
STUDY ON NONLOCAL MORPHOLOGICAL OPERATORS 
 

Philippe Salembier 
 

Signal Theory and Communications Department,  
Technical University of Catalonia, Barcelona, Spain, philippe.salembier@upc.edu 

 
ABSTRACT 

 
This paper studies nonlocal morphological operators. 
Following the strategy proposed for the Nonlocal means 
filter, these operators are based on a local and adaptive 
definition of the structuring element which is specified by 
searching for patches in the image that are similar to the one 
surrounding the pixel being filtered. After presenting the 
basic nonlocal morphological operators using generic 
structuring elements, we study their robustness in the 
presence of noise. Then, we illustrate the interest of some 
nonlocal morphological operators using flat structuring 
elements for denoising.  
 
Index Terms— Nonlocal means, Nonlocal mathematical 
morphology, Adaptive structuring element.  
 
 

1. INTRODUCTION 
 
Adaptive mathematical morphology refers to morphological 
filtering techniques that adjust to the local context of the 
signal [1,2,4-8]. For 2D images, the adaptation is generally 
based on the intensity values of the signal as well as on the 
spatial position of the pixel to process. One way to obtain 
adaptive morphological operators is by defining a specific 
structuring element for each spatial position. Several 
approaches have been proposed and studied in the past 
[1,2,6]. In this paper, the strategy proposed in [3] to define 
the Nonlocal means filters is used to define a new class of 
adaptive morphological operators called Nonlocal 
morphological operators. The structuring elements of the 
resulting operators are specified for each pixel location by 
searching for patches in the image that are similar to the one 
surrounding the pixel being filtered. These operators 
provide interesting results for image filtering and noise 
cancelation. 
 
This paper is organized as follows: the following section 
gives an overview of Nonlocal means filter. Then section 3 
defines Nonlocal morphological operators with arbitrary 
gray level structuring element and studies their robustness 
in presence of noise. Section 4 discusses two possible 
definitions of nonlocal morphological operators with flat 

structuring elements and apply them for SAR images. 
Finally, section 5 is devoted to the conclusions.  
 

2. NONLOCAL MEANS FILTER 
 
Nonlocal means filters have been proposed in [3] mainly for 
denoising applications. The filtering idea consists in 
computing a weighted average of the input signal in a 
neighborhood Nn:  
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where the weights ( , )w n k  are defined by computing the 
similarity between a patch P centered around the pixel n to 
process and a patch around the pixel at position k. If the 
patch around the current pixel n is very similar to the patch 
centered around k, then the weight ( , )w n k  should be close 
to one. On the contrary, if both patches are very different, 
then the weight ( , )w n k  should be close to zero. As can be 
seen, the weighted average takes into account mainly pixels 
that are surrounded by a patch that is similar to the one 
surrounding the pixel being processed. This is the key point 
explaining the robustness of this filter. The resulting filter is 
adaptive or translation-variant as ( , )w n k  is in general not 
only function of n-k. (in this case, equ. (1) would define a 
convolution corresponding to a Linear Translation-Invariant 
system). In [3], the weights are defined as follows: 
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In this formula, the similarity between the patches centered 
around n and k is computed through a weighted Euclidean 
distance: 2( ) [ ] [ ]

m P
g m x n m x k m , where m represents the 

indexes used to scan the patch P and g(m) is a Gaussian 
kernel giving higher (lower) weights to the central (outer) 
pixels of the patches. Z is a normalizing constant ensuring 
that:  
 ( , ) 1

nk N

w n k  (3) 

Finally, h is the filter parameter. If h has a low (high) value, 
the filter will have a low (high) smoothing effect.   
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a) b) 

c) d)  
Fig. 1: a) Original test image corrupted by Gaussian noise (center 

of the image) and Uniform noise (right part of the image), b) 
Nonlocal erosion, c) Shape of the structuring element in uniform 

areas, d) Shape of the structuring element in presence of structures 
 
 
 

