IMAGE SEQUENCE ANALYSIS AND MERGING ALGORITHMS

Philippe Salembier, Luis Garrido, David Garcia

Universitat Politecnica de Catalunya
Campus Nord, Modulo D5
C. Gran Capita, sn
08950 Barcelona, SPAIN
E-mail: philippe@gps.tsc.upc.es

ABSTRACT

This paper deals with merging techniques that can be used as
filters or as segmentation algorithms. In the first case, they are
known as connected operators and, in the second case, they are
region growing techniques. This paper discusses the basic issues
of a merging algorithm: merging order, merging criterion and
region model. This analysis highlights the similarity and dif-
ferences between a filtering tool and a segmentation algorithm.
Taking benefit from the filtering and segmentation viewpoints,
we propose a general merging algorithm that can be used to
create new connected operators (in particular auto-dual opera-
tors) and efficient segmentation algorithm (robust criteria and
efficient implementation).

1. INTRODUCTION

Image sequence analysis is becoming a very active field of re-
search because of its large set of potential applications. Indeed,
the efficient use of an MPEG-4 coder or services involving large
video databases implies the definition of automatic analysis tools
that can, at least partially, give access to what is happening in
the sequence. A very large set of tools can be considered as
“sequence analysis” tools. In this paper, we focus on tools that
combine what is traditionally seen either as “filtering” or as “seg-
mentation”. They aim at the definition of regions based on some
homogeneity criteria (segmentation aspect) possibly with some
constraints (filtering notion).

Filters are generally used as pre-processing to remove part
of the image content such as noise or some details. For a seg-
mentation application, these filters should simplify the image
but preserve the shape of the remaining objects. Examples of
filters possessing this property are known as connected operators
[10, 2, 9]. They do not introduce any new contour because they
can only merge the zones of the space where the signal is con-
stant (called flat zones). These filters are extensively used in
segmentation applications [15, 14, 11].

A large number of popular segmentation approaches also re-
lies on merging strategies. They, first, define a set of initial
regions and, second, progressively merge regions to create a par-
tition of the image. In the SplitéMerge [4] algorithm, the initial
regions are defined by the Split process and the merging is per-
formed between the initial regions themselves. The Region grow-
ing algorithm [1] merges initial regions (sometimes called seeds)
with individual neighboring pixels that belong to an uncertainty
area. Finally, the classical morphological tool for segmentation,
watershed [7], also relies on a merging strategy: the initial re-
gions are the regional gradient minima, and these minima are
progressively expanded by merging of neighboring pixels in an
order defined by the gradient value.

This work has been supported by France-Telecom/CCETT under
the contract 96ME22

Connected operators, Split&Merge, Region growing and the
watershed algorithms have been created in different context and
for different applications. However, they all rely on the same
fundamental merging process. The objective of this paper is to
investigate the basic features of the merging process and to see
how the “filtering viewpoint” can benefit from the “segmentation
viewpoint” and vice-versa. As major output of this study, we will
create connected operators having the same effect on dark and
bright parts of the image and we will see how ideas coming from
the “filtering viewpoint” can be used to select robust segmenta-
tion criteria and to efficiently implement them. Note that the
implementation issue is a key point since the widespread use of a
(sequence analysis) tool strongly depends on its computational
efficiency.

The organization of this paper is as follows. Section 2 defines
a general merging strategy. An efficient implementation of the
merging process is proposed in section 3. Based on the general
merging process, section 4 presents new connected operators use-
ful for sequence preprocessing and segmentation. Section 5 dis-
cusses sequence segmentation algorithms relying either on gray
level or on motion homogeneity. Finally, section 6 is devoted to
the conclusions.

2. GENERAL MERGING ALGORITHM

In this section we propose a general merging strategy. The algo-
rithm works on the Region Adjacency Graph (RAG). The RAG
is a set of nodes representing connected components of the space
(either regions or flat zones) and a set of links connecting two
neighboring nodes. Each RAG represents a partition of the im-
age. A merging algorithm on this graph is simply a technique
that removes some the links and merges the corresponding nodes.
In the sequel, we assume that the merging is done in an itera-
tive way. To completely specify a merging algorithm one has to
define three notions:

1. The merging order: it defines the scanning order of the
links, that is the order in which the links are studied to
know whether or not they should disappear. This order
O(R1, R») is a real value and is a function of each pair of
neighboring regions R1, R».

