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ABSTRACT
The recent emergence of deep learning methods for med-
ical image analysis has enabled the development of intel-
ligent medical imaging-based diagnosis systems that can
assist the human expert in making better decisions about
a patients health. In this paper we focus on the problem
of skin lesion classification, particularly early melanoma
detection, and present a deep-learning based approach to
solve the problem of classifying a dermoscopic image con-
taining a skin lesion as malignant or benign. The pro-
posed solution is built around the VGGNet convolutional
neural network architecture and uses the transfer learning
paradigm. Experimental results are encouraging: on the
ISIC Archive dataset, the proposed method achieves a sen-
sitivity value of 78.66%, which is significantly higher than
the current state of the art on that dataset.
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1 Introduction

Melanoma is a fatal form of skin cancer which is often un-
diagnosed or misdiagnosed as a benign skin lesion. There
are an estimated 76,380 new cases of melanoma and an es-
timated 6,750 deaths each year in the United States [1].
Early detection is imperative: the lives of melanoma pa-
tients depend on accurate and early diagnosis. Physicians
often rely on personal experience and evaluate each pa-
tients lesions on a case-by-case basis by taking into account
the patient’s local lesion patterns in comparison to that of
the entire body [2].

Without computer-based assistance, the clinical diag-
nosis accuracy for melanoma detection is reported to be
between 65 and 80% [3]. Use of dermoscopic images
improves diagnostic accuracy of skin lesions by 49% [4].
However, the visual differences between melanoma and be-
nign skin lesions can be very subtle (Figure 1), making it
difficult to distinguish the two cases, even for trained med-
ical experts.

For the reasons described above, an intelligent med-
ical imaging-based skin lesion diagnosis system can be a
welcome tool to assist a physician in classifying skin le-

sions. In this work, we are interested in a specific two-
class classification problem, namely: determine whether
a dermoscopic image containing a skin lesion contains a
melanoma or a benign lesion.

Figure 1: Sample images created from the ISIC Archive
dataset [5]

In this paper, a novel method for skin lesion clas-
sification using deep learning is proposed, implemented,
and successfully benchmarked against a publicly available
skin lesion dermoscopic image dataset (the ISIC Archive
dataset [5]). It uses an existing convolutional neural net-
work (CNN) architecture – VGGNet (Very Deep Convo-
lutional Network for Large-Scale Visual Recognition) de-
veloped by the Visual Geometry Group of the University
of Oxford [6] in three different ways: (i) training the CNN
from scratch; (ii) using the transfer learning paradigm to
leverage features from a VGGNet pre-trained on a larger
dataset (ImageNet [7]); and (iii) keeping the transfer learn-
ing paradigm and fine-tuning the CNNs architecture. This
paper is structured as follows: Section 2 reviews related
work and associated datasets and challenges; Section 3 de-
scribed the proposed solution (and its variants) and asso-
ciated methods and tools; Section 4 presents the results of
experiments and discusses their significance; finally, Sec-
tion 5 offers concluding remarks and directions for future
work.

2 Background

In this section we provide a summary of relevant recent
work in this field, as well as associated datasets and chal-
lenges.



2.1 Related work

Most current methods in the field of melanoma classifica-
tion rely on hand-crafted features, such as: lesion type (pri-
mary morphology), lesion configuration (secondary mor-
phology), color, distribution, shape, texture, and border ir-
regularity measures [8]. After feature extraction, machine
learning methods such as k-nearest neighbors (kNN), Ar-
tificial Neural Networks (ANNs), logistic regression, deci-
sion trees and support vector machines (SVMs) can be used
to perform the classification task with moderate success [9].
Examples of related work using hand-crafted features and
popular classifiers include:

• Codella et al. [10] utilize hand-coded feature extrac-
tion techniques including color histogram, edge his-
togram, and a multi-scale variant of color local binary
patterns (LBP).

• The approach proposed by Barata et al. [11] utilizes
two different methods for the detection of melanoma
in dermoscopy images based on global and local fea-
tures. The global method uses segmentation and
wavelets, Laplacian pyramids or linear filters followed
by a gradient histogram are used to extract features
such as texture, shape, and color from the entire le-
sion. After that, a binary classifier is trained from the
data. The second method of local features uses a Bag
of Features (BoF) classifier for image processing tasks
(i.e. object recognition). Barata et al. conclude that
color features perform much better than texture fea-
tures alone.

