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Abstract—This paper presents a new procedure to explore 3D
space for visual analysis in multicamera environments. We
propose a 3D geometry to sample (voxelize) the space when
checking the consistency of the analyzed features in the multiple
views. Contrary to regular voxelization, the proposed geometry is
irregular in 3D, but becomes regular once projected onto camera
images. The aim is to better exploit the redundancy and the
enriched information provided in multiview frameworks at the
analysis stage. This is accomplished by balancing the usage of the
available data (i.e. captured pixels) across the multiple cameras,
instead of focusing in a regular sampling of the 3D space from
which we do not have direct data. An efficient recursive
algorithm that uses the proposed geometry is outlined, and the
experimental results reflect higher accuracy than regular
voxelization with equivalent restrictions for the chosen multiview
analysis applications.
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[. INTRODUCTION

Visual analysis in multicamera environments provides
enhanced robustness by exploiting redundancy in visual
information from the different images of the same scene.
Multiview approaches for foreground detection, space carving,
face/person detection and tracking, gesture analysis, etc.
benefit from common information present in the multiple
views by checking the consistency of the analyzed primitives
(color, foreground, salient points...) from the (redundant)
available projections of the actual 3D scene. In addition, the
non-redundant information extracted from the multiple views,
enriches the visual analysis process with 3D cues, which
disambiguate occlusions and provide visual information from
otherwise occluded parts of the scene.

Multiview redundancy enhances analysis robustness by
checking consistency among images captured by multiple
calibrated cameras. One often resorts to an ordered scanning
of the 3D space (as in [1]). Spatial regions of the 3D space are
sequentially analyzed from their projections in the multiple
cameras. The usual approach is regular voxelization, where
the working 3D space is sampled at regularly spaced intervals
in its orthogonal axes, giving rise to elementary cubes
(voxels). The problem arises from the fact that the sampling

geometry generated by this particular scanning of the 3D
space is distorted by the projection onto the cameras. Once
projected onto the camera images, the sampling geometry
becomes irregular, and the amount of available data (pixels)
used to analyze each space region (voxel) depends on its
distance to the camera and the intrinsic camera parameters.
This can be shown in two different examples:

e  When projecting two separated regular voxels (equally
sized 3D volumes in space) on the same camera image,
the amount of pixels used for visual analysis can be quite
different when the voxels are located at different
distances from the camera.

e  When projecting the same regular voxel on two different
cameras, the amount of pixels in the projections is also
quite varying. An illustration of this case can be seen in
Fig. 1.

We have evaluated this problem in a particular situation. A
sampling geometry with cubic voxels of size 3 cm is defined
in a Smart Room equipped with 5 cameras (four cameras
placed on the corners and the fifth one ceiling mounted as a
zenithal cam). We compute the statistics of the projection size
(in pixels) of all the voxels in the 3D working space. The
histogram of the voxel projection size is shown in Fig. 2 for
one of the corner cameras. Table I outlines mean and
dispersion values of the voxel projection size for all the
cameras, and reveals that the dispersion of the projection sizes
is really high (the same order as the mean value).

Figure 1. The same voxel in 3D space seen by a close camera and by a far one

The situation described is not favorable when checking the
consistency of the analysis in the multiple projections of the
actual 3D scene. We are using quite different amounts of data
(the number of projected pixels for each voxel in each view)
to analyze each individual regions in 3D space. We refer to



this situation as "3D space voxelization non-adapted to the
image data" in multiview analysis.
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Figure 2. Histogram of the voxel projection size on a calibrated camera
(in pixels) of a 3 cm side voxel in a 4x5x2 m’ room

TABLE .MEASUREMENTS OF VOXEL PROJECTION SIZES IN PIXELS FOR 3
CM SIDED VOXELS

Minimum | Maximum Mean Dispersion
projection | projection | projection | projection
size size size size
Camera 1 4 1797 60 67
Camera 2 4 1864 58 65
Camera 3 4 1650 59 66
Camera 4 4 2155 60 69
Camera 5 2 296 40 22

One way of taking into account such lack of adaptation to
the image data, is to avoid giving the same importance to each
view in the consistency check for every voxel. An alternative
strategy is the one we present in this paper.