2. The merging criterion: each time a link is processed,
the merging criterion decides if the merging has actually
to be done or not. It is also a function C(R1, R2) of two
neighboring regions R; and R», but it can only take two
values (“merge” and “do not merge”).

3. The region model: when two regions are merged, the
model defines how to represent the union. Let us denote
by M(R) this model.

Note that this merging strategy allows the implementation
of both region growing algorithm and connected operators. In
the case of a region growing algorithm, the merging order is de-
fined by the similarity measure between two regions, the merging

Figure 1: Region Adjacency Graph: A) Original RAG. B) RAG
after merging of R» and Rs

criterion always states that two regions have to be merged un-
til a termination criterion is reached (for example, a minimum
number of region or a quality criterion) and the model defines a
gray level function, for example the mean. In the case of a con-
nected operator such as an opening by reconstruction or an area
opening (see [15, 14] for example), the merging order is simply
defined by the absolute gray level value, the merging criterion
relies on the assessment of a criterion (for example, the number
of pixels of each region in the case of an area opening) and each
region is modeled, after merging, by the lowest gray level value.

The merging order is closely related to the notion of objects.
In the case of a region growing algorithm, if the similarity mea-
sure is equal to the gray level difference, objects are assumed to
be connected components and homogeneous in gray level value.
In the case of connected operators, objects are assumed to be
either bright or dark parts of the image. The main difference
between a filter and a segmentation algorithm relies on the merg-
ing criterion. In the case of a segmentation algorithm, we would
like to extract all objects, this means that the merging criterion
should always state that the merging has to done until a termi-
nation criterion is reached. In the case of a filter, the objective is
to select some objects among the set of all possible objects. This
means that the merging criterion should act as a sieve among the
set objects defined by the merging order.

3. EFFICIENT IMPLEMENTATION OF THE
MERGING PROCESS

3.1. Merging algorithm on a RAG structure

This section is devoted to the efficient implementation of the
merging algorithm described in section 2. As will be seen, the
key points of the implementation is a hierarchical queue able
to deal with floating point priorities and the “link node” of a
Region Adjacency Graph structure (RAG). The RAG structure
is depicted in Fig. 1A. The classical RAG is a graph where each
node represents a region of the image and where each node is
connected to its neighbors. The graph structure used here is
similar but contains some more information. The white nodes
in Fig. 1A called “region-nodes”, represent the regions of the
image, whereas the black nodes, called “link-nodes”, represent
the links between regions. Observe that each link-node points to
the two region-nodes it is linking while each region-node points
to the neighboring link-nodes. By using this representation, the
access to the set of links-nodes that should be updated after the
merging of two region-nodes can be done efficiently. Suppose,
for example, that R> and Rs are merged (see Fig. 1B). The link
to remove is L4, and the link-nodes whose ordering has to be
updated are L1, Ly and Ly.

In Fig. 2, the general scheme of the merging process is repre-
sented. The merging algorithm can be divided into two stages.

Update

neighb. links
No
Get link from Update region
hierar. queue Yes model

Figure 2: Block diagram of the general region merging algorithm

The first one (“initialization” block) is devoted to the initial-
ization of the structures needed for the merging, i.e. the RAG
structure and the hierarchical queue (the latter will be discussed
in the sequel). Each region is initialized by computing its model.
The set of initial regions can be either the set of pixels (each pixel
is one region), the set of flat zones or any pre-segmentation. The
next step consists in calculating the merging order for each link-
node using the model of the associated region-nodes. Finally,
each link-node is inserted in the hierarchical queue at the po-
sition defined by the merging order. The hierarchical queue is
used to order the various links and have a fast access to the
link of highest priority. The ordering (represented by a floating
point number) defines the insertion point of link-node into the
hierarchical queue.

