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ABSTRACT

This paper deals with the extraction and characterization of fore-
ground objects in video sequences. The algorithm first computes
the mosaic image representing the background information and
then extracts foreground objects. In this last step, the foreground
objects are progressively extracted taking into account the relia-
bility of the contour information. This extraction step is based
on morphological tools. Finally, the foreground objects are char-
acterized by their shape, texture and motion trajectory. Moreover,
some information about the temporal evolution of non rigid object-
s is also extracted. This feature extraction algorithm is particularly
suitable for the indexing, search and retrieval applications.

1. INTRODUCTION

The growing of multimedia applications, such as video-on-demand
or digital library systems, have generated a strong interest in content-
based analysis of video sequences. A general overview of the
major techniques for video and image indexing can be reviewed
in [1]. For video indexing applications, the initial phase generally
consists in structuring the original content. A classical structur-
ing approach consists in detecting shots in a video sequence and
to group them into scenes (see [2, 3, 4] and the references herein).
The description of shots is often based on key-frames. For instance
in [5], several key-frames are used to represent a set of shots and
to browse them. These key-frames are also indexed using standard
techniques for still images. Other methods for shot representation
involve a more complex analysis of the spatio-temporal content.
In [6] and [7], for instance, the representation of a shot is com-
posed of a set of layers. In this framework, mosaic images are
often used to represent the background information over an entire
shot [6]. Mobile foreground objects can then be superimposed to
the mosaic representation in order to indicate their relative trajec-
tories to the global background motion [8].

The shot representation technique proposed in this paper is
based on a mosaic for the background and a set of foreground key-
regions. One of the important feature of the proposed approach is
that foreground key-regions are progressively extracted taking in-
to account the reliability of the contour information. This extrac-
tion step is based on morphological tools. Moreover, foreground
key-regions are characterized by their shape, texture and motion
trajectory. Finally, some information about the temporal evolution
of non rigid objects is also extracted allowing the object activity to
be analyzed.
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Fig. 1. Outline of the shot representation algorithm.

The paper is organized as follows. Section 2 gives an overview
of the proposed algorithm. Section 3 presents the algorithm used
for the computation of the background mosaic. Section 4 explains
the foreground segmentation algorithm and the creation of key-
regions. Finally, conclusions are drawn on section 5.

2. OVERVIEW OF THE APPROACH

The algorithm for mosaic and key-region extraction is based on
three steps highlighted on Fig. 1. In the first step, the mosaic
representing the background is created. The information resulting
from this initial step is the background mosaic image and the set
of warping parameters used to create the mosaic from the individ-
ual frames of the video sequence. In the second step, a foreground
mask is computed for each frame by comparing the input frame
with the appropriate part of the background mosaic image. Final-
ly, key-regions are constructed and modeled in the third step by
using the foreground masks collected on individual frames.

This approach results in a non-casual algorithm because the
first step of the algorithm consist in computing the background
mosaic for the entire shot. This step introduces a processing delay
that is not compatible with real-time applications. However, this
approach allows motion and background color information to be
jointly used to obtain the foreground mask. This approach is dif-
ferent from classical techniques where only motion information is
available [9, 10].

3. BACKGROUND MOSAIC CREATION

Fig. 2 illustrates the background mosaic creation algorithm. The
approach is classical and involves four main blocks. The first
one estimates the dominant motion mf (t) between two successive
frames, I(t) and I(t� 1), of the original sequence. The dominant
motion is assumed to represent the motion of the background. The
motion estimation is based on a 2D perspective motion model.

To allow a robust creation of the mosaic image, a gray lev-
el mask indicating whether pixels belong to the foreground or to
the background is created in the second block (Foreground / Back-
ground mask computation). The mask image Wf(t) assign high
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Fig. 2. Mosaic creation algorithm.

Fig. 3. Two frames of the nhkvideo7 sequence.

values to pixels following the dominant motion (assumed to belong
to the background) while it assigns low values to pixels that do not
follow the dominant motion mf(t). The mask image is computed
with the morphological motion operators described in [10].

The third step is the warping. The dominant motion parame-
ters mf (t) are accumulated in order to align all video frames with
a common spatial reference. To prevent the propagation of possi-
ble errors during the dominant motion estimation, the accumulat-
ed motion parameters at time t are recomputed during the warping
step using the previously computed mosaic image M(t� 1). The
new motion parameters, called warping parameters, mm(t), relate
the mosaic image M(t) with the input frames at time t. They are
used to re-align the final mosaic image with the input frames.

Finally, the fourth block is the blending that updates the cur-
rent mosaic image M(t) using the computed warping parameters
mm(t), the current input image I(t) and the mask image Wf(t).
A mosaic of the MPEG-7 nhkvideo7 test sequence (Fig. 3 shows
two frames of the sequence) can be seen in Fig. 8.

