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The image trees described in this paper hierarchically or-
ganize image segments according to scale, with the coars-
est scale, the scale of the image itself, as the root of the
tree and the finest scales as the leaves. The segmentation
algorithm used to form the nodes of the tree is the sieve,
a nonlinear morphological scale-space operator.

We use a conventional matching criterion, the sums of
squares of differences, SSD, which is statistically mean-
ingful when ergodicity of its matching regions is as-
sumed. Here, simple statistical similarity measures are
applied to the scale tree to simplify it into a set of rela-
tively homogeneous regions. This simplified scale tree
is then used to generate matching regions which fre-
quently satisfy the ergodicity condition. This approach
reduces the errors in the resulting disparity map particu-
larly within sharp-edged regions with low texture — where
conventional methods fail.

INTRODUCTION

Tree data structures are widely used in computer science,
and they facilitate common operations such as searching
and ordering of data. They have also been applied to com-
puter vision as a way to order extracted features from an
image, as in Kliot and Rivlin (1) and Fu and King (2)
. Information about enclosure, scale and intensity can be
encoded in the structure of the tree. Furthermore, image
trees form a key part of the proposed MPEG-4 standard
in which images are composed of audio-visual objects.

The scale tree is an image tree, organized hierarchically
by scale, which uses a non-linear morphological opera-
tor, the sieve, to generate the nodes of the tree. The sieve
operates by recursively removing local maxima and min-
ima of a certain scale in an image. The many aspects of
the sieve have been described in detail in other papers, in-
cluding a 1-dimensional implementation, Bangham et al
(3) , Bangham et al (4) , an n-dimensional implementa-
tion (here we use the area-sieve, which is a 2-dimensional
implementation) Bangham et al (5) , and descriptions of
its robustness, Harvey et al (6) , Harvey et al (7) .

The maxima and minima removed by the sieve form

connected level-sets called granules, which then become
nodes in a tree. As scale increases, the size of the gran-
ules increase, and the granules of smaller scale enclosed
by the granule of large scale become the children of the
larger granule. The sieve is a good choice for tree seg-
mentation because it does not introduce artifacts into the
image, the original image can be recovered by adding up
all the nodes of the tree, and the resulting tree is relatively
invariant to viewpoint changes. The scale tree bears a
close relationship to the objects in an image, and has been
used to filter, segment and detect motion in an image.

In many cases real objects are represented by extremal
regions so nodes represent image objects but sometimes
this is not the case so in this paper we augment the scale-
tree by explicitly representing the regions implicitly as-
sociated with non-leaf nodes. The new segments are the
non-extremal level-sets and are illustrated in Figure 1 .
On the left is an image and its associated scale tree. On
the right is the augmented tree with two additional nodes,
F and G, that represent the image background (a rect-
angle with a hole in the centre) and the face region not
covered by the eyes and mouth.

Figure 1: Lower left panel shows a simple scale tree with
A C B C{C,D, E}.Ontheright, the level-set tree with
additional nodes G = A(\B,F =B EUJCUD.

SIMPLIFYING THE TREE

Because the sieve decomposes images by connected grey
levels, flat zones within the image, it is very good at find-
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Figure 2: A simple blurred square and its resulting scale
tree (top left and right). Granules collapsed too low, and
granules collapsed too high (middle left and right), where
the original border of the square is shown as a dotted line.
The square after collapsing similar nodes and its resulting
scale tree (bottom left and right)

ing and preserving sharp edges over many scales. This
makes it complementary to linear decompositions such
as Gaussian and wavelet pyramids, where large scale ob-
jects have blurred edges. The sieve is less well matched
to blurred images, as Figure 2 shows. A blurred object
has a tree of many nodes, each having a single parent and
child, and often differing from its immediate relatives by
only a few pixels. For easy manipulation, these nodes
may be collapsed into one node, but this must be done
carefully. In Figure 2 , blurring has converted a simple
two level image into the extended tree shown on the top
right. Below are masks formed from the smallest node in
the tree (right), and the largest non-root node (left). Nei-
ther are entirely accurate representations of the original,
unblurred square (outlined with the dotted line) but both
are much simpler than the original. What is needed is a
tunable method to selectively merge similar parent/child
nodes in a principled way.

For each node in the tree, we compare the homogeneity of
the statistics of the node under consideration with those
of its children. Specifically it is assumed here that either
all regions are drawn from the same unimodal Gaussian
distribution or they are are drawn from separate distribu-
tions.

0 10 20

Figure 3: A test picture of a doll, before and after tree
simplification (top). The original tree, containing 1510
nodes (middle) and the simplified tree, containing 121
nodes (bottom).

Under these assumptions it is fairly easy to derive a re-
stricted likelihood test (as in Basman et al (8) and Sil-
vey (9) ) in which one hypothesis, homogeneity, is a spe-
cial case of the other. The log of the likelihood, A of
regions 1 and 2, is well known to be:

log \?> = Nislogo?, — Nylogo? — Nalogos (1)

where (N1,0%), (Na,03) and (N1a,0%,) are the areas



and variances of region 1, region 2 and the combined re-
gions respectively.

Of course for a grey level segmentation, it is incorrect
to model pixels from level-sets as Gaussian variants— the
very fact that they are level sets implies a variance of zero
or, more realistically, ¢ /12, where ¢ is the quantization
step. However, for larger scales where the regions may
contain many children, we find the Gaussian approxima-
tion satisfactory. Furthermore, if the regions are to be
merged using other features such as color, the Gaussian
approximation is more justified. The merge parameter
is not the likelihood but the confidence of the likelihood
which may be computed as:

c=1-\ )
where ¢ is in (0, 1).