The aim of the present paper is to define a new approach to
perform multiview analysis using a 3D space scanning
procedure better adapted to the image data; that is, without
such a dispersion in the amount of data used for the
consistency check at each 3D space unit. The reasoning
behind this approach is that the actual data we have available
for analysis are the projected images, and it does not make
much sense to scan the 3D space (from which we do not have
direct measurements) with a regular geometry, while this
results in a non-regular geometry when projected on the
camera images. Please bear in mind that our actual visual
measurements (pixel data) come from the projections in the
camera images, as opposed to data coming from 3D
measurements (as MRI, PET, etc), where the sensors scan
directly the 3D space.

Therefore, we change the paradigm trying to adapt the
visual analysis to the available data. Instead of scanning the
3D space with regular voxels, from which there is not any
direct data, the camera images are divided in a regular way,
and the 3D equivalents of such divisions are used as the
scanning geometry. In this way, the defined geometry is
adapted to images.

The following section in this paper explains in higher
detail how the new scanning geometry is defined and how it is
used to scan the 3D space in a recursive algorithm. The next

section presents the results obtained for a selected analysis
technique and compares them to an existent approach (regular
voxelization). Finally, the main advantages and disadvantages
of the new method are discussed in the last section.

II. PROPOSED METHOD

In this section we present the tools we use to obtain a
geometry adapted to images for 3D space scanning. First, we
define the quadrant as an image region. Then, the cone is
obtained as the back-projection of the quadrant. The cone is
the intermediate step to compute the final image-adapted
geometry, which is based in what we call conexels. Finally,
we outline a recursive algorithm for 3D space scanning in
multicamera settings, which has proven useful for several
analysis techniques.

A. Image regions: quadrants

As stated above, one of the principal aims of this method is
to avoid dispersion in the amount of data used in analysis. To
achieve that, images are divided in quadrants for scanning.
Quadrants are defined as square shaped, non-overlapping
regions in the projected images. 3D space scanning will be
defined based in the geometry generated by the quadrants,
instead of using the voxel-based geometry. The expected
behavior of such approach is that it will use the same amount
of data in every image when scanning a 3D space region: their
projections will always lie inside the selected quadrants.

B.  Back-projection of quadrants in 3D space: cones

To obtain the 3D back-projection of a quadrant in an
image, the back-projected ray of every corner of the quadrant
must be computed, as shown in [2]. Combining those 4 ray
equations, 4 plane inequations can be defined so the pixels in
the quadrant are the projection of the inner volume enclosed
by the four planes. The Center Of Projection (COP) of the
camera is the main vertex of the cone, which results in a
pyramidal shape without a basis. An illustration of one of such
cones can be seen in Fig. 3.

Figure 3. Back-projected cone from a camera positioned in the bottom left
corner of the image as seen from a zenithal camera. The floor of the room
(colored square in the background) is included as a reference



C. Intersection of two or more cones: conexels

We define the elementary 3D space volume (conexel) of
our scanning geometry adapted to images in the following
way:

1) Choose a quadrant for every available image
2) Compute the back-projected cone for every quadrant

3) The conexel is then defined as the intersection of the
back-projected cones of every quadrant

The name conexel comes from “cone element.”' In Fig. 4,
a 3D view of a conexel obtained as the intersection of 2 cones
from quadrants in 2 camera images is shown.

Figure 4. Conexel obtained as the intersection of the back-projected cones
from 2 cameras in the room corners. A floor reference is again shown in the
picture

The projection of a conexel in every camera can be
computed in a fast way, without having to compute its real 3D
geometry and project it on every camera image. This is
accomplished by selecting the inner zone to all the epipolar
lines (refer to [5]) of the corners of the quadrants on the other
cams computed using fundamental matrices, which relate
points in source camera images with rays in target cameras.
Changing equations of the epipolar lines by inequations, we
can define two image regions: pixels which lay inside the cone
projection and pixels which lie outside it. Pixels inside the
current quadrant for the working camera must be checked, and
only those which also lay inside all cone projections are
selected as part of the projection of the conexel on the camera
image.

