
LOW-LEVEL PROCESSING OF POLSAR IMAGES WITH BINARY PARTITION TREES

Philippe Salembier1∗, Samuel Foucher2, Carlos López-Martı́nez1
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ABSTRACT

This paper discusses the interest of Binary Partition Trees (BPTs)
and the usefulness of graph cuts for low-level processing of PolSAR
images. BPTs group pixels to form homogeneous regions, which
are hierarchically structured by inclusion in a tree. They provide
multiple resolutions of description and easy access to subsets of re-
gions. Once constructed, BPTs can be used for many applications
including filtering, segmentation, classification and object detection.
Many processing strategies consist in populating the tree with a spe-
cific feature and in applying a graph-cut called pruning. Different
graph-cuts are discussed and analyzed in the context of PolSAR im-
ages for speckle filtering and segmentation.

Index Terms— Binary Partition Tree, PolSAR, graph-cut,
speckle noise, segmentation

1. INTRODUCTION

The interest of Binary Partition Trees (BPTs) [12] has been recently
investigated for remote sensing applications such as Polarimetric
SAR (PolSAR) [2] and hyperspectral images [13]. BPTs are region-
based representations in which pixels are grouped by similarity.
They provide multiple resolutions of description and easy access to
subsets of regions. Their construction is often based on an iterative
region-merging algorithm: starting from an initial partition, the pair
of most similar neighboring regions is iteratively merged until one
region representing the entire image support is obtained. The BPT
essentially stores the complete merging sequence in a tree structure.
Once constructed, BPTs can be used for a large number of tasks
including image filtering, object detection or classification [3].

In this paper, we discuss low level PolSAR image processing
tasks. We study the interest of specific graph cut called pruning in
this context. We show how partitions can be extracted from the tree
and be used for speckle noise filtering or segmentation. The main
paper contributions compared to [2, 3] is the proposal of new prun-
ing strategies for PolSAR images as well as the objective evaluation
of the performances thanks to a set of realistic simulated PolSAR
images where the underlying ground truth is available [6]. Further-
more, we tackle the computational complexity issue and the use of
super-pixel [1] to drastically reduce the time required to create BPTs.

The paper is organized as follows: Sec. 2 discusses the BPT cre-
ation and their processing with graph cut. A possible way to evaluate
the quality of a BPT is presented in Sec. 3 and used in Sec. 4 to study
the influence of the initial partition on the BPT construction and its
robustness to noise. Sec. 5 presents and analyzes four pruning tech-
niques for segmentation. Finally, conclusions are reported in Sec. 6.

∗This work was performed while the first author was on leave at the Com-
puter Research Institute of Montreal.

2. BINARY PARTITION TREE CREATION AND
PROCESSING THROUGH GRAPH CUT

The BPT creation starts by the definition of an initial partition which
can be composed of individual pixels as in [2, 3]. While this strategy
guarantees a high precision as starting point of the merging process,
it also implies high computational and memory costs as many re-
gions have to be handled. As an alternative, the initial partition may
correspond to an over-segmentation as a super-pixel partition [1].
Once the initial partition is defined, the BPT construction is done by
iteratively merging the pair of most similar neighboring regions.

In the PolSAR case, the information carried by pixels of an
image I corresponds to the one-look covariance matrix ZI

ij of the
scattering vector: k = [Shh,

√
2Shv, Svv]

T measured on the res-
olution cell at location (i, j). The subindices h and v indicate the
horizontal and vertical polarization states and Spq∈{h,v} represents
the complex SAR data where p and q define respectively the re-
ception and transmission polarizations. To construct the BPT, re-
gions R can be modeled as in [2] by their mean covariance matrix
ZR = 1

|R|
∑

i,j∈R ZI
ij , where |R| is the region number of pixels.

The distance between neighboring regions defining the merging or-
der can be measured as in [3] by the geodesic similarity [4]:

S(R1, R2) = ‖log
(
Z
−1/2
R1

ZR2Z
−1/2
R1

)
‖.ln

(
2|R1||R2|
|R1|+ |R2|

)
(1)

where log(.) is the matrix logarithm and ln(.) the natural logarithm.
Using this similarity measure, regions are iteratively merged until
a unique region representing the entire image support is obtained.
After each merging, a new region is created, its mean covariance
matrix is computed and its similarity with its neighbors is updated.
The regions belonging to the initial partition form the leaves of the
BPT. During the merging process, the BPT is constructed by creating
a parent node for each pair of merged regions.

