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Abstract. This paper discusses region-based representations useful to create connected
operators. The filtering approach involves three steps: first, a region tree representation of
the input image is constructed. Second, the simplification is obtained by pruning the tree and
third, and output image is constructed from the pruned tree. The paper focuses in particular
on several pruning strategies that can be used on tree representation.
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1. Introduction

Filtering techniques commonly used in image processing are defined by an
input/output relationship that relies on a specific signal h(x) called impulse
response, window or structuring element. The three classical cases are:

Linear convolution and impulse response: the output of a linear translation-
invariant system is given by: ψh(f)(x) =

∑∞
k=−∞ h(k)f(x − k). The impulse

response, h(x), defines the filter properties. For image processing, the main
drawback of linear filters is the blurring they introduce. The blurring charac-
teristics is directly related to the extension and shape of the impulse response.

Median filter and window: considering a window W , the output of a median
filter is defined by: ψW (f)(x) = Mediank∈W {f(x − k)}. Here also, the basic
properties of the filter are defined by its window. The major drawback of this
filtering strategy is that every region tends to be round after filtering with most
commonly used windows (circles, squares, etc.).

Morphological erosion/dilation and structuring elements: dilation by a struc-
turing element h(x) is defined in a way similar to the convolution: δh(f)(x) =∨∞
k=−∞(h(k)+f(x−k)), where

∨
denotes the supremum. The erosion is given

by εh(f)(x) =
∧∞
k=−∞(h(k)− f(x+ k)), where

∧
denotes the infimum. Based

on these two primitives, morphological opening: γh(f) = δh(εh(f)), and clos-
ing: ϕh(f) = εh(δh(f)), can be constructed. These operators also introduce
severe distortions due to the shape of the structuring element.

Most people would say that the heart of the filter design is to appropriately
select the impulse response, the window or the structuring element. However,
for image processing, this selection implies some drawbacks. Since h(x) (or W )
is not related at all with the input signal, its shape introduces severe distortions
in the output. Many connected operators used in practice choose a completely
different approach: the filtering is done without using any specific signal such



2 PHILIPPE SALEMBIER, LUIS GARRIDO

B1
C2

D1 F1

A0

E2

B1
C2

D1 F1

G2

T=1 T=2T=0

Original image

Thresholding

0

1 2

22

Max-Tree

Fig. 1. Max-tree representation of images.

as an impulse response, a window or a structuring element. As a result, no
distortion related to a priori selected signals is introduced in the output. Gray
level connected operators [6] act by merging of elementary regions called flat
zones. They cannot create new contours and, as a result, they cannot intro-
duce in the output a structure that is not present in the input. Furthermore,
they cannot modify the position of existing boundaries between regions and,
therefore, have very good contour preservation properties. Several approaches
can be used to create connected operators. One of the most popular approach
consists in using the classical pixel-based representation of the image and a re-
construction process [7, 2]. An alternative approach relies on the definition of
a region-based representation of the image and the definition of a region merg-
ing process [5, 4]. The goal of this paper is to discuss this second approach
assuming that the region-based representation is a tree. The organization of
this paper is as follows. Section 2 defines two region tree representations: the
Max-tree (or Min-tree) and the Binary Partition Tree. The filtering strategies
are discussed in section 3. Conclusions are reported in section 4.

2. Region Tree Representations

2.1. Max-tree and Min-tree

The first tree representation is called a Max-tree [5]. This representation en-
hances the maxima of the signal. Each node Nk in the tree represents a con-
nected component of the space that is extracted by the following thresholding
process: for a given threshold T , consider the set of pixels X of gray level value
larger than T and the set of pixels Y of gray level value equal to T :

X = {x , such that f(x) ≥ T} and Y = {x , such that f(x) = T} (1)

The tree nodes Nk represent the connected components of X such that Y 6= ∅.
An example of Max-tree is shown in Fig. 1. The original image is made of 7
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Fig. 2. Example of Binary Partition Tree creation with a region merging algorithm.

flat zones: {A,...,G}. The number following each letter defines the gray level
value of the flat zones. The binary images, X, resulting from the thresholding
with 0 ≤ T ≤ 2 are shown in the center of the figure. Finally, the Max-tree is
given in the right side. It is composed of 5 nodes that represent the connected
components shown in black. The number inside each square represents the
threshold value where the component was extracted. Finally, the links in the
tree represent the inclusion relationships among the connected components
following the threshold values. Note that when the threshold is set to T = 1, the
circular component does not create a connected component that is represented
in the tree because none of its pixels has a gray level value equal to 1. However,
the circle itself is obtained when T = 2. The regional maxima are represented
by three leaves and the tree root represents the entire image support.

