replaceable.
We also provide a rule of thumb for obtaining accurate recon-
structions in an economical manner.

By exploiting the parallelized design of the algorithm,
it can be easily implemented on a GPU (using for example
OpenCL) providing real-time reconstructions of 3D surfaces.
This is currently used for interactive applications in our smart
room, including free-viewpoint video.

For the future work, we are planning to make a better ex-
ploitation of the color information available in the images in
order to obtain quality levels beyond the current limits of the
silhouette-consistent reconstruction. Last but not least, the
authors would like to thank the anonymous reviewers for their

constructive review, which resulted in an improved manuscript.
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