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ABSTRACT

Connected operators [1] are operators that act by merging of ele-
mentary regions called flat zones. They cannot create new contours
nor modify their position. Therefore, they have very good contour
preservation properties. This paper discusses connected operators
based on region trees. The filtering approach involves three steps:
first, a region tree representation of the input image is constructed.
Second, the simplification is obtained by pruning the tree and third,
the output image is constructed from the pruned tree. The paper
focuses on the trees used in practice and discusses various pruning
strategies used in practice.

Index Terms— Connected operator, Max-tree, Min-Tree, Inclu-
sion Tree, Binary Partition Tree, Pruning, Morphological filters

1. INTRODUCTION

Filtering techniques commonly used in image processing are defined
by an input/output relationship that relies on a specific signal called
impulse response, window or structuring element. The impulse re-
sponse of a linear filter defines the filter properties but introduces
some blurring in the output image. The major drawback of median
filtering is that every region tends to be round after filtering with
most commonly used windows (circles, squares, etc.). This effect
is due to the shape of the window combined with the median pro-
cessing. Morphological opening and closing also introduce severe
distortions due to the shape of the structuring element. However,
for some image processing applications, this distortion introduced
by classical filtering strategies represents a severe drawback.

Connected operators [1] address this issue by using the structure
of the input signal itself to filter it. As a result, no distortion related
to a priori selected signals is introduced in the output. Connected op-
erators act by merging of elementary regions called flar zones. They
cannot create new contours nor modify the position of existing ones
and, therefore, have very good contour preservation properties.

Gray level connected operators rely on the notion of partition of
flat zones. A partition is a set of non-overlapping connected com-
ponents or regions that fills the entire space. We assume that the
connectivity is defined on the digital grid by a translation invari-
ant, reflexive and symmetric relation'. Typical examples are the
4- and 8-connectivity. Let P denotes a partition and P(n) the re-
gion that contains pixel n. A partial order relationship among parti-
tions can be created: P; “is finer than” Pa (written as P; T Po), if
Vn, P1(n) C Pa(n). The set of flat zones of an image f is a parti-
tion of the space, P;. Based on these notions, a gray level operator
1 is connected if the partition of flat zones of its input f is always
finer than the partition of flat zones of its output, that is:

Ps C Py, Vf )
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Fig. 1. Tree representations of images.

Several approaches can be used to create connected operators.
One of the most popular approach consists in using the classical
pixel-based representation of the image and a reconstruction pro-
cess [6, 7]. An overview of this approach can be found in [8]. An
alternative approach relies on the definition of a region-based rep-
resentation of the image and the definition of a region merging pro-
cess [9, 10, 11]. The goal of this paper is to discuss this second ap-
proach assuming that the region-based representation is a tree. The
paper organization is as follows. Section 2 defines region tree repre-
sentations that have been used in practice to create connected oper-
ators: Max-tree, Min-tree, Inclusion Tree and Binary Partition Tree.
The filtering strategies are discussed and illustrated in section 3. Fi-
nally, conclusions are reported in section 4.

2. REGION TREE REPRESENTATIONS

2.1. Max-tree, Min-tree and Inclusion Tree

One of the simplest tree representations is the Max-tree [9]. This
representation enhances the maxima of the signal. Each node A, in
the tree represents a connected component of the space that is ex-
tracted by the following thresholding process: for a given threshold
T, consider the set of pixels X with gray level value larger than T'
and the set of pixels Y with gray level value equal to 7"

X:
Y =

{z, such that f(x) > T} )
{z, such that f(z) =T} (@)

The tree nodes N, represent the connected components of X such
that X (Y # 0. An example of Max-tree is shown in Fig. 1. The
original image is made of 5 flat zones: {A,...,E}. The number fol-
lowing each letter defines the gray level value of the flat zones. The
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corresponding Max-tree has only one branch because the image has
a unique maximum. The dual structure is called a Min-tree. It can
be computed directly by duality, that is by computing the Max-tree
of —f. As the image of Fig. 1 has two minima, the Min-tree has
two leaves. Several efficient algorithms have been proposed to com-
pute these trees [9, 12, 5]. The pruning of a Max-tree (Min-tree) acts
on the image maxima (minima). If one would like to act simulta-
neously on maxima and minima, a self-dual representation, where
maxima and minima play a symmetrical role, has to be used. An
example of such a structure is the Inclusion Tree [11]. It structures
the connected components of the set X following the inclusion re-
lationship of the saturation of X. The saturation operation fills the
holes of the connected components of X. An example of inclusion
tree is illustrated in Fig. 1. As the original image has three extrema,
the tree has three leaves. The processing of these trees by pruning
will be discussed in section 3.