Once the first stage is completed, the merging process be-
gins. Observe that the merging algorithm is an iterative process
that ends once the hierarchical queue is empty. The first step in
this iterative process is to extract the highest priority link-node
of the queue. The next step consists in deciding whether the
link-node has to be merged or not. This merging, as discussed
in the previous section, is defined by the “merging criterion”.
If the merging criterion decides not to merge the regions, the
algorithm returns to the first block of the merging algorithm.
Note that this decision is final in the sense that the link-node is
removed from the queue and the corresponding pair of regions
will never be merged. If the merging criterion decides to merge,
the next step consists in merging the information of both regions
associated to the link (in Fig 1, the link L4 has the highest pri-
ority and regions R» and Rs are merged). As a result, the region
model has to be updated (creating region Ry = R2 U R5). In or-
der to obtain an efficient implementation, a recursive algorithm
is needed to avoid redundant computations. “Recursive” here
means that the model of the union of the two regions should
be computed from the models of the two initial regions. The
drawback of this strategy is the need of memory allocation for
each region model and, therefore, the memory cost may be high.
Once the regions have been merged, the values of the merging
order of the neighboring links are updated (in Fig 1, neighbor-
ing links of L4 are L1, L» and L7). This implies the extraction
of the corresponding links from the queue, the computation of
the new priority (using the models of neighboring models) and
the insertion of the links into the queue with their new priority
(links L', L} and L% in Fig 1.B). At this point the merged RAG
structure has been computed and updated: the iterative process
starts again by checking if the queue is empty.

This implementation of the merging algorithm has strong
similarities with efficient implementations of connected opera-
tors involving the so-called reconstruction process or of the wa-
tershed algorithm [15]. In all cases, the key element of the al-
gorithm is the hierarchical queue. In the context of our general
merging algorithm, the main features of the queue should be:
first, fast access, insertion and deletion of an element and, sec-

O

Figure 3: Hierarchical queues and binary trees: A) Example of
tree corresponding to Fig 1.A; B) Example of tree corresponding
to Fig 1.B; C) Example of unbalanced tree

Figure 4: Example of binary tree balancing. Left: Unbalancing
due to insertion. Right: Restoring the balance

ond, no constraints on the dynamic range of the priority (floating
point ordering).

3.2. Hierarchical queues and binary trees

A hierarchical queue is a queue where each element has a given
priority. The elements can be introduced in any order in the
queue, and the extraction is done in descending order of priority
(the elements with higher priority are extracted first). Elements
having the same priority follow a First-In-First-Out (FIFO) rule.
For our merging algorithm, the hierarchical queue should be up-
dated and re-organized on line. It can be seen as a dynamic hier-
archical queue. The solution proposed here is based on a binary
tree [5]. The basic idea behind the implementation of hierarchi-
cal queues with binary trees is depicted in Fig. 3.A. Each node of
the tree represents a given priority of a link node of the RAG. A
right child node is characterized by having a priority lower than
its father, while a left child node has a priority greater than its
father. At each node, the list of link-nodes having the same pri-
ority are stored in a FIFO structure. In the example of Fig. 3.A,
the order of the links is: Ls < L7 < L2 < L1 < L3 < Lg < Ls.
In order to extract the node (and therefore the list of link-
nodes) with highest priority, one begins with the root node and
walks down the tree using the left branches until a node with
no letf branch is found. Search, insertion and deletion of nodes
in the queue can be done efficiently (O(logaN) steps where N
is the number of tree nodes). One of the drawbacks of using
binary trees to implement hierarchical queues is that the tree
may degenerate. This problem happens when the merging order
is not random. Suppose, for example, that the ordering depends
on the area of the region: for example, the higher the area, the
lower the priority. As a result, the priority of the links will
decrease as the regions grow in area. This results in a tree that
“leans” too much to the right (see Fig. 3.C). In this case, the
O(log2N) efficiency does not hold anymore, because the tree is
becoming a simple FIFO queue. The solution to this problem is
to “balanced” the tree. The method [5, 16] is based on keeping

track of the balance factor of the tree each time an element is
inserted or deleted. A rough idea is presented in Fig. 4: at each
node, the height of the left tree minus the height of the right one
is computed (the height at a given node is defined as the length
of the longest path from the node to a leaf node). A binary tree
is called balanced if the balance factor of every node of the tree
never differs by more than +1. If unbalancing occurs because of
insertion or deletion, the balancing is reestablished properly by
“rotating” some nodes of the tree. Efficient implementations of
insertion and deletion using balancing techniques can be found
in [16].

The efficiency of the merging algorithm turns out to be very
high. In practice, for simple models (constant or first order), the
computation time is about the same as for a connected operator
or a watershed algorithm. For instance, if one starts at the pixel
level (initial regions made of one pixel) and merge progressively
regions until the partition is made of one single region, the CPU
time is about 1,5 second (about ten seconds) for a QCIF (CIF)
frame on a 200MHz Pentium.