Once the BPT has been constructed, it can be used for a wide
range of applications including filtering, segmentation or classifica-
tion. In many cases, the application relies on the extraction of a par-
tition from the BPT. This process can be seen as a particular graph
cut called pruning that can be formally defined as follows: Assume
the tree root is connected to a source node and that all the tree leaves
are connected to a sink node. A pruning is a graph cut that separates
the tree into two connected components, one connected to the source
and the other to the sink, in such a way that any pair of siblings falls
in the same connected component. The connected component that
includes the root node is itself a BPT and its leaves define a partition
of the space. In the sequel, we discuss several examples of pruning in
the context of PolSAR images. The first one will allow us to discuss
the quality of a BPT itself through the evaluation of its robustness to
speckle noise.

1025978-1-4799-5775-0/14/$31.00 ©2014 IEEE IGARSS 2014



Fig. 1. Example of original PolSAR image (Left) and its correspond-
ing ground-truth (Right). RGB-pauli color coding.

3. ROBUSTNESS OF BPT TO SPECKLE NOISE

One of the major issues in PolSAR is the speckle noise that results
from the coherent integration of the electromagnetic waves. Speckle
filtering aims at reducing noise within homogeneous extended tar-
gets while preserving spatial details [6]. Most filters are based on
adaptive strategies using a sliding square window of fixed size [8].

In the context of PolSAR images and speckle noise, we want
to evaluate the quality of a BPT and assess the influence of specific
choices related to its construction (for example the initial partition
as in Sec. 4). This is not a trivial task since many partitions can be
extracted from a given BPT. As we are concerned by low-level pro-
cessing and by removing the speckle noise as much as possible to
allow a precise estimation of the polarimetric parameters, we rely on
a dataset of PolSAR images on which the ground-truth polarimetric
information is available. More precisely, we use the set of simulated
PolSAR images [6] where the underlying ground-truth, i.e. the class
regions, is modeled by Markov Random Fields. A set of typical
polarimetric responses has been extracted from an AIRSAR image
(L-band) so that they represent the 8 classes found in the H/α plane
and randomly assigned to each class. Finally, single look complex
images have been generated from the polarimetric responses using
a Cholesky decomposition [7]. An image example and its corre-
sponding ground-truth are presented in Fig. 1. Thanks to this dataset
involving ground-truth, we can measure the quality of a BPT.

Let us define the quality of a BPT as the quality of the best im-
age, according to a given error measure E, that can be extracted
from it. Extracting an image from the BPT consists in selecting a set
of nodes forming a partition of the image and in assigning the mean
covariance matrix of the region to its pixels. So the question is to
identify the ideal partition that can be extracted from the tree.

The error measure between an image I(i, j) and the ground-
truth image IGT (i, j) we use is defined by [2]:

E(I, IGT ) =
1

N

∑
i,j

‖ZI
ij − ZIGT

ij ‖/‖Z
IGT
ij ‖ (2)

where N is the image number of pixels, ZI
ij (ZIGT

ij ) the pixel value
of image I (IGT ) at location (i, j) and ‖.‖ the matrix norm. This
measure is based on the average inverse signal to noise ratio.

As previously mentioned, the extraction of a partition from the
BPT is defined by a pruning. To define the ideal pruning, let us use
the following ideal criterion Cideal =

∑
R φR

φR =
∑
i,j∈R

‖ZR − ZIGT
ij ‖/‖Z

IGT
ij ‖, s.t. {R} is a partition (3)

derived from Eq. 2 by noting that all pixels belonging to the same
regionR have the same covariance matrix ZR. This criterion is ideal
because it uses the ground-truth ZIGT which is unknown in practice.
However, it is very useful to quantify the BPT quality and to define
an upperbound on the performances of possible pruning strategies.

Initial No filter σ-Lee NL-SAR Normalized
Partition (dB) (dB), [9] (dB), [5] time
Pixel partition -12,82 -16.39 -15.88 1
SLIC (size=2) -12.23 -16.25 -15.78 1/15
SLIC (size=3) -12.43 -16.22 -15.82 1/56
SLIC (size=4) -12.72 -16.12 -15.88 1/121
SLIC (size=5) -11.91 -16.11 -15,87 1/212

Table 1. Influence of the initial partition on the BPT quality: The
three central columns show the quality (Eq. 2 measured in dB) of the
ideal image extracted from the BPT as a function of the preprocess-
ing filter and the size parameter of the super-pixel partition. The last
column gives the BPT computation time normalized with respect to
the case where the initial partition is composed of individual pixels.
Results have been averaged over the entire dataset.