Please note that, when projecting again the conexel
obtained by cone intersection onto the camera images, the
projections do not completely cover the quadrants which
generated the conexel. Therefore, there will still be some
dispersion in the amount of pixel data used for the analysis of
the conexel, which is now our elementary scanning volume in
3D space. Anyway, the dispersion is expected to be smaller
than with the regular voxelization approach. In this sense, our
proposal is better adapted to the image data. In fact, the

"In analogy with pixel from “picture element” and “voxel”
from “volume element”

number of pixels of the projection of the conexel in each
camera view will range from 1 to the total number of pixels in
the quadrant. This dispersion range is usually much smaller
than the dispersion range with regular voxelization, as seen in
the introduction.

D. Recursive scanning algorithm

The presented approach can be easily introduced in a
recursive 3D space scanning algorithm, which performs as a
quad-tree decomposition at the level of the projected images.
We recursively divide each quadrant in four quadrants
(depending on the consistency check) and we carry on
dividing the resulting quadrant in four sub-quadrants. For each
division, the result is a new set of conexels which always lie in
the previous larger one. This result can be used to selectively
enhance the resolution of 3D analysis in places where it is
needed, such as objects contours, without using the highest
resolution in places where it is not necessary. Thus, a space
scanning algorithm based on the proposed procedure may start
with color consistency checks at rough resolution (large
conexels) and progressively refine it by recursive subdivision
of only those conexels where needed. An m-tree ([6]) is used
to store the results. Its implementation includes a set of
functions which allow moving up, down and to the sides in its
structure. As the number of cameras may vary, the algorithm
performs loops without hard-coding them on a fixed number
of cameras, defining a vector to store the current chosen
quadrant for every camera and a variable to store the current
camera in use.

To sum up, the main recursive algorithm to scan 3D space
based on the geometry defined by the conexels works as
follows:

1. Set the current camera to zero (first camera) and the
chosen quadrant vector to all zeros.

2. If the currently selected camera index is larger or
equal to zero go to the next step, if not finish.

3. For all cameras with index smaller than the currently
selected camera, obtain cone projections for selected
quadrants on other cams onto the currently selected
camera image, and cone projections for the current
quadrant in the currently selected camera onto the
previous camera images. If any of the cameras does
not have any pixel belonging to the conexel
projection, it means that no conexel exists for the
current set of quadrants. In that case jump to step 6, if
not go to the next step.

4. If the currently selected camera is the last available
one (meaning that a conexel exists for the current set
of quadrants), count the number of pixels of the
conexel projection on every camera and, if it is
different from zero, go to the next step. In any other
case select next camera and jump to step 2.

’ The available quadrants in every camera are stored in the
m-tree



5. At this step any analysis function can be
implemented for a multiview consistency check on the
projected pixels corresponding to the obtained 3D
region. In case that the consistency check needs a
higher resolution jump to step 7, if not go to the next
step after storing the results in the m-tree.

6. If the current quadrant in the current camera is not the
last, increment it. In other case, set it to 0, decrement
the currently selected camera index and repeat this
step if the current camera is bigger or equal than zero.
Finally jump to step 2.

7. Subdivide each quadrant in new smaller quadrants in
every camera, go down in the m-tree, call recursively
this procedure and go up in the m-tree again’. Then
jump to step 6.

III. EXPERIMENTAL RESULTS AND DISCUSSION

As stated in the introduction, an improvement of analysis
results is expected due to the fact that the presented scanning
approach minimizes the dispersion in the number of pixels
used for each consistency check of an elementary volume
projected onto the different camera images. This section
provides a proof of concept aiming to validate to which extent
the proposed geometry improves analysis applications in
multicamera settings.

The application we have chosen as a proof of concept is
3D foreground segmentation (shape-from-silhouette in [3]). In
its real usage the input data are black and white foreground
segmentation masks obtained by 2D foreground segmentation
algorithms (like [4]) from the camera projections. This
presents some problems like misses or false detections and the
presence of noise in form of isolated or shortly grouped
foreground pixels. For the proof of concept, we have
generated 5 simple synthetic scenes. A sphere with a diameter
of 1 meter generated with 100 vertices is placed in 5 different
positions inside the working space in the room. This
foreground constitutes the ground-truth, because the
projections are generated taking into account the intrinsic and
extrinsic parameters of every camera. An example of one of
these input projections can be seen in Fig. 5.