4. SEQUENCE SIMPLIFICATION TOOLS

In this section, we propose new connected operators that can be
used either to analyze a sequence or as pre-processing before a
segmentation algorithm. As discussed in the introduction, con-
nected operators are region-based simplification tools but they
generally deal with either bright or with dark image components.
In particular, they do not deal with transition areas between dark
and bright components. With the structure defined in sections 2
and 3, it is rather easy to create new connected operators that are
auto-dual in the gray level sense. To this end, one has to define
the merging order O(Ry1, R2), the merging criterion C(R1, R2),
and the region model Mg(z) in such a way that the resulting
operator be auto-dual.

1. Region model, Mpg: The first choice that has to be
made is how each region is going to be modeled. Two sim-
ple auto-dual models are the mean and the median. From
our practical experience, the median is more robust than
the mean. To allow a fast implementation, the median of
region R = Ry U R»> should be computed recursively from
the median of the two merged regions R; and R». Here,
one has simply to select the model of the largest region ':

if Ny < N» = MR:MR2 (1)
if Ny >N = MR:MR2
N =Ny, = MR:(MR1 +MR2)/2

where N; and N> denote the numbers of pixel of each
region. Note that the model can be used for gray level
images as well as for color or multichannel images such
as dense motion fields. In this case, Mg is a multidi-
mensional model and each component is modeled inde-
pendently. Finally, let us mention, that the median model
is constant within the region. It can be considered as sim-
ple zero order model. However, in section 5, the model
will be extended to a first order model in order to deal
motion homogeneity.

2. Merging order, O(Ri, R»): The merging order defines
the notion of objects. It can be seen as a measure of
the likelihood that two neighboring regions belong to the
same object. Let us assume that we deal with gray level
images. A fairly high number of order have been test and

INote that the resulting model is not exactly the median of the
original pixels since the median is computed in an iterative way.

=g}
Merging g
intraframe o
g
. T B
Y | =
W s X | 2
. . — . Merging g
A) Original frame B) Area: 10 pix. C) Area: 100 pix. intraframe 3:;_)
10719 flat zones 574 flat zones 80 flat zones | - =
Merging
Figure 5: Area operator intraframe
partition

a good compromise between region extraction and contour
definition can be obtained with:

O(R1,Ry) = Ni(Mg, — Mg)? + Na(Mg, — Mg)* (2)

Note that, in the case of the median model and if R; is
smaller than R», the model after merging is Mg, and the
order reduces to O(R1, R2) = N1(Mg, — Mr,)?. Tt is the
squared difference between the models weighted by the
size of the smallest region. Finally, note that the merging
order can be easily extended to deal with color or mul-
tichannel images. In this case, the order is defined as a
linear combination of the order values computed on each
component.

3. Merging criterion: C(R1, R2): The function O(R1, R») de-
fines the order in which the regions have to be processed.
Following a given homogeneity notion, it extracts the pair
of regions that most likely belongs to the same object.
Now, the objective of the merging criterion is to select
among the set of possible objects a few regions that fulfill
a given criterion. This function allows the definition of
filtering, that is sieving, tools.

As an example, let us discus the area criterion. Its goal
is to remove from the original image all objects that are
smaller than a given threshold. To this end, the criterion
simply states that two regions have to be merged if at
least one of them is smaller that a given threshold (the
size of the region is defined as its number of pixels). The
effect of the operator can be seen in Fig. 5. Fig. 5.B and
C show the simplification effect when the area is set to ei-
ther 10 pixels or 100 pixels. These images contain most of
the original information (contour are precisely and sharply
defined) except small regions. For example, the texture of
the fish has been removed with a simplification of size 10
and a large number of small regions have disappeared with
a simplification of 100. In this last case, the image is made
of only 80 flat zones. These images can be used as starting
point for a segmentation algorithm or as pre-segmentation
for motion estimation on regions of reasonable size. Note
that the simplification effect of this area operator is differ-
ent from that of an area opening or closing. The operator
proposed here not only deals with bright or dark areas but
also with transition areas.

5. IMAGE AND SEQUENCE SEGMENTATION

5.1. Region model, merging order and criterion

The main difference between a segmentation algorithm and a
filter is the merging criterion which has not to select some of
the objects but rather to accept all of them until a termina-
tion criterion is reached. The termination criterion depends to
a large extend on the particular type of segmentation one wants

Figure 6: Hierarchical segmentation by merging

to achieve. It will be more precisely described in the following
sections.