2.2. Binary Partition Tree

The second example of region-based representation is the Binary Partition
Tree [4]. It represents a set of regions that can be obtained from the parti-
tion of flat zones. The leaves of the tree represent the flat zones of the original
signal. The remaining nodes represent regions that are obtained by merging
the regions represented by the children. As in the cases of the Max-tree and
Min-tree, the root node represents the entire image support. This represen-
tation should be considered as a compromise between representation accuracy
and processing efficiency. Indeed, all possible merging of flat zones are not
represented in the tree. Only the most “useful”ones are represented. However,
as will be seen in the sequel, the main advantage of the tree representation is
that it allows the fast implementation of sophisticated processing techniques.

The Binary Partition Tree should be created in such a way that the most
“useful” regions are represented. This issue can be application dependent.
However, a possible solution, suitable for a large number of cases, is to create
the tree by keeping track of the merging steps performed by a segmentation
algorithm based on region merging (see [3, 1]). In the following, this information
is called the merging sequence. Starting from the partition of flat zones, the
algorithm merges neighboring regions following a homogeneity criterion until
a single region is obtained. An example is shown in Fig. 2. The original
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partition involves four regions. The regions are indicated by a letter and the
number indicates the grey level value of the flat zone. The algorithm merges
the four regions in three steps. In the first step, the pair of most similar regions,
B and C, are merged to create region E. Then, region E is merged with region
D to create region F . Finally, region F is merged with region A and this
creates region G corresponding to the region of support of the whole image.
In this example, the merging sequence is: (B,C)|(E,D)|(F,A). This merging
sequence progressively defines the Binary Partition Tree as shown in Fig. 2.

To create the Binary Partition Trees used in this paper, the merging algo-
rithm following the color homogeneity criterion described in [1] has been used.
It should be noticed however that the homogeneity criterion has not to be re-
stricted to color. For example, if the image for which we create the Binary
Partition Tree belongs to a sequence of images, motion information should also
be used to generate the tree: in a first stage, regions are merged using a color
homogeneity criterion, whereas a motion homogeneity criterion is used in the
second stage. Furthermore, additional information of previous processing or
detection algorithms can also be used to generate the tree in a more robust
way. For instance, an object mask can be used to impose constraints on the
merging algorithm in such a way that the object itself is represented as a single
node in the tree. Typical examples of such algorithms are face, skin, character
or foreground object detection. If the functions used to create the tree are
self-dual, the tree itself is a self-dual representation appropriate to derive self-
dual connected operators. By contrast, the Max-tree (Min-tree) is adequate
for anti-extensive (extensive) connected operators. Note that in all cases, the
trees are hierarchical region-based representations. They encode a large set of
regions and partitions that can be derived from the flat zones partition of the
original image without adding new contours.

3. Filtering Strategy

Once the tree representation has been created, the filtering strategy consists
in pruning the tree and in reconstructing an image from the pruned tree. The
simplification is performed by pruning because the idea is to eliminate the image
components that are represented by the leaves and branches of the tree. The
nature of these components depends on the tree. In the case of Max-trees (Min-
trees), the components that may be eliminated are regional maxima (minima)
whereas the elements that may be simplified in the case of Binary Partition
Trees are unions of the most similar flat zones. The simplification itself is
governed by a criterion which may involve simple notions such as size, contrast
or more complex ones such as texture, motion or even semantic criteria.