Figure 5. Input projection for camera 2 for the first of the 5 generated scenes.
It doesn’t contain noise effects, nor misses or false detections

We compare our scanning approach for the 3D foreground
segmentation algorithm with regular voxelization as the
competing method. The criteria to compare results is using a
voxel side that, in average, has a projection size in pixels on
camera images equal to the number of pixels of the smallest
quadrant used in the reconstruction. The formula

2
nPix=ar’ ~ 1 (\/5 /2-voxSide- K, / dist (voxCenter,C OP)) = & -voxSide®

allows computing an equivalent voxel side from the number of
pixels we want the voxel to be projected to. We approximate
the average voxel projection size in pixels by the projection
size of the central voxel in the sphere, and compute the o in
the formula for every scene and for every camera. Then, an
average of o is computed for every scene along all the
available cameras and, when setting the number of pixels to 9,
the equivalent voxel side in all scenes is around 1.1 cm so we
take 1 cm as the equivalent voxel side.

After performing the analysis with both methods, the 3D
foreground volume information obtained is projected on for all
the cameras and a distance function with regards to the
original ground truth is computed for every available image.
The distance function used is

dist(rec, gt )=(area(rec gt )-area(recngt))/area(gt) |

that is, the number of different pixels among reconstructed
masks and ground-truth ones divided by the number of pixels
of the ground-truth. The results for the 5 scenes and the 5
cameras are listed in Table II for regular voxelization and in
Table III for image-adapted voxelization. A factor of 100 has
been applied to make results more easily readable.

TABLE IL.DISTANCE TO GROUND-TRUTH (IN %) FOR REGULAR

VOXELIZATION
Scene 1 Scene2 | Scene3 | Scene4 | Scene5
Camera 1 7.40 7.28 7.65 7.57 7.46
Camera 2 7.25 7.46 7.62 7.74 7.34
Camera 3 7.68 7.63 7.46 7.24 7.52
Camera 4 7.62 7.65 7.39 7.49 7.35
Camera 5 7.31 7.46 7.35 7.38 747

TABLE II1.DISTANCE TO GROUND-TRUTH (IN %) FOR IMAGE-ADAPTED

VOXELIZATION
Scene 1 Scene2 | Scene3 | Scene4 | Scenes
Camera 1 2.03 2.55 3.12 291 2.56
Camera 2 251 1.95 3.13 298 2.83
Camera 3 3.29 297 1.89 237 2.76
Camera 4 2.74 3.19 2.50 2.01 2.81
Camera 5 236 237 2.66 2.74 252

To depict those results, Fig. 6 shows in white pixel
differences between the ground-truth image and the projection
from the reconstructed 3D object for the first scene projected
on camera 2 for regular voxelization. Fig. 7 is the equivalent
for image-adapted voxelization. Please note how the



dispersion in the amount of data used for analysis in regular
voxelization causes larger false volumes to appear.

Figure 6. Pixel differences between reconstruction with regular voxelization
and ground-truth for the first scene on camera 2

Figure 7. Pixel differences between reconstruction with image-adapted
voxelization and ground-truth for the first scene on camera 2

IV. CONCLUSIONS AND FUTURE WORK

We have presented a multiview analysis approach using a
3D space scanning procedure which is adapted to the images.
Instead of exploring 3D space (from which we do not have
direct measurements, but only projections) with regular
geometry, the proposed procedure defines a geometry based
on image quadrants. This avoids dispersion in the amount of
data used for the consistency check, which is a fundamental
step to exploit redundancy in visual analysis from the multiple
Views.

Furthermore, a recursive algorithm based on such method
has been implemented and proven to work. The results
obtained show less dispersion and increased spatial precision
when compared with regular voxelization, as expected
because of the balanced usage of the directly measured data.

As a problem, we must remark that dispersion in the
amount of data used in analysis has not been completely
cancelled, but it is more controlled than with regular
voxelization techniques.

The main directions for future improvements must focus in
the study of conexels’ connectivity and how to use it to
remove inner conexels from analysis results in case of need.
Another field of study is the set of situations in which
conexels are defined from a smaller number of cameras to deal
with cases where a conexel is only visible in a subset of all the
available cameras.
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