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Hypothesis 
 

The accuracy and sensitivity of a convolutional neural network binary classifier which detects melanoma 
in dermoscopic images improves with the use of segmented images (images which contain only the 
lesions and exclude the data surrounding the lesion).  
  

Introduction 
 
In the United States alone, there were an estimated 76,380 new cases of melanoma and an estimated 
6,750 deaths due to melanoma in 2016 (Siegel, Miller, & Jemal, 2016). Early screening can increase life 
expectancy (Freedberg et al., 1999), but melanoma left undiagnosed can be fatal. Dermatologists use 
many heuristic classification methods to diagnose melanoma (Argenziano et al., 1998; Nachbar et al., 
1994), but to limited success with only 65 - 80% accuracy (Argenziano & Soyer, 2001). A tool capable of 
aiding physicians to classify skin lesions could potentially save numerous lives each year. 
 
Typically, segmentation is used as a preprocessing method in the classification process to remove 
potentially irrelevant information (outside the region of interest within an image) from the input images 
(Li et al., 2009). Segmentation eliminates the pixel values outside of the lesion, so that only the pixel 
values of the lesion are the only data considered when training and testing the network. 
 
Previous studies have successfully used image segmentation to produce promising results (Jaworek-
Korjakowska & Kleczek 2016), but other studies have produced promising results without segmentation 
(Kawahara, BenTaieb, & Hamarneh, 2016; Esteva et. al, 2017; Lopez, et al, 2017; Codella et. al, 2016). 
Segmenting the skin lesion removes ostensibly nonessential data surrounding the lesion, including hair 
and other lesions. This surrounding data eliminated by segmentation may obfuscate vital information, 
but may also provide greater context for the convolutional neural network (CNN). Better understanding 
the effects of image segmentation may help to refine the classification process. To investigate the 
effects of segmentation, we compare the performance metrics of CNNs trained on perfectly segmented 
images against the same metrics obtained using unsegmented images. We then further investigate the 
effects of segmentation by classifying partially segmented images, in which the perfectly segmented 
region is dilated to include surrounding non-lesion pixels. 
 

Methods 
 

The ISIC dataset is publicly available and contains 1279 images of skin lesions and corresponding hand-
labeled binary masks of the lesion. Each image is labeled as either benign or malignant. The ISIC dataset 
is pre-partitioned into 900 training images and 379 testing images (International Skin Imaging 
Collaboration). 
 
Rather than train a CNN model from scratch using our small dataset, a transfer learning approach, which 
extracts layers from a neural network previously trained on a different, larger dataset (Yosinski et al., 



2014), was implemented. VGGNet (Simonyan & Zisserman, 2014), a CNN trained on the ImageNet 
dataset, which contains over 14 million natural images (Russakovsky et al., 2015), was selected. The 
VGGNet became popular after achieving excellent results in the ILSVRC-2014 competition (Russakovsky 
et al., 2015). Specifically, the VGG-16 architecture (Figure 1), which has fewer parameters than the other 
VGG ConvNet configurations, was selected because it has been shown to generalize well to other 
datasets (Simonyan & Zisserman, 2014). Our VGG-16 architecture consists of the same five 
convolutional blocks and a slightly modified final fully connected block consisting of one 256, relu 
activated, node layer and lastly a single sigmoidal node. We froze the first four convolutional blocks, 
initialized the fully connected layers with uniform distribution (a process known as Uniform 
Initialization), and then trained the CNN with our images from the ISIC dataset. 
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Figure 1. Original VGG16 architecture (Vachet 2016) 
 

To equalize the number of images in each class and balance the dataset, the training and test sets were 
reduced through downsampling. The dataset was divided into a 70-30% training/testing split, with 230, 
116, and 150 images in the training, validation, and test sets respectively. Input images for the three 
cases - full segmentation, partial segmentation, and no segmentation -  are created from the dataset. 
The unsegmented images were used in their unaltered form from the dataset. The perfectly segmented 
images were generated by performing a bitwise AND operation on the unaltered images and its 
corresponding binary mask provided by the ISIC dataset as a reference image. The resulting image is a 
perfectly segmented skin lesion where the values outside the lesion are converted to a zero value. A 
similar method was used to create the partially segmented images, except the original binary masks 
were first morphologically dilated with a disk-shaped structuring element (50 pixel radius). Additional 
preprocessing methods including resizing and normalization were performed to match the input size 
expected by the VGG16 architecture. The images were resized to 224×224 pixels and normalized by 
performing a channel-wise rescaling to [-1, 1] (by subtracting the mean and dividing by the result of the 
max minus minimum values). Figure 2 shows the the three input sets and their corresponding 
segmentation masks. 
 