More recently, the emergence of a machine learning
paradigm known as deep learning has enabled the devel-
opment of medical image analysis systems that can dis-
play remarkable accuracy, to the point of raising concerns
about the future of the human radiologist [12][13]. Convo-
lutional neural networks have produced promising results
when classifying skin lesions. Examples of related work
using deep learning include:

• The work of Kawahara et al. [14] explores the idea
of using a pretrained ConvNet as a feature extractor
rather than training a CNN from scratch. Furthermore,
it demonstrates the use filters from a CNN pretrained
on natural images generalize to classifying 10 classes
of non-dermoscopic skin images.

• Liao’s [15] work attempted to construct a universal
skin disease classification by applying transfer learn-
ing on a deep CNN and fine-tuned its weights by con-
tinuing the backpropagation.

• In Codella et al. [10], the authors report new state-
of-the-art performance using ConvNets to extract im-
age descriptors by using a pre-trained model from
the Image Large Scale Visual Recognition Challenge
(ILSVRC) 2012 dataset [7]. They also investigate the

most recent network structure to win the ImageNet
recognition challenge called Deep Residual Network
(DRN) [16].

2.2 Datasets and challenges

There are relatively few datasets in the general field of der-
matology and even fewer datasets of skin lesion images.
Moreover, most of these datasets are too small and/or not
publicly available, which provides an additional obstacle to
performing reproducible research in the area. Examples of
dermatology-related image datasets used in recent research
include:

• Dermofit Image Library [17] is a dataset that contains
1,300 high quality skin lesion images collected across
10 different classes.

• Dermnet [18] is a skin disease atlas with website sup-
port that contains over 23,000 skin images separated
into 23 classes.

In the beginning of 2016, the International Symposium
on Biomedical Imaging (ISBI) [19] released a challenge
dataset for Skin lesion analysis towards melanoma detec-
tion. Photos in this dataset were obtained from the ISIC
(International Skin Imaging Collaboration) [5].

3 Proposed solution

In this section we describe the selected convolutional net-
work (ConvNet) architecture and discuss associated design
choices and implementation aspects.

3.1 ConvNet architecture

VGGNet is a well documented and commonly used archi-
tecture for convolutional neural networks [6]. This Con-
vNet became popular by achieving excellent performance
on the ImageNet [7] dataset. It comes in several variations
of which the two best-performing (with 16 and 19 weight
layers) have been made publicly available. In this work,
the VGG16 architecture (Figure 2) was selected, since it
has been shown to generalize well to other datasets. The
input layer of the network expects a 224×224 pixel RGB
image. The input image is passed through five convolu-
tional blocks. Small convolutional filters with a receptive
field of 3×3 are used. Each convolutional block includes
a 2D convolution layer operation (the number of filters
changes between blocks). All hidden layers are equipped
with a ReLU (Rectified Linear Unit) as the activation func-
tion layer (nonlinearity operation) and include spatial pool-
ing through use of a max-pooling layer. The network is
concluded with a classifier block consisting of three Fully-
Connected (FC) layers.



3.2 Design considerations

The original VGG16 must be modified to suit our needs, as
follows:

• The final fully-connected output layer must perform a
binary classification (benign vs. malignant), not 1000
classes.

• The activation function in the modified layer is modi-
fied from a softmax to sigmoidal.

Figure 2: Original VGG16 architecture (adapted from [6])

3.2.1 Preprocessing

Input images must be preprocessed by: (i) normalizing the
pixel values to a [0,1] range; (ii) cropping the image to
square aspect ratio (if necessary); and (iii) resizing the im-
age to the expected size of 224×224 pixels.

3.2.2 Data augmentation

In order to make the most of our few training examples and
increase the accuracy of the model, we augmented the data
via a number of random transformations. The selected data
augmentation techniques were: size re-scaling, rotations of
40◦, horizontal shift, image zooming, and horizontal flip-
ping. Furthermore, it is expected that data augmentation
should also help prevent overfitting (a common problem
with small datasets, when the model, exposed to too few ex-
amples, learns patterns that do not generalize to new data)
and, for this reason, improving the models ability to gener-
alize.