The model used within each region is a compromise between
its capacity to represent the homogeneity notion of interest and
its complexity. In section 4, constant models have been used
and the model corresponding to the merging of two regions was
the median of the models of each region. This model has the
advantage of being very simple and is adequate for processing
gray level or color images if the number of regions remains rather
high. Of course, if the expected number of regions is very low
(regions will likely represent more complex gray level distribu-
tion) or if the input information has specific characteristics, the
constant model can be extended to a general polynomial model.
In this section, we will use first order polynomials of the type:
Mr(i,j) = ai+ Bj + v, if i, denote the spatial coordinates
of the pixels. When two regions are merged, this model can be
updated by a median rule. The resulting model is equal to the
model of the largest region. For of sequence analysis, first or-
der polynomial models are particularly useful to represent dense
motion fields.

As in the case of filters, the merging order defines the homo-
geneity notion of the objects. In the following, the homogeneity
notion defined by equation 2 is used.

5.2. Intra-frame segmentation

For intra-frame segmentation, the decision criterion simply de-
fines the end of the merging process. Two useful termination
criteria are:

e the Peak Signal to Noise Ratio (PSNR) between the orig-
inal and modeled images,

e the number of regions.

The merging strategy defined in section 2 is particularly use-
ful to compute a set of hierarchical partitions. The approach is
illustrated in Fig. 6. Starting from an initial partition, which
can be either the finest partition of the space (partition where
each individual pixel is a region) or the partition of flat zones,
several merging steps are performed. With the proposed imple-
mentation, it is possible to compute the full hierarchy with only
one run of the merging algorithm. Indeed, one has only to out-
put some of the partitions created at intermediate stages of the
merging process.

An example of hierarchical segmentation is shown in Fig. 7.
The segmentation creates regions that are homogeneous in gray
levels. In Fig. 7, we show images where each region has been
represented by its model (median in this case). Three partitions
corresponding to PSNR values ranging from 30 to 26 dB are

k

A) Original frame

) PSNR: 30dB (136 regions)

!

;

) PSNR: 28dB (29 regions)) PSNR: 26dB (12 regions)

Figure 7: Example of gray level intra-frame segmentation (ter-

L

mination criterion: PSNR)

Original gray level partltlon
83 Regions

Motion partition
5 Regions

Figure 8: Example of motion segmentation. Left: Initial gray
level partition, Right: Motion partition

presented. As can be seen, these partitions provide simple ap-
proximations of the original frame in terms of number of regions
but a good definition of the main objects and their contour. Note
that these partitions are structured in a hierarchical way.

The same scheme can be used to deal with motion-oriented
segmentation. Assume that we start from an initial segmentation
resulting from a spatial segmentation (for instance, one of the
levels of the previous example). The motion can be estimated
on each region of the initial estimation. To this end, we have
used the technique described in [3, 12]. This technique assigns
to each region a polynomial model describing the apparent mo-
tion in the horizontal and the vertical directions. The model is
estimated using differential methods. From this motion model,
two dense motion fields can be created by assigning to each pixel
the values of its horizontal and vertical displacements. These two
dense motion field images are now used as input to the merging
algorithm which has to deal with a two component image. As
a result, the algorithm defines regions that are homogeneous in
the sense of motion. The result of the segmentation is shown in
Fig. 8. The final segmentation involves 5 regions: 3 for the face
and 2 for the background. Note that the motion field is not re-
estimated during the merging process. This choice was done to

First part of the sequence

Second part of the sequence

A Frame #50

Frame #200 A

“Third part of the sequence

4 Frame #270

SN in ol

Figure 9: Number of regions as a function of the PSNR for three
typical frames the Foreman sequence

limit the computational complexity of the algorithm, however,
in future work we will investigate fast techniques to re-estimate
the motion and we will study the improvement that is obtained.