 
 
 
 
 



Figure 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Representative sample of the three input datasets (ISIC Archive). The unaltered image (left), and the segmented 
images (right) with corresponding mask (center). 

 
Results 
 

To ensure the architecture produces the same results for each epoch, the random number generator 
was seeded with an arbitrary value that remained constant throughout testing. The input images were 
the only parameter that changed between sets. 
 
Stochastic gradient descent (learning rate=1e-6, momentum=0.9) and binary cross entropy (Keras 
Objectives) were implemented as the optimizing and loss functions. The fully connected layers included 
a 0.5 value for the dropout optimization. A batch size of 26 was used and 60 epochs were performed. 
 
Balancing through downsampling was performed by removing images from the training set by 
selectively obtaining the first 173 images from the directory of each class (alphabetically listed), for a 
total of 346 images. In the test dataset, images from the majority class were removed randomly to 
produce 75 benign and 75 malignant images. 
 
The model performance evaluation was performed using the created balanced testing dataset with the 
metrics listed below: 
 

• Accuracy: the number of correct predictions divided by the total number of predictions made. 
• Sensitivity: the fraction of true positives that are correctly identified. 
• AUC (Area Under the Curve): the area under an ROC (Receiver Operating Characteristic) curve 

plotting the true positive rate vs. the false positive rate. 
 
Examining the results for the classification of unsegmented and segmented images revealed improved 
metrics for all cases when perfect segmentation was applied; an accuracy of 51.3% and 58.7%, 
sensitivity of 24.0% and 45.3%, and AUC of 53.2% and 62.2%, respectively. When the partially 
segmented results are compared these results, all metrics further improve. The Accuracy increased to 
60.7%, sensitivity to 56.0%, and AUC to 62.6% (Figure 3). The corresponding confusion matrices for all 
three cases are shown in Figure 4. Figure 5 includes sample images corresponding to the confusion 
matrix for the unsegmented case.  

 
 



Figure 3 
 
 
 
 
 
 

Figure 3. Accuracy, sensitivity, and AUC of lesion classification for unsegmented, partially segmented, and perfectly segmented 
datasets. 
 

 Figure 4 
  

  
 

Figure 4. Confusion matrices of lesion classification for unsegmented, partially segmented, and perfectly segmented datasets 
 
 Figure 5 

  
Figure 5. Sample classification results for correct and incorrectly predicted unaltered images. 
 

Discussion 
 

Skin lesion images often contain background noise that may be detrimental to image classification. 
Sample images including a distracting background are shown in figure 6. Ostensibly, the background 
values serve as distractions that negatively affect lesion classification and must be segmented. 
Figure 6 

 
 
 
 
 
 
 
 

Figure 6. Classification difficulties caused by background noise. 



 
Accuracy, sensitivity, and AUC all improved when perfect segmentation was applied to the images from 
the ISIC dataset. Of the three performance metrics, sensitivity was the most improved, increasing from 
24.0% to 45.3%. In medical applications, sensitivity is often considered to be one of the most important 
metrics (Lalkhen and McCluskey, 2008). Sensitivity measures the efficacy of the CNN in identifying 
melanoma. A diagnostic test should be optimized to correctly recognize as many cases of melanoma as 
possible, even at the cost of false positives (Lalkhen and McCluskey, 2008). Ultimately, misidentifying 
benign lesions as melanomas will cost patients their time, but misidentifying melanomas as benign 
lesions will cost patients their lives. 
 
Dilation of the segmentation mask beyond the border of the lesion further improves performance 
metrics. This improvement in performance suggests that despite common classification pipelines, 
entirely isolating the lesion within the image may be less effective than segmentation and subsequent 
dilation to include additional surrounding values. Future work should develop effective segmentation 
methods and explore the effects of the inclusion of data surrounding the lesion during classification. 

 
Conclusion 
 

We investigated the hypothesis that segmentation improves classification performance of skin lesions 
using convolutional neural networks. Examination of classification using different degrees of 
segmentation on images from the ISIC Archive dataset with the VGG-16 architecture revealed 
unexpected results. Early results indicate that the highest classification performance occurs when a pre-
classification segmentation and an unconventional subsequent dilation of the segmentation region is 
performed. 
 
Future work could expand on these findings and further investigate the degree to which dilating a 
segmentation mask to include surrounding data improves classification performance. Our results 
suggest that classification performance would increase, reach an optimal value, and then decrease, as 
additional contextual values are included in the dataset. This apparent trend should be examined across 
multiple datasets and classifiers. Furthermore, the effects of transfer learning on this trend should be 
investigated by comparing the results of architectures that do not use transfer learning. 
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