2.2. Binary Partition Tree

The last example of region-based representation is the Binary Parti-
tion Tree [10]. It represents a set of regions that can be obtained
from the flat zones partition. The leaves represent the flat zones
of the original image. The remaining nodes represent regions ob-
tained by merging the regions represented by the children. As in
section 2.1, the root node represents the entire image support. All
possible merging of flat zones cannot be represented in the tree. In
practice, only the most “useful” merging are represented. However,
the main advantage of the tree representation is that it allows the fast
implementation of sophisticated pruning techniques.

The Binary Partition Tree should be created in such a way that
the most “useful” regions are represented. This issue can be appli-
cation dependent. However, a possible solution, suitable for a large
number of cases, is to create the tree by keeping track of the merging
steps performed by a segmentation algorithm based on region merg-
ing. This information is called the merging sequence. Starting from
the partition of flat zones, the algorithm merges neighboring regions
following a homogeneity criterion until a single region is obtained.
The image of Fig. 2.1 involves five flat zones. The algorithm merges
them in four steps. In the first step, the pair of most similar regions,
C'and D are merged. Then, A is merged with B; then C' U D with
AUB. Finally, E is merged with AUBUC'UD. The resulting merg-
ing sequence is: (C, D)|(A, B)|(CUD, AUB)|(E, AUBUCUD)
corresponding to the Binary Partition Tree of Fig. 2.1.

To create Binary Partition Trees, a simple strategy is to merge
regions following a color homogeneity criterion as the one described
in [9]. Note however that the homogeneity criterion has not to be
restricted to color. For example, if the image belongs to a sequence,
motion information can also be used to generate the tree: in a
first stage, regions are merged using a color homogeneity criterion,
whereas a motion homogeneity criterion is used in the second stage.
Furthermore, if available, an object mask can be used to impose
constraints on the merging process in such a way that the object is
represented as a single node in the tree. Typical examples of such
algorithms are face, skin or foreground object detection. If the func-
tions creating the tree are self-dual, the tree is appropriate to derive
self-dual operators as the inclusion tree. By contrast, the Max-tree
(Min-tree) is adequate for anti-extensive (extensive) connected op-
erators (the Max-tree removes maxima and the min-tree minima). In
all cases, the trees are hierarchical region-based representations of
images. They encode a large set of regions that can be derived from
the input flat zones partition without adding new contours.
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Fig. 2. Pruning strategies: Squares: nodes to be preserved, Circle:
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3. FILTERING STRATEGIES

Once the tree has been created, the filtering strategy consists in prun-
ing the tree and in reconstructing an image from the pruned tree. The
simplification is done by pruning because the idea is to eliminate the
image components that are represented by the leaves and branches
of the tree. The nature of these components depends on the tree. In
the case of Max-, Min- or Inclusion Trees, the components are re-
spectively regional maxima, minima or extrema. The elements that
may be simplified in the case of Binary Partition Trees are unions
of the most similar flat zones. The simplification itself is governed
by a criterion that may involve simple notions such as size, contrast
or more complex ones such as texture, motion or even criteria rep-
resenting semantic notions or objects. In this context, an important
issue is the increasingness of the criterion. Let us analyze this point.

3.1. Increasing criteria

A criterion C assessed on a region R is increasing if the following
property holds: VR C Rz = C(R1) < C(R2). Assume that nodes
where the criterion value is lower than a given threshold should be
pruned. If the criterion is increasing, the pruning strategy is straight-
forward since the increasingness of the criterion guarantees that if a
node has to be removed, all its descendants have also to be removed.
This situation is illustrated on Fig. 2.a. A typical example is the
area opening which is obtained by measuring the area (the number
of pixels) of each node of a Max-tree. If the area is smaller than
a threshold, the node is removed. The simplification effect of the
area opening is illustrated in Fig. 3.b. The operator removes small
bright components. If this simplified image is processed by the dual
operator, the area closing, small dark components are also removed.
The same strategy implemented on an inclusion tree simplifies small
extremas (Fig. 3.c). Using this strategy, a large number of connected
operators can be obtained by changing the pruning criterion.