Before closing this section on intra-frame segmentation, let
us discuss a potential use of the merging algorithm. An image
analysis strategy often used in mathematical morphology is the
so-called granulometry [13]. The approach consists in using a
hierarchical filtering structure as the one presented in Fig. 6 and
in measuring an image characteristic at each filter output. This
strategy allows the characterization of what has been removed by
each filter. Considering the segmentation algorithm as a filtering
tool, the same approach can be used to characterize the content
of each frame. Assume for example, that the segmentation fol-
lows a gray level homogeneity criterion and that the termination
criterion is the PSNR. PSNR values ranging from 40dB to 25dB
are assigned to 16 levels of the hierarchical structure of Fig. 6
and let us suppose that we measure the number of regions of
each resulting partition. The results are shown in Fig. 9. Three
typical frames (frames #50, #200 and #270) of the Foreman se-
quence have been processed and the three corresponding curves
are shown. These curves define how many regions are necessary
to achieve a given PSNR. Intuitively, this number is function of
the image “complexity”: for simple frames with a few objects
(homogeneous in gray level), the number of regions necessary to
achieve a given PSNR is rather low. By contrast, if the image
involves a large number of contrasted objects, a high number of
regions are necessary to reach the same PSNR. This intuitive
discussion is confirmed by Fig. 9: among the three frames, the
simplest one is the frame #200. It involves a few objects and
the sky covers most of the frame. The corresponding curve is
the lowest one. By contrast, the most complex frame is frame
#270. It involves a fairly high number of contrasted objects and
the corresponding curve is the highest one. Finally, frame #50
is of intermediate complexity and produces a curve in-between
the two previous ones. Each curve (or a reduced set of curve
points) can be used to characterize the image content.

N

L By(0) ‘ -
£ Motion
Bin(t-1) Motion segmentation Bn(0)
compensation 4
Motion
. estimation
= A~ -
Py (t-1) Pe (0 Py ()
Gray level

segmentation

P, (t-1) Pr,(®)

A B

Figure 10: Sequence segmentation algorithm. Hierarchy of par-
tition: flat zones Py, gray level P, and motion P,

5.3. Sequence segmentation

In this section, we focus on a more complex segmentation scheme
combining several homogeneity criteria. The goal of the algo-
rithm is to segment a video sequence in a recursive and causal
way. To this end, we propose to define at each time instant ¢ a
gray partition P, (t) (partition where regions are homogeneous in
gray level) and motion partition P, (t) (partition where regions
are homogeneous in motion). The gray partition is created by
merging regions belonging to an initial partition which is the par-
tition of flat zones Py, (t). Similarly, the motion partition is cre-
ated by merging regions of the gray partition. As can be seen, the
three partitions are structured in a hierarchical way: the lower
level is made of flat zones, the second level is the spatial seg-
mentation and the upper level is the motion segmentation. This
structure has been selected for the two following reasons: first,
a contour between two “motion regions” (regions homogeneous
in motion) should coincide with a contour between two “spatial
regions”. Indeed, a precise spatial definition of the contour can
only be achieved in the original image since no estimation has to
be performed. Second, in order to estimate the motion and to
perform a motion segmentation, elementary regions should have
been previously defined. The motion estimation can therefore
rely on a partition that is related to the image.

Moreover, for the two upper levels of the hierarchy, we would
like to track regions in time, that is to relate regions of partitions
P,(t) and P, (t) with regions of partitions Py (¢t — 1) and P, (t —
1). Region tracking is useful for the segmentation itself. For
example, when estimating the motion of a region of the gray
partition at time ¢, one can discard pixels not belonging to this
region at time ¢ — 1. Moreover, region tracking is mandatory if
one wants to analyze the time evolution of the regions.

The global scheme is depicted in Fig. 10. Assume that the
partition hierarchy Py.(t — 1), Py(t — 1) and P, (t — 1) at time
t—1 is known. The purpose of the algorithm is to create a similar
hierarchy at time t. Note that Py, (t) can be directly extracted
from the original frame. The first step of the algorithm is to
motion compensate partitions Py (¢t — 1) and Pn,(t — 1). This
creates two predicted partitions P, (¢) and P, (t). Then, the first
segmentation to be performed is the gray level segmentation. It
creates Py(t) based on the knowledge of the current partition of

flat zones Py, (t) and the predicted gray partition P,(t). Once,
the gray partition P, (t) has been created, the motion of each
region is estimated and a second segmentation step is performed
to create the motion segmentation P, (¢). In the following, these

steps are more precisely described and illustrated.

5.8.1. Motion compensation

The compensation of partitions Py (t—1) and Py, (t—1) is achieved
in two steps. First, the forward motion of each region of P, (t—1)
is estimated. This motion describes the time evolution between
frames at time ¢ and ¢ —1. Asin section 5.2, a polynomial motion
model for each region is estimated by differential optimization
techniques [3, 12]. Then, both partitions Py(t —1) and Py, (t—1)
are compensated using the technique described in [8]. The com-
pensation is done on a pixel basis and can be viewed as a forward
projection (from ¢t — 1 towards t). It defines three sets of areas:
areas where the prediction is done without conflict, overlapping
areas and uncovered areas.

