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Abstract

This paper derives a new tree representation of an image and shows
how the tree may be derived from graph morphology and connected-set,
alternating sequential, filters. The resulting scale tree forms a pyramid
of increasing size objects where the nodes correspond to features of a
particular scale. The tree structure itself may be made fairly insensitive
to geometrical changes in the image. By parsing the tree and using
attributes associated with the nodes, image processing operations such
as filtering, segmentation and detection can be performed.

1 Motivation

A long-standing, ambitious, goal for a computer vision system is to extract a
simple description in terms of meaningful objects, their positions and geometric
relations to one another, from an image. Ideas of this type are currently being
embodied in the proposed MPEG 4 standard which will facilitate the evolution
of systems that allow interaction with the audio visual scene. An audio visual
scene may be understood as a composition of primary audio visual objects,
according to a script that describes their spatial and temporal relationship [1].
Coding an image, in such a fashion, should be an extremely useful step in the
process of recognizing objects in the image. A first step to building an MPEG
4 coder might be to build a tree according to the scale of features where the
relationship between objects is defined in terms of the inclusion of one object
within, or occlusion by, another. That is, the topology of the image.

First we illustrate our meaning and show how such a scale tree, that rep-
resents the image topology, might be extracted from a greyscale image. Then
it is considered how, in practice, a scale tree derived from a real image has to
be simplified and finally it is shown how such a tree can be used for a simple
image processing application, namely the separation of moving objects from a
sequence.

2 Pyramid representations

The representation of an image as a scale-related pyramid is a well known
theoretical development [2] and is sometimes used as a practical way of reduc-
ing computation [3]. All methods in common use, work the same way: the



image signal bandwidth is reduced by filtering with a finite impulse response
filter and the filtered signal is then down-sampled. Contenders for the filter in-
clude: Laplacian of Gaussians [2], Gabor filters [4], wavelets [5] or B-splines [6].
Discretized Gaussians have the particular advantage that they preserve scale-
space causality [7]. However, the method described here does not rely on linear
filtering at all: mathematical morphology provides the theoretical framework
space. Mathematical morphology is the analysis of signals, particularly im-
ages, by shape. The subject was primarily developed by Serra [8] from work
by Matheron [9] and other roots including Blum [10]. To preserve scale-space
causality in two or more dimensions it is necessary to use connected set gran-
ulometries [11, 12, 13]. However, the granules extracted by this method can
change significantly with small changes in the noise or clutter, in other words
they are not robust and a tree predicated on granulometry could change signif-
icantly with small changes in the image. More recently it has been shown that
connected set sieves, or alternating sequential filters, are more robust [14]. Like
well known diffusion based filters [15, 16, 17] these systems preserve scale-space
causality [18].

These processors are said to transform the signal to another domain, called
granularity (each granule will be represented as a node in a scale tree), and
such a transformation is invertible [19]. This means that, if a tree is built
where each node is a granule, then the image may be rebuilt from the nodes
and, if nodes are deleted, that the resultant, simpler, tree will be identical to
the tree obtained from an image in which the corresponding granule had been
deleted.

Although this paper deals only with two-dimensional images the sieve is
defined as operating over a graph [20] so, in principle, operates on images
defined in any finite number of dimensions. The graph is denoted G = (V, E)
where the set of vertices, V, are pixel labels and, E, the set of edges, represents
the adjacencies. Defining C,.(G) as the set of connected subsets of G with
r elements allows the definition of C,(G,z) as those elements of C,(G) that
contain .
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Morphological openings and closings, over a graph, may be defined as
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The effect of an opening of size one, 9, is to remove all mazima of area one
when working in two dimensions. In one-dimension it would remove run-lengths
of length one. 7; would remove minima of size one. Applying 15 to ¥ f(x)
will now remove all maxima of area two and so on. The M and N operators
are defined as M" = v, and N™ = 4,.7,. Sieves, and filters in their class
such as alternating sequential filters with flat structuring elements, depend on
repeated application of such operators at increasing scale.



This cascade behavior is key, since each stage removes maxima or minima
of a particular scale. The output at scale r is denoted by f.(z) with f; =
Q'f = fand f.y 1 = Q" f, where Q is one of the v, 1), M or N operators.
The differences between successive stages of a sieve, called granule functions,
d, = fr— fr4+1, contain non-zero regions, called granules, g,’s of only that scale.
Each g, is a connected set of r pixels. Illustrations of sieves and formal proofs
of their properties appear elsewhere [21], and the generation of an 2D scale tree
appears to be less than an O(nlogn) process. In practice we can generate the
tree in less than a second on a Pentium PC.

3 Parsing real trees

The left of Figure 1 shows a small, simple, image. Nevertheless it is associated
with a complicated tree (shown in the right of Figure 1). The challenge, partic-
ularly for pattern recognition, is to decide which parts of the tree are significant
and retain them. Furthermore, if the tree is to be simplified then it should be
simplified in a way that satisfies Marr’s Principle of Least Commitment [22].