4. KEY-REGION EXTRACTION AND
REPRESENTATION

4.1. Overview of the algorithm

The key-region extraction algorithm can be seen in Fig. 4. The ap-
proach is quite similar to the one used for the background mosaic
creation. First, the mosaic image and the corresponding warping
parameters are un-warped to obtain a background image aligned
in time with the current input frame. Then a foreground mask is
extracted for each input video frame. This mask is obtained by
comparing the background image with the current video frame.
The contours of foreground regions are obtained with a watershed
algorithm [11, 12]. Finally, the two last blocks track the result-
ing foreground masks in time, combine them and model the key-
regions for the entire shot.

4.2. Foreground mask extraction

The mosaic alignment uses the previously computed mosaic image
and the warping parameters mm(t) to align in time the mosaic
image with the input original frame I(t). The resulting motion
compensated background image (B(t) in Fig. 5) is used to obtain
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Fig. 4. Key-region extraction algorithm.

a difference image,D(t) = I(t)�B(t), where foreground regions
are highlighted from the background (middle-left of Fig. 5).

Fig. 5. Example of foreground mask extraction. Top row: input
image I(t) and aligned background image B(t). Middle row: d-
ifference image D(t) = I(t) � B(t) and gradient image G(t).
Bottom row: background (grey) and foreground (dark) markers,
and final foreground mask.

A watershed algorithm is used to segment the foreground re-
gions. The watershed algorithm is applied on a gradient image and
relies on markers indicating roughly the interior foreground and
background regions. The gradient image should highlight the con-
tours of foreground regions. It is primarily constructed on the ba-
sis of the gradient of the difference image: S fD(t)g, where Sf�g
represents the gradient operator. This gradient not only highlights
the contours of foreground regions but also all textured areas. To
improve the robustness of the algorithm, the gradient is weighted
by the temporal gradient: S fjI(t)� I(t� 1)jg. Therefore, the
final gradient is :

G(t) = S fD(t)g � S fjI(t)� I(t� 1)jg (1)

The markers are simply computed as follows: All connect-
ed components of the space where the difference image is below
(above) a given threshold, T1 (T2), are used as background (fore-
ground) markers. Fig. 5 (bottom-left) shows an example of the



extracted markers for the nhkvideo7 sequence. The bottom-right
row of Fig. 5 shows the resulting foreground mask. In this case,
the girl is successfully segmented from the background.

4.3. Key-region matching and modeling

The foreground masks, Mf (t), extracted in the previous section
for each individual input frame are matched with key-regions over
the entire shot, combined and modeled. This last step is not on-
ly necessary to have a global model for each key-region valid for
the entire shot but also to improve the quality of the estimation
obtained on a frame basis. The matching is based on a simple
overlapping algorithm: a connected component of the foreground
mask is assigned to an existing key-region if the overlap with the
last assigned foreground mask of the corresponding key-region is
sufficient. This works well on real scenes where changes between
frames (at 25/30 fps) are usually small. Then the current fore-
ground mask and the existing key-region are aligned using a per-
spective model. If the connected component of the foreground
mask does not correspond to any known key-region, a new key-
region is created.

The following step consists in updating the existing key-regions
with the information from the current foreground masks. The first
update addresses the key-region shape and is based on the reliabil-
ity of the contours. Assume that I is an image and M a mask, let
CfI;Mg denote an image equal to zero except on the contours of
the mask M where it takes the values of I .

CfI;Mg =

�
I; if SfMg 6= 0
0; if SfMg = 0

(2)

The contour reliability of the foreground mask Mf (t) is given by:

Cf (t) = C fSfI(t)g;Mf (t)g (3)

Cf (t) is a confidence value because low values imply that the con-
tour does not correspond to contrasted edges (this can occur, for
instance, when the foreground occludes a background of the same
color). By contrast, high values of Cf (t) correspond to strong
edges on the original image and therefore to reliable contours.

Fig. 6 illustrates the use of the reliability information to up-
date the key-region shape. In this example, the foreground mask
extracted at frame 2039 of the nhkvideo7 sequence is of poor qual-
ity because the contrast between the right part of the girl and the
background area was low at that time instant. The two images on
the left of Fig. 6 show the extracted foreground mask Mf (t) and
the corresponding contour reliability Cf (t). The reliability of the
current extracted mask is compared with the reliability of the key-
region contours, Ck(t�1), computed with past foreground masks.
The updated contour of the key-region are obtained by applying a
watershed algorithm on faCf (t) _ (1 � a)Ck(t � 1)g, where _
denotes the maximum (the markers for the watershed are one point
outside the mask and one in the center of the mask). The water-
shed extracts the crest line of highest value between aCf(t) and
(1 � a)Ck(t � 1). The watershed algorithm automatically com-
bines both contour information keeping the most reliable part of
them. Let us denote by Ĉm(t), this combined confidence value.