5.3.2. Gray level segmentation

The goal of this segmentation step is to merge regions of the
flat zone partition Py.(t) to create the gray partition P,(t) and
to temporally link this partition with Py(¢t — 1). To this end,
two steps are used: first, a temporal link is created and, second,
a partition is created. Both steps rely on the general merging
algorithm described in section 2. The main differences are the
merging criteria and the way the labels (region numbers) are
handled.

Temporal link: This first step has some similarities with the
work reported in [6]. Its goal is to define which regions of Py (t —
1) are still present at time ¢ and what are their approximate
position. To this end, the algorithm allows the merging of regions
of Py, (t) that fall within the same compensated region. This step
can be implemented as the merging of regions of Py, (t) with the
following region model, merging order and criterion:

e Region model: as previously, the model is the median
(constant within the region). However, the processed im-
age is a two components image made of the current frame
and of the compensated frame. When, two regions of
Py (t) are merged together, two models are updated: one
for the current frame and one for the compensated frame.

e Merging order: The order is the one defined by equation 2
modified to deal with the two components of the model:
one order value is computed by taking into account the
gray level values of the original frame at time ¢, and a sec-
ond order value is computed with the values of the com-
pensated frame. The final order is defined as the average
of the orders defined by each model. This approach allows
the introduction of some memory in the merging order
computation.

e Merging criterion: the criterion defines a termination point
based on the PSNR as in the intra-frame segmentation de-
scribed in section 4. The PSNR limit should be rather high
in order to create reliable temporal links. However, the
criterion is not only a termination criterion but also a de-
cision criterion since only regions that fall within the same
compensated region are allowed to merge. Therefore, for
each possible merging, the compensated label correspond-
ing to the two regions are analyzed and if the regions are
not totally included in the same compensated region, the
merging is not allowed. Moreover, regions that even par-
tially fall within uncertainty areas of the compensation are
not merged.

At the end of the process, some regions of Py, (t) have merged.
They can be considered as the core of the regions that were
present at time £ — 1 and that are still present at time ¢. They
are identified by the label of their corresponding past region.

Time tracking is therefore possible. The last processing step is
to clean the resulting label image so that only one connected
component is preserved for each label.

Partition creation: Starting from the output of the tempo-
ral link, a partition can be created by continuing the merging
process and relaxing the constraints imposed by the merging
criterion. In fact, the processing is the same as the one used for
intra-frame segmentation. In this last merging process, some re-
gions are merged with regions defined during the temporal link.
These regions allow the precise definition of the shape of regions
that were present at time ¢ — 1. By contrast, some regions are
merged together without involving any of the regions defined by
the temporal link. These regions are new regions appearing at
time ¢. They receive a new label.

5.3.8. Motion estimation and segmentation

Once the gray level partition P,(t) has been created, a motion
estimation is performed to assign a dense motion field to each
region. The same motion estimation as the one previously dis-
cussed is used (see section 5.2 for example) and the segmentation
itself works as the gray level segmentation. The only difference is
that the region model deals with the horizontal and vertical dis-
placements. It is a first order polynomial to model a wide range
of motions. Note that as in section 5.2, no motion re-estimation
is performed.

The segmentation step is illustrated in Fig. 11. This figure
shows the set of partitions at time ¢ — 1 (first column), the com-
pensated partitions (middle column) and the partitions at time
t (right column). The flat zone partitions involve more than
10000 regions, the gray level partitions involve about 50 regions
and the motion partitions has 8 regions. Note that most regions
present at time ¢ — 1 are also present at time ¢£. They can be eas-
ily identified because they have the same label. The algorithm
is able to track, to introduce or to eliminate regions. Finally, as
can be noticed, at each time instant, the set of partitions Py (t),
P,(t) and Py (t) is structured in hierarchical way.

6. CONCLUSIONS

This paper has focused on a class of merging techniques which
can be viewed either as filtering tools or as segmentation algo-
rithms. The operator definition relies on three notions: first,
the merging order that defines the notion of objects homogene-
ity, second, the merging criterion that characterizes the set of
objects we are interested in and, third, the region model that
define how objects are represented.