This criterion can be efficiently minimized using an dynamic
programing algorithm originally proposed in [12] for global opti-
mization. The solution consists in propagating local decisions in a
bottom-up fashion. The BPT leaves are initially assumed to belong
to the optimum partition. Then, one checks if it is better to represent
the area covered by two sibling nodes as two independent regions
{R1, R2} or as a single region R (the common parent node of R1

and R2). The selection of the best choice is done by comparing the
criterion φR evaluated on R with the sum of the costs φR1 and φR2 :

If φR ≤ φR1 + φR2

{
then select R
else select R1 and R2

(4)

The best choice (either “R” or “R1 plus R2”) is stored in the
node representingRwith the corresponding cost value (φR or φR1+
φR2 ). The procedure is iterated up to the root and defines the best
partition. This algorithm finds the global optimum of the criterion
on the tree and the selected regions are represented by their mean
covariance matrix to create the filtered image. Finally, this image is
used to compute the BPT quality with Eq. 2. Based on this strategy to
evaluate a BPT quality, we can now investigate the impact of specific
choices related to the BPT construction. As an example, we analyze
the influence of the initial partitions in the following section.

4. SUPER-PIXEL INITIAL PARTITION AND ITS
INFLUENCE ON THE BPT QUALITY

The initial partition used in [2, 3] was composed of regions involving
only one pixels. The main drawback of this choice is the high num-
ber of initial regions and the corresponding cost in memory and com-
putation. To see whether the number of initial regions can be drasti-
cally reduced while preserving quality, super-pixels created with the
SLIC algorithm [1] have been tested. Only the diagonal elements of
the covariance matrices have been used to generate the super-pixels.
Furthermore, we have analyzed the interest of using a denoising filter
before the computation of the super-pixel partition.

Thanks to the strategy presented in Sec. 3, we can compare the
influence of various initial partitions on the BPT construction by ex-
tracting the ideal partition and measuringE(I, IGT ). The results are
given in Table. 1. As can be seen, the best BPT is obtained with the
use of a denoising filter prior the computation of super-pixel. More-
over, the use of the SLIC algorithm almost preserves the BPT quality
but drastically reduces the computational complexity. It is therefore
a very good alternative and, in the sequel, we use the σ-Lee filter
(window size: 7x7) with the SLIC (size 4) super-pixels to create the
initial partition.
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Fig. 2. Precision and Recall performances of the four pruning techniques (average over the entire dataset). Left: Precision and Recall for
boundaries, Right: Precision and Recall for objects and parts.

5. SEGMENTATION AND LOW LEVEL PROCESSING
THROUGH BPT PRUNING

This section discusses pruning techniques for low-level processing
and grouping of PolSAR data. The main goal is to segment the im-
ages so that a precise estimation of the polarimetric parameters can
be done. In the previous section, we have used an ideal pruning
technique to assess the quality of the BPT but it cannot be used in
practice as it relies on the ground-truth data. Here we study the in-
terest of four pruning techniques useful in practical situations.

The first one simply consists in following the merging sequence
and in stopping the iterative merging process when a predefined
number NR of regions is obtained [2]. Note that this can be viewed
as a pruning of the BPT, but actually, there is no need to fully con-
struct the BPT to compute the resulting partition.

The second pruning [2] consists in populating the tree nodes
with a feature measuring the region homogeneity (difference be-
tween the pixel values and the region mean) given by:

φR =
1

|R|
∑
i,j∈R

‖ZI
ij − ZR‖/‖ZR‖ (5)

Once the tree has been populated, the feature value of each node
is compared to a predefined threshold. Note that the feature value is
expected to be rather high for large regions and low for small regions.
In the extreme case of single pixel regions, ZR coincides with ZI

ij

and therefore φR = 0. However, the feature of a parent node is not
always larger or equal to the features of its siblings. To define the
pruning, we have used the so-called Max rule [3] which consists in
selecting on each branch the closest node to the root for which the
homogeneity criterion is below the threshold.

We introduce now two new pruning strategies based on the min-
imization of a global criterion as in Sec. 3. The initial idea is to
use C =

∑
R φR with φR being the homogeneity criterion φR =∑

i,j∈R ‖Z
I
ij − ZR‖/‖ZR‖. Note that this criterion is the same as

the one defined by Eq. 5 without the averaging parameter |R|. How-
ever, on its own, this criterion is useless because a partition made of
single pixel regions sets it to 0. Following classical approaches in
functional optimization, φR can be interpreted as a data fidelity term
and combined with a data regularization term which encourages the
optimization to find partitions with a reduced number of regions. As
simple data regularization, we use a constant value λ that penalizes
the region presence. Therefore, the final homogeneity-based crite-
rion to be minimized is given by φHom.