3.2. Non-increasing criteria

If the criterion is not increasing, the pruning strategy is not straight-
forward since the descendants of a node to be removed have not
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Fig. 4. Creation of the trellis for the Viterbi algorithm.

necessarily to be removed. An example of this situation is illustrated
in Fig. 2.b, see in particular the decisions along paths A and B. Sev-
eral simple strategies can be used in this case such as the Min, Max,
direct rules [9] or the subtractive rule [13]. However, in some ap-
plications, the criterion non-increasingness implies a lack of robust-
ness of the operator. For example, similar images may produce quite
different results or small modifications of the criterion threshold in-
volve drastic changes. A possible solution to this problem consists
in applying a transformation on the set of decisions. The transforma-
tion should create a set of increasing decisions while preserving as
much as possible the decisions defined by the criterion. This can be
viewed as a dynamic programming problem that can be efficiently
solved with the Viterbi algorithm.

The dynamic programming algorithm will be explained and il-
lustrated in the sequel on a binary tree (see Fig. 4). The extension to
N-ary trees is straightforward. The trellis on which the Viterbi algo-
rithm is applied has the same structure as the region tree except that
two trellis states, preserve Ni and remove N, correspond to each
node N}, of the tree. The two states of each child node are connected
to the two states of its parent. However, to avoid non-increasing de-
cisions, the preserve state of a child is not connected to the remove
state of its parent. As a result, the trellis structure guarantees that
if a node has to be removed its children have also to be removed.
The cost associated to each state is used to compute the number of
modifications the algorithm has to do to create an increasing set of
decisions. If the criterion value states that the node has to be re-
moved, the cost associated to the remove state is equal to zero (no
modification) and the cost associated to the preserve state is equal
to one (one modification). Similarly, if the criterion value states that
the node has to be preserved, the cost of the remove state is equal
to one and the cost of the preserve state is equal to zero. The cost
values appearing in Fig. 4 assume that nodes N, N4 and N5 should
be preserved and that A2 and N3 should be removed. The goal of
the Viterbi algorithm is to define the set of increasing decisions such
that 3, Cost(N}) is minimized.

To find the optimum set of decisions, a set of paths going from
all leaves to the root node is created. For each node, the path can
go through either the preserve or the remove state of the trellis. The
Viterbi algorithm is used to find the paths that minimize the global
cost of pathes that connect the leaves to the root (see [9] for a com-
plete description of the algorithm).

An example of motion filtering is shown in Fig. 5. The objective
of the operator is to remove all moving objects. The criterion is the
mean displaced frame difference estimated on each node (this is in-
deed a non-increasing criterion). In this sequence, all objects are still
except the ballerina behind the two speakers and the speaker on the
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Fig. 5. Example of motion connected operator preserving still ob-
jects and its corresponding residue (input - output).

left side who is speaking. The construction of a region tree and the
application of the connected operator with the Viterbi algorithm re-
moves all moving components as illustrated in Fig. 5.b. In this exam-
ple, a Max-tree was used first to remove moving maxima and then a
Min-tree is used to remove moving minima. This motion connected
operator can potentially be used for a large set of applications and
can represent an alternative approach to the classical ways of han-
dling the motion information. Indeed, generally, motion information
is measured without knowing anything about the image structure.
By using motion connected operators, we can “inverse” the classical
approach to motion and, for example, analyze simplified sequences
where objects are following a known motion. Various connected op-
erators involving nonincreasing criteria such as entropy, simplicity,
perimeter can be found in [9, 10].