3. NONLOCAL MORPHOLOGICAL OPERATORS 
WITH ARBITRARY STRUCTURING ELEMENTS 

 
Equ. (1) can be seen as a convolution where the value of the 
impulse response is computed and adapted to each pixel 
position. Consider now the equation defining a dilation with 
an arbitrary (that is, non flat) structuring element: 
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where  represents the supremum operation. If ( , )w n k is 
only function of n-k, then equ. (4) defines the classical 
Translation-Invariant dilation. Following the idea proposed 
in [3] for nonlocal means, we now assume that the weights 

( , )w n k  are derived from a similarity estimation between 
patches centered around n and k.  
 
In the case of the Nonlocal means filters, locations k whose 
patches are very different from the one centered around n 
should not influence the filter output. This is the reason why 
their associated weight is close to zero. In the case of the 
dilation, the weight is added, and not multiplied, to x[k]. 
Taking into account that the dilation is computed through a 
supremum operation, the locations k whose patches are very 
different from the one centered around n, should be 
associated to a weight with a negative value of high 
magnitude, so that they have little influence in the output:  
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where  is the filter parameter. If  is close to zero, the 
structuring element is almost flat and corresponds to the 
area defined by Nn. If  has a high value, the dilation mainly 
computes the supremum of the pixels that have very similar 
patches around them. Equ. (4) and (5) define Nonlocal 
Morphological dilation. By duality, a Nonlocal 
morphological erosion can be defined by the following 
equation:  
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where  represents the infimum. Based on these two basic 
operators, the following classical combinations can be 
defined: (.)= ( (.)) used to remove maxima, (.)= ( (.)) 
used to remove minima, ( (.)) and ( (.)) used to remove 
both minima and maxima and ( ( (.)) + ( (.)))/2 which is a 
self-dual operator removing both minima and maxima. Note 
that, even if we use the symbols  and  to highlight the 
conceptual similarity with morphological opening and 
closing, these operators are neither opening nor closing. 
Indeed, equ. (5) defines the weights from the input signal 
itself. As a result, the operators are not idempotent. 
 
Fig. 1 illustrates the Nonlocal erosion. The original image 
(Fig. 1.a) is composed of a noise free area (left), an area 
corrupted by a Gaussian noise (center) and an area 
corrupted by uniform noise (right). Fig. 1.b shows the result 
of a nonlocal erosion with a neighborhood Nn of 15x15 
pixels and patches P of 5x5 pixels. Fig. 1.c shows a typical 
structuring element of a non structured area of the image, 
whereas Fig. 1.d shows an example of structuring element 
belonging to a structured part of the image. As can be seen, 
the structuring element adapts well to the local image 
configuration. In particular, negative values of high 
magnitude are assigned to pixels that correspond to patches 
that are very dissimilar to the one being processed.  
 
These operators have been used to remove the noise from 
the original image of Fig. 1.a. The results are shown in Fig. 
2. More precisely, Fig. 2.a gives the results for the Nonlocal 
means filter and Fig. 2.b the results for the Nonlocal 
morphological operator (  + )/2. The rest of the figure 
shows intermediate results to compute the morphological 
operator. Analyzing the performances of the filters in the 
three areas of the image (left, center, right), it can be 
concluded that the Nonlocal morphological operator (  + 

)/2 has very attractive properties in terms of noise 
cancelation, in particular for uniform noise (right section of 
the image) while preserving the contour of the image.  
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                 a)                                       b) 

     
                  c)                                       d) 

     
                    e)                                    f)  

 
Fig. 2: a) Nonlocal means, b) Nonlocal morphological operator: 

( + )/2, c) , d) , e) , f)  
 
 
 
In order to evaluate objectively the filters performances, 
Fig. 3 reports the PSNR as a function of the filters 
parameter (h for the Nonlocal means and  for the Nonlocal 
morphological operator (  + )/2). As can be seen, the 
Nonlocal means filter exhibits very good performances for 
Gaussian noise. The Nonlocal morphological operator (  + 

)/2 is slightly worse in the case of Gaussian noise but 
much better in the case of uniform noise.  