3.3 One problem, three possible solutions

The modified VGG16 ConvNet can be used in three differ-
ent ways: (i) training the ConvNet from scratch; (ii) using
the transfer learning paradigm to leverage features from a
pre-trained VGG16 on a larger dataset; and (iii) keeping the
transfer learning paradigm and fine-tuning the ConvNets
architecture. These variants (named Method 1, Method 2,
and Method 3, respectively) are described next.

3.3.1 Method 1 - Training from scratch

The architecture is initialized with random weights and
trained for a number of epochs. After each epoch, the
model learns features from data and computes weights
through backpropagation. This method is unlikely to pro-
duce the most accurate results if the dataset is not signif-
icantly large. However, it still can serve as a baseline for
comparison against the two other methods.

3.3.2 Method 2 - ConvNet as feature extractor

Due to the relatively small number of images of skin le-
sion in most dermatology datasets, this method initializes
the model with weights from the VGG16 trained on a larger
dataset (such as ImageNet [7]), a process known as transfer
learning. The underlying assumption behind transfer learn-
ing is that the pre-trained model has already learned fea-
tures that might be useful for the classification task at hand.
This corresponds, in practice, to using selected layer(s) of
the pre-trained ConvNet as a fixed feature extractor, which
can be achieved by freezing all the convolutional blocks
and only training the fully connected layers with the new
dataset.

3.3.3 Method 3 - Fine-tuning the ConvNet

Another common transfer learning technique consists of
not only retraining the classifier on the top of the network
with the new dataset, but also applying a fine-tuning of the
network by training only the higher-level portion of the
convolutional layers and continuing the backpropagation.
In this work, we propose to freeze the lower level layers



of the network because they contain more generic features
of the dataset. We are interested in training only the top
layers of the network due to their ability to perform extrac-
tion of more specific features. In this method, the first four
convolutional layers in the final architecture are initialized
with weights from the ImageNet dataset. The fifth, and fi-
nal, convolutional block is initialized with weights saved
and loaded from the corresponding convolutional layer in
Method 1.

3.3.4 Implementation aspects

Keras [20], a deep learning framework for Python, was uti-
lized to implement the neural network architecture. Keras
provides a layer of abstraction on top of Theano [21], which
is used as the main neural network framework. Keras al-
lows for: (1) modularity: users can create their network fol-
lowing a sequence which is a linear stack of layers; (2) min-
imalism: functions included in the library allow the user to
create and modify network layers easily; and (3) extensibil-
ity: daily updates provide solutions to ongoing challenges
faced by deep learning researchers. Moreover, Keras works
on a Python environment, which gives users the freedom to
use additional Python dependencies, including SciPy [22]
and PIL [23].

In addition to Keras, CUDA libraries [24] were re-
quired to drive the NVidia GeForce GTX TITAN X GPUs
(Graphics Processing Units) used to train and evaluate the
implementation [25].

4 Experiments and Results

This section discusses the results of experiments using the
proposed methods and the selected implementation.

4.1 Dataset

The ISBI 2016 Challenge dataset for Skin Lesion Analysis
towards melanoma detection (described in Section 2.2) was
used for our experiments.

The dataset contains a representative mix of images
labeled as benign or malignant, pre-partitioned into sets of
900 training images and 379 test images [5].

4.2 Parameters

All methods were implemented in Keras. The optimizing
function is RMSProp [26]. The loss function is described
in [27]. A value of 0.5 is used for a dropout optimization
in the fully connected layers. A batch size of 16 images is
selected due to the small size of our dataset.

The dataset is balanced through undersampling.
Listed alphabetically, the first 173 images from each class
in the training dataset were selected and the first 75 images

in each class from the testing dataset were selected. In to-
tal, the final dataset was composed of 346 training images
and 150 testing images.

For data augmentation we used the following varia-
tions: size re-scaling, rotations (angles), horizontal shift,
zooming (factor), and horizontal flipping.

4.3 Results

The model evaluation is performed using the same training
and testing partition used in the ISIC dataset.