3.3. Global Optimization Under Constraint

In this section, we illustrate a pruning strategy involving global op-
timization under constraint. Let us denote by C a criterion that has
to be optimized (we assume, for example, that the criterion has to be
minimized) and by K the constraint. The problem is to minimize the
criterion C with the restriction that the constraint /C is below a given
threshold 7xc. Moreover, we assume that both the criterion and the
constraint are additive over the regions represented by the nodes N :
C =3y, CWNi)and K =37\, K(Nj). The problem is therefore
to define a pruning strategy such that:

Min > C(N;), with > K(N;) < T 3)

This problem can be reformulated as the minimization of the La-
grangian: £ = C+ MC where ) is the so-called Lagrange parameter.
Both problems have the same solution if we find A* such that K is
equal (or very close) to the constraint threshold 7x. Therefore, the
problem consists in using the tree to find by pruning a set of nodes
creating a partition such that:

Min (ZC(M) +)\*ZIC(N})) (C))

Assume, in a first step, that the optimum A* is known. In this
case, the pruning is done by a bottom-up analysis of the tree. If
the Lagrangian value corresponding to a given node Ajp is smaller
than the sum of the Lagrangians of the children nodes N;, then the
children are pruned. This procedure is iterated up to the root node.

In practice, the optimum A* is not known and the previous
bottom-up analysis is embedded in a loop searching for the best
A parameter. This can be done with a gradient search algorithm.
The bottom-up analysis itself is not expensive in terms of compu-
tation since the algorithm has simply to perform a comparison of
Lagrangians for all nodes of the tree. The part of the algorithm



Fig. 6. Optimization under constraint (squared error = 31 dB). (a) original, (b) Minimization of the flat zone number, (c) flat zone contours of
(b) (number of flat zones: 87, perimeter length: 4491), (d) Minimization of the perimeter length, (¢) contours of the flat zones of (d) (number

of flat zones: 219, perimeter length: 3684).

that might be expensive is the computation of the criterion and the
constraint values associated to the regions. Note, however, that this
computation has to be done once.

This type of pruning strategy is illustrated by two examples re-
lying on a Binary Partition Tree. In the first example, the goal is to
simplify the input image by minimizing the number of flat zones of
the output image: C1, = Y w, L In the second example, the crite-
rion is to minimize the total length of the flat zones contours: Co =
2N, Perimeter(Ny). In both cases, the criterion has no meaning if
there is no constraint because the algorithm would prune all nodes.
The constraint we use is to force the output image to be a faithful
approximation of the input image: the squared error between the in-
put and output images K = 3. >>, cn, (¥(f)(n) — f(n)?is
constrained to be below a given threshold. In the examples shown in
Fig. 6, the squared error constrain is equal to 31 dB. Fig. 6(b) shows
the output image when the criterion is the number of flat zones. The
image is visually a good approximation of the original image but it
involves a much lower number of flat zones: the original image is
composed of 14335 flat zones whereas only 87 flat zones are present
in the filtered image. The second criterion is illustrated in Fig. 6(d).
The approximation provided by this image is of the same quality as
the previous one. However, the characteristics of its flat zones are
quite different. The total length of the perimeter of its flat zones is
equal to 3684 pixels whereas the example of Fig. 6(b) involves a total
perimeter length of 4491 pixels. The reduction of perimeter length
is obtained at the expense of a drastic increase of the number of flat
zones: 219 instead of 87. Fig.s 6(¢) and 6(f) show the flat zone con-
tours. The flat zone contours are more complex in the first example
but the number of flat zones is higher in the second one.

This kind of strategy can be applied for a large number of criteria
and constraints. Note that without defining a tree structure, it would
be extremely difficult to implement this kind of connected operators.

4. CONCLUSIONS

This paper has discussed several region-based representations useful
to create connected operators: Max-tree, Min-tree, Inclusion Tree
and Binary Partition Tree. The filtering approach involves three
steps: first, a region-based representation of the input image is con-
structed. Second, the simplification is obtained by pruning the tree
and third, an output image is constructed from the pruned tree. The
tree creation defines the set of regions that the pruning strategy can
use to create the final partition. It represents a compromise between
flexibility and efficiency: on the one hand side, not all possible merg-
ing of flat zones are represented in the tree, but on the other hand
side, once the tree has been defined complex pruning strategies can
be defined. In particular, it is possible to deal with non-increasing
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criteria or global optimization under constraint.
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