 
4. NONLOCAL MORPHOLOGICAL OPERATORS 

WITH FLAT STRUCTURING ELEMENTS 
 
In this section, we focus on Nonlocal morphological 
operators with flat structuring elements. A structuring 
element is flat if its samples can only take two values: zero 
or - . In the nonlocal case, this means that the weights 

( , )w n k  can be either zero or - . Equ. (4) becomes:  
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This means that the Nonlocal dilation consists in computing 
the supremum of input values that are surrounded by 
patches that are similar to the one surrounding the pixel 
being processed.  
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Fig. 3: a) Nonlocal Mean: PSNR as a function of the h filter 

parameter, b) Nonlocal morphological operator (  + )/2: 
PSNR as a function of the  filter parameter 

 
 

 
A simple strategy to define the flat structuring element is by 
thresholding the weights ( , )w n k  as defined by Equ. (5). 
Fig. 4 illustrates an example of filtering a Synthetic 
Aperture Radar (SAR) image. The original image is 
presented in Fig. 4.a and shows a highway surrounded by 
vegetation. Fig. 4.b shows the result applying the Nonlocal 
means filter and Fig. 4.c presents the result using the 
Nonlocal morphological operator (  + )/2 with flat 
structuring element. In this last case, the operator has a 
strong smoothing effect in unstructured areas of the image 
(bright areas in the lower left corner of the image) and a 
weak smoothing effect in structured parts of the image (the 
highway area).  In fact, in unstructured areas, many patches 
are similar to the one surrounding the pixel being processed. 
Therefore, many weight values are above the threshold and 
the resulting structuring element involves many pixels. By 
contrast, in highly structured areas, dissimilarity of patches 
may be higher and the resulting structuring element involves 
a small number of pixels. Fig. 5 illustrates this idea 
showing, in gray level, the distribution of number of pixels 
involved in the structuring element. As can be seen, 
structuring elements involving a large number of pixels are 
mainly used in the lower left corner of the image. As a 
result, the smoothing strength of the filter depends on the 
type of image area that is being filtered.  
 
To solve this issue and define a filter that has a constant 
number of pixels per structuring element, one can simply 
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                       a)                                                b) 

  
                        c)                                            d)  
Fig. 4: a) Original SAR image, b) Nonlocal mean, c) Nonlocal 

morphological operator (  + )/2 with flat structuring elements 
of variable size and d) Nonlocal morphological operator (  + 

)/2  with flat structuring element of fixed size (M=10). Note 
that in all cases, Nn = 15x15 pixels and P = 5x5 pixels. 

 
 
include in the structuring element a fixed number M of 
pixels corresponding to the M most similar patches 
locations. This strategy is illustrated in Fig. 4.d. As can be 
seen, the approach provides a constant smoothing effect in 
the image. Moreover, as can be seen in Fig. 4, the contour 
preservation characteristics of this filter are better than the 
one provided by the Non local means filter.  
  

5. CONCLUSIONS 
 
This paper has investigated Nonlocal morphological 
operators. Following the strategy proposed for the Nonlocal 
means filter, these operators are based on a local and 
adaptive definition of the structuring element which is 
specified by searching for patches in the image that are 
similar to the one surrounding the pixel being filtered. After 
presenting the basic nonlocal morphological operators using 
generic structuring elements, their robustness in the 
presence of noise has been studied. It has been shown that 
these operators are quite robust in the presence of noise and 
also outperform the Nonlocal means filters for certain type 
of noise distribution. Then, two strategies to define nonlocal 
morphological operators with flat structuring elements have 
been proposed. The one selecting a constant number of 
pixels per structuring element seems to offer good tradeoff 
between smoothing and preserving contours. This feature 
has been illustrated on SAR images.  

 

 
Fig. 5: Example of distribution of the structuring  

element size in Fig. 4.c.  
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