3.1. Increasing criteria

One of the interests of the tree representations is that the set of possible merging
steps is fixed (defined by the tree branches). As a result, a large number of
simplification (pruning) strategies may be designed. A typical example deals
with non-increasing simplification criteria. A criterion C assessed on a region
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Fig. 3. Area filtering: original (left), area opening (center), area open-close (right).

R is increasing iff: ∀R1 ⊆ R2 ⇒ C(R1) ≤ C(R2). Assume that nodes where the
criterion value is lower than a given threshold should be removed by merging.
If the criterion is increasing, the pruning strategy is straightforward because if
a node has to be removed all its descendants have also to be removed. A typical
example is the area opening [8]. One of its possible implementation consists
in creating a Max-tree and in measuring the area (the number of pixels) Ak
contained in each node Nk. If the area Ak is smaller than a threshold, TA, the
node is removed. The simplification effect of the area opening is illustrated in
Fig. 3. The operator removes small bright components. If the simplified image
is processed by the dual operator, the area closing, small dark components are
also removed. Using the same strategy, a large number of connected operators
can be obtained.

3.2. Non-increasing criteria

If the criterion is not increasing, the pruning strategy is not trivial since the
descendants of a node to be removed have not necessarily to be removed. In
practice, the non-increasingness of the criterion implies a lack of robustness
of the operator [5]. For example, similar images may produce quite different
results or small modifications of the criterion threshold involve drastic changes
on the output. A possible solution consists in applying a transformation on the
set of decisions. The transformation should create a set of increasing decisions
while preserving as much as possible the decisions defined by the criterion. This
problem may be viewed as dynamic programming issue that can be efficiently
solved with the Viterbi algorithm.

The dynamic programming algorithm will be explained and illustrated in
the sequel on a binary tree (see Fig. 4). The extension to N-ary trees is straight-
forward. The trellis on which the Viterbi algorithm is applied has the same
structure as the region tree except that two trellis states, preserve NP

k and
remove NR

k , correspond to each node Nk of the tree. The two states of each
child node are connected to the two states of its parent. However, to avoid
non-increasing decisions, the preserve state of a child is not connected to the
remove state of its parent. As a result, the trellis structure guarantees that
if a node has to be removed its children have also to be removed. The cost
associated to each state is used to compute the number of modifications the
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Fig. 4. Creation of the trellis for the Viterbi algorithm. A circular (square) node on the
Tree indicates that the criterion value states that the node has to be removed (preserved).

algorithm has to do to create an increasing set of decisions. If the criterion
value states that the node of the tree has to be removed, the cost associated to
the remove state is equal to zero (no modification) and the cost associated to
the preserve state is equal to one (one modification). Similarly, if the criterion
value states that the node has to be preserved, the cost of the remove state is
equal to one and the cost of the preserve state is equal to zero. The cost values
appearing in Fig. 4 assume that nodes N1, N4 and N5 should be preserved and
that N2 and N3 should be removed. The goal of the Viterbi algorithm is to
define the set of increasing decisions such that

∑
k Cost(Nk) is minimized.

To find the optimum set of decisions, a set of paths going from all leaf nodes
to the root node is created. For each node, the path can go through either the
preserve or the remove state of the trellis. The Viterbi algorithm is used to find
the paths that minimize the global cost at the root node. The optimization
is achieved in a bottom-up iterative fashion. For each node, it is possible to
define the optimum paths ending at the preserve state and at the remove state:

Let us consider a node Nk and its preserve state NP
k . A path Pathk is a

continuous set of transitions between nodes (Nα → Nβ) defined in the trellis:
Pathk = (Nα → Nβ)∪(Nβ → Nγ)∪ ...∪(Nψ → Nk). The path PathPk starting
from a leaf node and ending at that state is composed of two sub-paths1: the
first one, PathP,Leftk , comes from the left child and the second one, PathP,Rightk ,
from the right child (see Fig. 5). In both cases, the path can emerge either from
the preserve or from the remove state of the child nodes. If Nk1 and Nk2 are
respectively the left and the right child nodes of Nk, we have:

PathP,Leftk = PathRk1
⋃

(NR
k1
→ NP

k ) or PathPk1
⋃

(NP
k1
→ NP

k )
PathP,Rightk = PathRk2

⋃
(NR

k2
→ NP

k ) or PathPk2
⋃

(NP
k2
→ NP

k )
PathPk = PathP,Leftk

⋃
PathP,Rightk

(2)

1 In the general case of an N-ary tree, the number of incoming paths may be arbitrary.



CONNECTED OPERATORS BASED ON REGION-TREE PRUNING 7

R
kCost(N   )

NR
k NP

k
Cost(N   )P

k

NP
k

Cost(N    )P
k

NR
k

Cost(N    )R
k

Nk
Cost(N    )P

k

PNR
k R

kCost(N    )
1

1 1

1 2

2

2

2

Pathk
R Pathk

P

Pathk2
RPathk1

P Pathk2
PPathk1

R

Left Right
LeftRight

Fig. 5. Definition of Path and cost for the Viterbi algorithm (see Eqs. 2, 3 and 4).

The path cost is equal to the sum of the costs of its individual state transi-
tions. Therefore, the path of lower cost for each child can be easily selected.

If Cost(PathRk1) < Cost(PathPk1)
then { PathP,Leftk = PathRk1

⋃
(NR

k1
→ NP

k );
Cost(PathP,Leftk ) = Cost(PathRk1); }

else { PathP,Leftk = PathPk1
⋃

(NP
k1
→ NP

k );
Cost(PathP,Leftk ) = Cost(PathPk1); }

If Cost(PathRk2) < Cost(PathPk2)
then { PathP,Rightk = PathRk2

⋃
(NR

k2
→ NP

k );
Cost(PathP,Rightk ) = Cost(PathRk2); }

else { PathP,Rightk = PathPk2
⋃

(NP
k2
→ NP

k );
Cost(PathP,Rightk ) = Cost(PathPk2); }

Cost(PathPk ) = Cost(PathP,Leftk ) + Cost(PathP,Rightk ) + Cost(NP
k );

(3)

In the case of the remove state, NR
k , the two sub-paths can only come from

the remove states of the children. So, no selection has to be done. The path
and its cost are constructed as follows:

PathR,Leftk = PathRk1
⋃

(NR
k1
→ NR

k );
PathR,Rightk = PathRk2

⋃
(NR

k2
→ NR

k );
PathRk = PathR,Leftk

⋃
PathR,Rightk ;

Cost(PathRk ) = Cost(PathRk1) + Cost(PathRk2) + Cost(NR
k );

(4)

This procedure is iterated in a bottom-up fashion until the root node is
reached. One path of minimum cost ends at the preserve state of the root node
and another path ends at the remove state. Among these two paths, the one
of minimum cost is selected. This path connects the root node to all leaves
and the states it goes through define the final decisions. By construction, these
decisions are increasing and as close as possible to the original decisions.

An example of motion filtering is shown in Fig. 6. The objective of the
operator is to remove all moving objects. The criterion is the mean displaced
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Fig. 6. Example of motion connected operator preserving fixed objects: original frame
(left), motion connected operator (center), residue (right).

frame difference estimated on each node (non-increasing criterion). In this
sequence, all objects are still except the ballerina behind the two speakers and
the speaker on the left side. The connected operator with the Viterbi algorithm
removes all moving components.

3.3. Global optimization under constraint

In this section, we illustrate a more complex pruning strategy involving a global
optimization under constraint. Let us denote by C the criterion to optimize
(for example, minimize) and by K the constraint. Moreover, assume that the
criterion and the constraint are additive over the regions Nk: C =

∑
Nk
C(Nk)

and K =
∑
Nk
K(Nk). The problem is therefore to define a pruning strategy

such that the resulting partition is composed of nodes Ni such that:

Min
∑
Ni

C(Ni) , with
∑
Ni

K(Ni) ≤ TK (5)

This problem is equivalent to the minimization of the Lagrangian: L =
C + λK where λ is the Lagrange parameter. Both problems have the same
solution if we find λ∗ such that K is equal (or very close) to the constraint
threshold TK. Therefore, the problem consists in using the tree to find by
pruning a set of nodes creating a partition such that:

Min

(∑
Ni

C(Ni) + λ∗
∑
Ni

K(Ni)

)
(6)

Assume, in a first step, that the optimum λ∗ is known. In this case, the
pruning is done by a bottom-up analysis of the tree. If the Lagrangian value
corresponding to a given node N0 is smaller than the sum of the Lagrangians
of the children nodes Ni, then the children are pruned:

If C(N0) + λ∗K(N0) <
∑
Ni

C(Ni) + λ∗
∑
Ni

K(Ni), prune Ni. (7)

This procedure is iterated up to the root node. In practice of course, the
optimum λ∗ parameter is not known and the previous bottom-up analysis of
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Fig. 7. Example of optimization strategies under a squared error constraint of 31 dB. (a)
Minimization of the number of the flat zones, (b) contours of the flat zones of Figure 7(a)
(87 flat zones, perimeter length: 4491), (c) Minimization of the total perimeter length, (d)
contours of the flat zones of Figure 7(c) (219 flat zones, perimeter length: 3684).

the tree is embedded in a loop that searches for the best λ parameter. The
computation of the optimum λ parameter can be done with a gradient search
algorithm. The bottom-up analysis itself is not expensive in terms of compu-
tation since the algorithm has simply to perform a comparison of Lagrangians
for all nodes of the tree. The part of the algorithm that might be expensive
is the computation of the criterion and the constraint values associated to the
regions. Note, however, that this computation has to be done once.

This type of pruning strategy is illustrated by two examples relying on a
Binary Partition Tree representation. In the first example, the goal of the
connected operator is to simplify the input image by minimizing the num-
ber of flat zones of the output image: C1 =

∑
Nk

1. In the second example,
the criterion is to minimize the total length of the contours of the flat zones:
C2 =

∑
Nk

Perimeter(Nk). In both cases, the criterion has no meaning if
there is no constraint because the algorithm would prune all nodes. The con-
straint we use is to force the output image to be a faithful approximation of
the input image: the squared error between the input and the output images
K =

∑
Nk

∑
x∈Nk

(ψ(f)(x)− f(x))2 is constrained to be below a given quality
threshold. In the examples shown in Figure 7, the squared error is constrained
to be of at least 31 dB. Figure 7(a) shows the output image when the criterion
is the number of flat zones. The image is visually a good approximation of the
original image but it involves a much lower number of flat zones: the original
image is composed of 14335 flat zones whereas only 87 flat zones are present



10 PHILIPPE SALEMBIER, LUIS GARRIDO

in the filtered image. The second criterion is illustrated in Figure 7(c). The
approximation provided by this image is of the same quality as the previous
one. However, the characteristics of its flat zones are quite different. The total
length of the perimeter of its flat zones is equal to 3684 pixels whereas the
example of Figure 7(a) involves a total perimeter length of 4491 pixels. The
reduction of perimeter length is obtained at the expense of a drastic increase
of the number of flat zones: 219 instead of 87. Figures 7(b) and 7(d) show the
flat zone contours which are more complex in the first example but the number
of flat zones is higher in the second one.

This kind of strategy can be applied for a large number of criteria and con-
straints. Note that without defining a tree structure such as a Max-tree, a
Min-tree or a Binary Partition Tree, it would be extremely difficult to imple-
ment this kind of connected operators.

4. Conclusions

This paper has discussed two region-based representations useful to create con-
nected operators: Max-tree (Min-tree) and Binary Partition Tree. The filtering
approach involves three steps: first, a region-based representation of the input
image is constructed. Second, the simplification is obtained by pruning the
tree and third, and output image is constructed from the pruned tree. The
tree creation defines the set of regions that the pruning strategy can use to
create the final partition. It represents a compromise between flexibility and
efficiency: on the one hand side, not all possible merging of flat zones are rep-
resented in the tree, but on the other hand side, once the tree has been defined
complex pruning strategies can be defined. In particular, it is possible to deal
with non-increasing criteria using dynamic programming approach such as the
Viterbi algorithm or to involve constrained optimization criterion.
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