The efficient implementation of a merging operator relies on
a good management of the distance value, that is the merging
order, between each pair of neighboring regions. At each time
instant, one should have, first, a very fast access to the next
pair of regions to merge, and, second, an easy way to modify the
various merging order values as the merging process goes on. The
key element for a fast implementation is a dynamic hierarchical
queue. A very efficient solution to this queue problem is to use
a balanced binary tree.

Using the same philosophy and implementation, new filtering
and segmentation tools can be proposed. New connected opera-
tors such as the area operator can be created. These operators
are particularly useful as pre-processing. For the segmentation
aspect, several algorithms have been described. They can be
used to segment images or sequences with either a spatial or a
motion criterion. They can also be used to recursively segment
a sequence and to track its regions in time. Finally, let us men-
tion that the approach is particularly attractive to create sets
of hierarchical partitions. The hierarchy can be homogeneous

dealing either with a gray level criterion or with a motion crite-
rion. However, heterogeneous hierarchies can also be created, for
example involving spatial partitions on lower levels and motion
partitions on upper levels.

7. REFERENCES

[1] C.R. Brice and C.L. Fenema. Scene analysis using regions.
Artificial intelligence, 1:205-226, 1970.

[2] J. Crespo, J. Serra, and R.W. Schafer. Theoretical aspects
of morphological filters by reconstruction. Signal Process-
ing, 47(2):201-225, 1995.

[3] J. L. Dugelay and H. Sanson. Differential methods for the
identification of 2D and 3D motion models in image se-
quences. Signal Processing, Image Communication, 7:105—
127, 1995.

[4] S. L. Horowitz and T. Pavlidis. Picture segmentation by
a directed split-and-merge procedure. In Second Int. joint
Conference on Pattern Recognition, pages 424-433, 1974.

[5] D. Knuth. Sorting and searching, in ”"The Art of Computer
Programming”. Addison-Wesley, 1973.

[6] B. Marcotegui. Segmentation algorithm by multicriteria
region merging. In P. Maragos, R.W. Schafer, and M.A.
Butt, editors, Third workshop on Mathematical morphology
and its applications to image processing, pages 313-320, At-
lanta, USA, May 1996. Kluwer Academic Publishers.

[7] F. Meyer and S. Beucher. Morphological segmentation.
Journal of Visual Communication and Image Representa-
tion, 1(1):21-46, September 1990.

[8] P. Salembier, F. Marqués, and A. Gasull. Coding of parti-
tion sequences. In L. Torres and M. Kunt, editors, Video
Coding: The Second Generation Approach. Kluwer, 1996.
ISBN: 0 7923 9680 4.

[9] P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive
connected operators for image and sequence processing.
IEEE Transactions on Image Processing, To be published.

[10] P. Salembier and J. Serra. Flat zones filtering, connected
operators and filters by reconstruction. IEEE Transactions

on Image Processing, 3(8):1153-1160, August 1995.

P. Salembier, L. Torres, F. Meyer, and C. Gu. Region-based
video coding using mathematical morphology. Proceedings
of IEEE (Invited paper), 83(6):843-857, June 1995.

H. Sanson. Toward a robust parametric identification of
motion on regions of arbitrary shape by non-linear opti-
mization. In Proceedings of IEEE Internatioanl Conference
on Image Processing, ICIP’95, volume I, pages 203-206,
October 1995.

J. Serra. Image Analysis and Mathematical Morphology.
Academic Press, 1982.

L. Vincent. Grayscale area openings and closings, their ef-
ficient implementation and applications. In J. Serra and
P. Salembier, editors, First Workshop on Mathematical
Morphology and its Applications to Signal Processing, pages
22-27, Barcelona, Spain, May 1993. UPC.

L. Vincent. Morphological gray scale reconstruction in
image analysis: Applications and efficients algorithms.
IEEE, Transactions on Image Processing, 2(2):176-201,
April 1993.

N. Wirth. Algorithms € Data Structures.
1986.

[11]

[12]

[13]

[14]

[15]

[16] Prentice-Hall,

|| Compensation ||

SR 3 '!‘
- y f 15N] "l e
G) Modeled image at time ¢t — 1 || H) Compensated modeled image

J) Pr.(t—1

’\\w

L) Original frame at ¢ — 1

M) Original frame at ¢

Figure 11: Example of gray level sequence segmentation: first column: partitions and frames at time ¢ — 1, second column:

compensated information, third column: partition and frames at time ¢. Partitions are represented with their label to see the
region tracking ability of the algorithm.