The metrics used are:

• loss, defined as the quantification of the agreement
between the predicted images and the groundtruth la-
bels;

• sensitivity, the fraction of true positives that are cor-
rectly identified;

• precision, the fraction of retrieved instances that are
relevant;

• specificity, the fraction of true negatives that are cor-
rectly identified; and

• accuracy, the number of correct predictions divided
by the total number of predictions.

The number of epochs for each method (chosen based
on examining the behavior of accuracy/loss plots vs. num-
ber of epochs) was: 20 epochs for Method 1, 50 epochs for
Method 2, and 20 epochs for Method 3.

Training and testing results for each method are
shown in Tables 1 and 2, respectively. Best values are high-
lighted (in bold).

Table 1: Model evaluation: training dataset

Loss Accuracy Sensitivity Precision
M1 0.5637 71.87% 0.7087 0.6990
M2 0.1203 95.95% 0.9621 0.9560
M3 0.4891 76.88% 0.6903 0.8259

Table 2: Model evaluation: test dataset

Loss Accuracy Sensitivity Precision
M1 0.6743 66.00% 0.5799 0.6777
M2 1.0306 68.67% 0.3311 0.4958
M3 0.4337 81.33% 0.7866 0.7974



Figure 3 shows representative examples of prediction
errors made by the classifier (false positives and false nega-
tives, respectively). For contrast, Figure 4 shows examples
of correct prediction results (malignant and benign, respec-
tively).

Figure 3: Examples of False Positives and False Negatives

Figure 4: Examples of True Positives and True Negatives

4.4 Discussion

The results obtained using the first method are acceptable
and the accuracy value is substantially above chance.
Moreover, the minor difference between training and test
sets suggests that the model neither overfits nor underfits.

Using the results for Method 1 as a baseline, it was
not surprising to notice that Method 3 produced superior
results for loss, accuracy, sensitivity, and precision in
the test data. The performance of Method 2 – with
exceptionally good numbers for the training set and the
worst combination of loss, sensitivity, and accuracy values
for the test set – presents a classical example of overfitting.

Transfer learning offers the benefit of faster epoch
processing times since the layers are frozen and loaded
from a previously trained network. Though decreasing
processing time is prefered, the trade off is a result of the
learned features potentially being unrelated to intended
classification task. This observation could explain, to
some extent, the inferior results of Method 2, since
the ImageNet dataset is trained on 15 million labeled
high resolution images from 22,000 different categories.

Malignant 59 16
True Benign 12 63

Malignant Benign
Predicted

Figure 5: Confusion Matrix for Method 3

Method 3 (whose confusion matrix appears in Figure
5) showed the best performance of all, due to reduced de-
pendency on the ImageNet initialization weights. When
using the dataset partitioned identically to the ISBI 2016
Challenge [19], it achieved an accuracy value of 81.33%,
which would place the proposed approach in the top three
in that challenge. Most importantly, when considering sen-
sitivity, we achieve 78.66%, a result that is significantly
better than the one reported by the current leader (50.7%).
Our precision value, 79.74%, is also superior to the the cur-
rent best result, of 63.7%.

In the context of medical images, sensitivity refers to
the percent of true positives (malignant lesions) that are
correctly identified whereas specificity measures how many
samples predicted as benign (negative) are actually so. Our
results for Method 3 (78.66% for sensitivity and 84.00%
for specificity) are good indicators of the quality of the pre-
dictions made by the proposed model.

5 Conclusion

We propose a solution for assisting dermatologists during
the diagnosis of skin lesions. More specifically, we have
designed and implemented a two-class classifier that takes
skin lesion images labeled as benign or malignant as an
input, builds a model using deep convolutional neural net-
works, and uses this model to predict whether a (previously
unseen) image of a skin lesion is either benign or malig-
nant. The proposed approach achieves promising results –
most notably, a sensitivity value of 78.66% and a precision
of 79.74% – which are significantly higher than the current
state of the art on this dataset (50.7% and 63.7%, respec-
tively).

Avenues for future work include: (i) using a larger
dataset to help lessen the risk of overfitting; (ii) performing
additional regularization tweaks and fine-tuning of hyper-
parameters; and (iii) training the architecture with Dermnet
– a skin related dataset – rather than Imagenet, a general
dataset.
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