Figure 3 shows an example image and its associated tree
before and after merging all zones that have a confidence
¢ < 1— Nlog(on) where oy is the standard deviation
of all N pixels.

USING THE TREE FOR STEREO
MATCHING

In stereo vision, the features in two or more images
are matched. By computing the distortion of a feature
between two images, if certain camera parameters are
known, the scene geometry can be recovered. Dense
matching techniques attempt to do this for every visible
point in the scene, but suffer from errors due to occlusion,
false matches, noise, low texture and repeating texture.
Others have shown that by varying the shape of matching
regions, the matching is improved, Moravec et al (10)
, Harvey et al (11) , Kanade and Otukumi (12) and
Fusiello et al (13) . The technique reported here is to use
the scale tree to generate the regions and hence use the
tree structure to assist in matching.

Similarity measures such as SSD (Sum of Squared Dif-
ferences), SAD (Sum of Absolute Differences), MAD
(Mean of Absolute Differences), Barnard and Fishler
(14) , cross correlation and min correlation, Maragos
(15) are well known ways to densely match signals and
images. In the case of stereo images the conventional
technique is as follows:

1. Two images of a scene are obtained and calibrated
such that the epipolar lines are known.

2. Regions in the first image are matched with a num-
ber of candidate regions lying along the epipolar line
in the second image. The regions to be matched
(which must have the same area and contour) may
be denoted as f1(v) and f2(v) where v is a particu-
lar pixel Here f1(v) is the intensity of the vth pixel
in the first image and f2(v) the intensity of the vth

pixel in the right-hand image. The similarity of two
pixels may be measured by, Haralick and Shapiro
(16) :

B var [ X, — X,
ep.a) = var [ X, var [ X ] )

where X, , are random variables sampled from
f1(p) and f2(q) where p and q are pixel labels. In
practice we usually have only one sample of f1(p)
and f>(g) so and sample means and variances are
computed over windows, W7 and Wy which are
fixed regions centred around p and q. Further, if the
position vector of each pixel is (p),p € V then,
provided W; and W5 have identical shape, it is pos-
sible to have a set of p and ¢ such that

x(p) +d =x(q),p € W1,q € Wy 4)

In which case the variance, (3), may be computed as
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where fi 2(¢) are the intensities in regions 1 and 2
after the sample mean intensity computed in that re-
gion has been removed and N is the number of pix-
els in W7 and Ws. Of course a substantial limitation
of this technique is that W and W5 are fixed and
usually do not correspond to statistically homoge-
neous regions in either image.

3. The offset d,,j,, = min(e(d)) is the best match for
that region and is called the disparity. The disparity
is assigned to all or part of the region in the corre-
sponding disparity image.

For (5) to have a valid statistical interpretation the as-
sumption of ergodicity must hold: the windows must not
span image regions drawn from different distributions. In
practice this will not hold and at the boundaries of regions
there is a mixing of distribtions which manifests itself as a
disparity image with ill-defined edges. This is minimised
by using small windows but there is a cost: small win-
dows do not allow much averaging. The new algorithm
performs a dense segmentation of the image so that win-
dows are as large as possible but do not span statistically
inhomogeneous regions.

The scale tree disparity estimation algorithm examines
nodes in pre-order, starting with the root node. For each
node, the disparity estimate is computed by translating
the region represented by that node along the epipolar
line, calculating the position and error of the best match.
This disparity is then assigned to the node. If the error of
this node is lower than that of its parent then the dispar-
ity of this node is accepted in the support region for this
node.



Figure 4: Model castle stereo picture from CMU test set [17] (top left). Conventional SSD disparity estimate (top right),
tree-based estimate (bottom left), and simplified tree-based estimate (bottom right)

If the scale tree used is pruned by the likelihood test, the
ergodicity assumption has already been tested for these
nodes, their parents and children. The pruned scale tree
should then have fewer errors than either a fixed window
method an unsimplified tree method. The pruned scale
tree also has the advantage of faster computation, as the
nodes are, at least for the images so far tested, signifi-
cantly less than the original scale tree.

A summary of the algorithm is as follows:

1. Decompose the image into a scale tree using the
complement tree representation as illustrated in Fig-
ure 1.

2. Traverse the tree is postorder applying the confi-
dence measure to each graph edege connecting a
node and its parent. We test the image region sup-
ported by the node and the image region supported
by the node’s parent. If the confidence measure falls
below some threshold the edge is removed by merg-
ing node and parent.

3. Progress preorder through the tree and for each
node:

(a) Generate a window from that node.

(b) Find the best disparity and variance for that
node using SSD.

(c) If the variance of that node is less than that of
its parent, reassign the disparity of that region
in the disparity map to the new disparity.

A real calibrated image, Maimone and Schafer (17) |,
and its resulting disparity maps shown in Figure 4 . The
map resulting from using the simplified scale tree (bottom
right) has fewer errors, particularly in the background,
where the repeating texture of the dots tends to confuse
SSD algorithms. There is only sparse ground truth dispar-
ity for these images but at these points the new method’s
error is less than the ground truth error. The new method
produces sharp—edged disparity regions and works well
in regions of low texture.



DISCUSSION

A feature of this method is that although the method
for producing possible windows is novel, the matching
is conventional. Furthermore in our implementation the
tree is used only in the first image and the matching is
performed from image 1 to 2. Reversing the match by
computing a tree from image 2 and matching from im-
age 2 to 1 is a well known and obvious extension. A
more interesting refinement would be to account for the
projective effects between the images. The tree may be
well suited to cases where projective distortions are sig-
nificant. By extracting the projectively invariant features
of tree nodes it should be possible to compute the three-
dimensional structure of images by matching together the
trees generated by such images. We are currently imple-
menting such a method.
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