The conventional approach [21] has been to describe the image via channels
which are the sums of granules over a fixed range of scales. Although such
a simplification is useful it is often the case that objects appear in several
channels. This is not surprising since shading causes intensity variations across
the object and there is often blur due to imperfections in the imaging system.
A solution to this problem is to track the object through scale and look for a
peak in the scale-selection surface [7]. In terms of the tree representation this
amounts to concatenating long chains of, non-branching, low contrast nodes
into a single node.

Figure 1: A 4 bit greyscale excerpt from the sequence used in Figure 5 (left)
and its associated scale tree (right)

Figures 1, 2, 3 illustrate this process. Figure 1 shows a segment of an
image from the sequence shown in Figure 5. The tree shown at the right has a
large number of nodes associated with image detail and has some long chains
associated with the objects (billiard balls in this case). For each branch the
sequence ¢gs,,% = 1... N represents the granule amplitude at each node where
N is the number of nodes in that branch. Each node has scale s;. In Figure 4
we plot the rate of change of granule intensity A; = g5, /(si — $i—1),7 > 2 versus
the index, i. i is the tree depth measured down the branch. The peak in A; is,



for an object, the node at which its rate of change of intensity with respect to
scale is maximized. For example a perfect disc of area s would yield a sequence
of A; that is all zero except for one value at its true scale. For blurred images,
such as shown in Figure 1, we plot in Figure 4 the scale selection measure
and collapse chains onto the node with the maximum A;. Figure 2 shows the

Figure 2: Image from Figure 1 after long chains have been collapsed

image and its tree after this operation. Granules at a number of scales have
been removed, the tree is simplified and the objects have sharp edges. We
emphasize that the use of connected sets means that there is no windowing
effect. However there could still be too many branches.

Figure 3: Image from Figure 2 after low contrast nodes have been removed.

Figure 3 shows the image after the tree has been pruned by removing all
nodes with an amplitude that differs from their parent by less than two units.
This heuristic uses a hard decision and it would be desirable to replace it with
a more principled step based on probabilities.

4 Using the scale tree for motion segmentation

Figure 5 shows just one of many potential applications of the technique. Frames
from a sequence taken from a noisy domestic television signal are shown. The
original sequence (top row) shows a white cue ball hitting a black ball. The
second row shows the result of using the scale tree to look for moving objects.
In this motion filtering example the full tree is used without the collapsing or
pruning step previously described. The moving objects have been extracted
from the sequence. Initially each node is visited, starting at the root, and
the flat-zone associated with each node is translated around the equivalent
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Figure 4: Graphs showing amplitude of granules as a function of scale.

Figure 5: Top row, some frames from a 8 bit greyscale movie sequence, note
the cue (bottom right of the first frame) strikes the white ball which in turn
collides with the black ball. The second row shows the same frames from which
the moving balls have been extracted with the help of a scale tree.

region of the next image to find the minimum absolute difference. This reflects
the motion vector. The motion vector for a parent node tends to be a good
estimate for the motion vector for its children and so the search can be fairly
straightforward. A similar strategy has been reported using max and min
trees [23]. However these structures are much less robust to noise.

5 Discussion

A new way to obtain a topological tree representation of an image has been
presented. Each node is a granule and, as such, has at some stage in the
processing of the image, been associated with an extremum and, therefore,
is bounded by an edge. Each node has a set of attributes. In our current
formulation this includes: granule amplitude, granule shape (coded using a
combination of a bit map and pointers) and position (in z, y and scale). Reports
suggest that the x, y and scale attributes are likely to be robustly estimated
in the presence of noise and clutter [14]. The branching structure of the tree is
determined by the way features lie within each other. It has been shown that
this scale tree could, with certain images, represent the image in a manner that



is consistent with an object tree, where the objects fit the definition required
of a primary visual object sitting on a plane as envisaged in MPEG 4.

Although nodes in this new scale-tree do represent some, perhaps even
many, of the objects in the image it is not expected that it accurately identifies
all objects. We therefore see the tree as a first approximation to the correct
object tree. It is an approximation that can be obtained from a single image.
Currently we are working on strategies for modifying the structure in the light
of further evidence, such as colour, motion vectors or stereo disparity. We are
also exploring a more subtle approach using the original single image where
shape-from-shading clues are used to modify the scale-tree and make it more
closely represent an object tree.

Once the scale-tree is as close to an object tree as possible, the tree will be
a very useful representation of the image. Not only can it be used for filtering,
but it can also be used for object recognition. This can be done at two levels.
(1) The tree structure itself codes object topology that is, to a large extent,
independent of geometrical scaling, rotations and distortions and (2) a more
detailed matching can be performed by also using attributes of the nodes.

The main potential problem with the system may lie in how well it scales
to large and complex images, however, we are already processing real images
and there is evidence that with a careful choice of node attributes, pointers in
particular, that the approach will prove realistically fast.
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