R :

φHom.
R =

∑
i,j∈R

‖ZI
ij − ZR‖/‖ZR‖+λ, s.t. {R} is a partition (6)

Finally, the last pruning is also based on a graph cut minimizing
a global criterion but here the idea relies on ratio filters: if the ideal
image structure is known (here represented by ZR), then the ratio of
the matrices diagonal values ZI

ij(k, k)/ZR(k, k) should only con-
tain noise of variance 1 and no structure information. If the structure
information is absent, the energy of the ratio should be minimum.
This reasoning leads to the following minimization criterion involv-
ing as before a data fidelity term and a data regularization term:

φRatio
R =

∑
i,j∈R

∑
k=1,2,3

‖
ZI

ij(k, k)

ZR(k, k)
‖+λ, s.t. {R} is a partition (7)

Fig. 2 shows the evaluation of the segmentation results as clas-
sically done in the supervised case through Precision and Recall
curves. On the left side, the so called Precision and Recall for
boundaries [10] is presented. In this case, each partition is evalu-
ated by considering all pairs of neighboring pixels and by classify-
ing them in either boundary or interior segments. The Precision and
the Recall values of this classification are evaluated by comparison
with the classification resulting from the ground-truth partition. In
addition to this boundary-oriented evaluation, a region-oriented eval-
uation known as the Precision and Recall for objects and parts [11]
is presented on the right side of Fig. 2. In this context, regions of
the partition are considered as potential candidates to form regions
of the ground-truth partition, and are classified as correct or not. In
both cases, the curves are formed by modifying the pruning param-
eter allowing to have coarser or finer partitions. This pruning pa-
rameter is the number of region, the threshold on φR or the λ value,
respectively for the pruning following the merging sequence, the one
thresholding the homogeneity criterion (Eq. 5) or the two techniques
involving global optimization (Eqs. 6 and 7). The ideal system has
Precision and Recall values equal to one. So, the closest curve to the
upper-right corner of the plots identifies the best system.

As can be seen in Fig. 2, the region-oriented evaluation is more
severe than the boundary-oriented evaluation (see [11] for details).
However, the conclusions on both plots are the same: the best prun-
ing technique is the one based on the global optimization of the
homogeneity (Eq. 6). The one defined by Eq. 7 provides good re-
sults for high precision (coarse partition). The pruning following the
merging sequence does not lead to the best results. This observation
highlights the interest of constructing the BPT to extract partitions
that have not been observed during the merging process. Moreover,
in practice, it is difficult to a priori define the appropriate number of
regions. Finally, the pruning involving the thresholding on the ho-
mogeneity criterion provides interesting results for high precision.
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Fig. 3. F value as a function of the pruning parameter. Fb

(Fop)corresponds to the Precision and Recall for boundaries (object
and parts) curves. Top: Merging sequence and threshold on homo-
geneity (Eq. 5). Bottom: mincut on homogeneity criterion (Eq. 6)
and on ratio image (Eq. 7).

Fig. 4. Results on real images. Right: Original images (RGB Pauli
composition). Left: Mincut on homogeneity criterion (Eq. 6).

Precision and Recall curves describe the system performances
for the complete range of the pruning parameter values. However,
they do not efficiently describe the system sensitivity to the parame-
ter value. To this end, Fig. 3 presents for each pruning technique, the
F value as a function of the pruning parameter. The F value is clas-
sically used to summarize the Precision P and Recall R trade-off.
It is the harmonic mean of P and R: F = 2PR/(P + R). Fig. 3
reveals that the most stable pruning involves the global minimization
of the homogeneity (Eq. 6). It practice, this means that λ values be-
tween 5 and 20 will extract similar partitions from the tree and does
not have to be fine tuned. We can also assess the robustness of this
pruning to speckle noise by computing the error measure E (Eq. 2).
With λ = 5, this error is equal to −15, 15 dB. As shown in Table 1
(SLIC size=4, σ-Lee filter), there is therefore only 1dB difference
between this pruning and the ideal one.

Finally, the pruning with global optimization of the homogeneity
(Eq. 6) has been evaluated on a L-band fully polarimetric data set
acquired in 2003 by the Deutsches Zentrum für Luftund Raumfahrt
(DLR) ESAR system over the area of the Oberpfaffenhofen airport
near Munich, Germany. The images are Single Look Complex with
a pixel size of 1,5x1,5m. Results are shown in Fig. 4 together with
the original image. They visually highlight the interest of the BPT
to perform low-level processing of PolSAR images while preserving

the spatial resolution of the content.

6. CONCLUSIONS

This paper has discussed the interest of Binary Partition Trees
(BPTs) for PolSAR images and highlighted the usefulness of a par-
ticular type of graph cut called pruning to extract partitions from the
BPT. Specific pruning techniques have been defined to evaluate the
quality of BPT and to perform low-level grouping allowing a precise
estimation of the polarimetric information to be done without losing
in terms of spatial resolution. In this context, the pruning technique
resulting from the global optimization of a criterion minimizing the
region homogeneity has proved to be very efficient and robust.
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