The parameter a 2 [0; 1] controls the memory of the allowed
modifications to the shape of extracted foreground masks. If a '

0, the previously computed key-region contours are more trusted
than current contours coming from the foreground mask. In this
case, errors in the foreground mask are easier to fix but tracking
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Fig. 6. Re-estimation of the key-region shape using the reliability
of contours.

non-rigid foreground regions becomes more difficult. On the other
side, if a ' 1 non-rigid regions are easier to track but errors in the
foreground mask are also more difficult to correct. In our case, a
value of a = 0:5 has been used for all examples.

The resulting mask Mm(t) is shown on the right side of Fig. 6.
As can be seen, the error in the shape of the foreground mask ex-
tracted at time t has no real influence because its reliability is low
whereas the reliability of the corresponding key-region contour is
rather high. In general, this procedure allows us to progressive-
ly improve the estimation of the key-regions contour taking into
account the reliability of what is observed in time.

The final step of the algorithm updates the key-regions tem-
plate. It corresponds to the Key-region Warping and Blending
block of Fig. 4. The key-region template is composed of three
images: An appearance image, a contour image and a texture im-
age. The appearance imageAk(t) shows the frequency with which
a pixel has been segmented as foreground and assigned to the key-
region k. If the mask M̂m(t) = 1 denotes pixels that have been
extracted and assigned to key-region k, the updating of the appear-
ance image can be done with Ak(t) = Ak(t� 1) + M̂m(t). The
contour image stores the confidence of the key-region contours.
The texture image represents the overall texture of the key-region
and is updated using the compensated mask and the input image.
The updating equations of contours and texture image are illustrat-
ed in equation 4.

Tk(t) =
�
Ak(t� 1)Tk(t� 1) + Î(t)

�
=Ak(t� 1)

Ck(t) =
�
Ak(t� 1)Ck(t� 1) + Ĉm(t)

�
=Ak(t� 1)

(4)

where Î(t) is the compensated image. Note that only pixels includ-
ed in the foreground segmented mask M̂m(t) are updated. Fig. 7
shows the key-region template from a shot where a person walks
in front of the camera. From left to right, the appearance, contour
and texture template image of the key-region corresponding to the
walking person are presented. The appearance and texture image
contain information about the activity of the key-region. In this
case, higher body parts (body, chest) show no relative movemen-
t while lower parts (legs) show a considerable amount of relative
motion. This representation is particularly attractive to analyze the
activity of non rigid objects.

Fig. 8 shows a complete shot representation of the nhkvideo7



Fig. 7. Modeling of key-regions. The template of a key-region
is composed, from left to right, of an appearance image Ak(t), a
contour image Ck(t) and a texture image Tk(t).

Fig. 8. Final result for the nhkvideo7 sequence. A background
mosaic image and two key-regions are found. Key-regions are
represented from left to right by an appearance image A, a con-
tour image C and a texture image T .

sequence. The background information is separated from the fore-
ground regions of the scene. In the original sequence, the cam-
era follows the walking girl while a car crosses the road in the
background. Two key-regions have been extracted corresponding
to the girl and the car. Bottom images show the corresponding
texture images of the two key-regions. Superimposed to the final
mosaic image, the relative motion respect to the camera is drawn
providing a fast visual representation of the motion followed by
each key-region. The top white line shows the motion followed by
the car while the one on the bottom shows the path followed by the
girl during the analyzed sequence.

5. CONCLUSION AND FUTURE WORK

A method for representing and structuring video shots has been p-
resented. A robust 2D motion estimation is used to estimate and
create a mosaic image representing the background information
of the shot. This background information is then used to extract
representative foreground regions, called key-regions. The major
contribution of this paper deals with the foreground region extrac-
tion and analysis. The algorithm progressively builds a representa-

tion for key-regions taking into account the reliability of the shape
information for each frame. Both key-regions and mosaic image
create a compact and efficient representation of the content. More-
over, they allow the activity during the shot to be described. The
most representative foreground regions of the scene are represent-
ed by templates allowing further indexing and analysis.

Possible extensions and improvements of the algorithm are
been currently studied. New methods to improve the foreground
region extraction in case of occlusions are being investigated. Also
methods to classify the activity of key-regions (such as walking,
running, seating if the case, for instance, of human key-regions)
can be studied on the basis of the appearance and texture images
of the extracted key-regions.
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