
IMAGE COMPRESSION WITH GENERALIZED LIFTING AND PARTIAL  
KNOWLEDGE OF THE SIGNAL PDF 

 
Julio C. Rolón†‡ , Philippe Salembier† and Xavier Alameda† 

 
†Technical University of Catalonia (UPC), Dept. of Signal Theory and Communications, Spain 

‡National Polytechnic Institute (IPN), CITEDI Research Center, Mexico 
{jcrolon, philippe}@gps.tsc.upc.edu, Xavier.Alameda@estudiant.upc.edu 

 
ABSTRACT 

In this paper we deal with the use of Generalized Lifting (GL) for 
lossy image compression. We have demonstrated in [9] the 
potential of the method for coding assuming complete knowledge 
of the pdf of the image to encode. Here, we move towards a 
realistic scheme that does not assume complete knowledge of the 
pdf. We show that a multiscale GL produces interesting results 
even if the pdf of the image to encode is only partially known. We 
target the compression of a given image class and compute an 
estimate of the image class pdf. This pdf is available at both 
encoder and decoder. A decision algorithm minimizes the 
overhead produced by the difference between the class pdf and the 
image pdf. This algorithm also removes ambiguities in the 
decoding process. The encoding strategy is completed using an 
arithmetic encoder. Results exhibit improvements over the state of 
the art. 

Index Terms— Generalized lifting, wavelets, image coding, 
pdf estimation, nonlinear lifting 

1. INTRODUCTION 

Wavelet-based image coding algorithms are at the core of the most 
advanced image coders available today. However, one of the 
known limitations of the wavelet transform when applied to signals 
with dimensions higher than one, is their inability to deal with 
higher order singularities, as is the case with contours in images. 
Contours appear in the detail subbands as correlated coefficients of 
large magnitude. From a signal processing perspective, 
decorrelating the contours is equivalent to an improvement in the 
sparsity of the whole coefficient set. 

Two main streams of methods have been followed recently 
to improve the sparsity of image representations. On one hand, we 
find methods that operate in the frequency domain like Curvelets 
[1] and Contourlets [6]; these methods have proven to be efficient 
in tasks other than coding, as they produce a large amount of 
redundancy, a pitfall for compression. 

The second stream of ideas is conceived to operate in the 
spatial domain. Among these methods, we find Bandelets [8] and 
adaptive directional lifting methods [2-5,7,12,13]. A common 
characteristic of all these methods is that they rely on predictions 
and interpolations over the pixel grid, be it Cartesian or quincunx. 
In the case of bandelets, the method may be applied in the wavelet 
domain, an idea we follow in the present paper, as it allows us to 
benefit from previous decorrelation of wavelet transform. 

A different approach to perform additional decorrelation on  

wavelet coefficients has been presented in [9]; it relies on the use 
of generalized lifting [10,11]. The generalized lifting framework 
allows the definition of nonlinear filter banks with perfect 
reconstruction. In [9] we presented results on the application of 
generalized lifting (GL) method to lossy image coding. We 
followed the idea of bandelets and conducted a wavelet transform 
over the image before applying the GL; we introduced a scalar 
quantizer; we used 2-dimensional non-separable sampling pattern 
for the GL, and made the assumption that the pdf of the image to 
code was known at the encoder and the decoder ends. This 
assumption is of course unrealistic in practice but allowed us to 
study the potential of the approach. The results shown in [9] were 
very encouraging. 

The main contribution of this paper is to move towards a 
realistic coding scheme where the assumption is that the pdf of the 
image to code is not known. In this paper, we investigate possible 
mechanisms to compensate for the lack of knowledge of the pdf, a 
fundamental element used in the design of the GL. In this paper, 
we target the compression of images belonging to a given class (as 
an example we use a class of remote sensing images). We estimate 
through a training process the image class pdf and use it instead of 
the pdf of the current image to encode. As a result of the use of a 
suboptimal pdf, information overhead is produced. We introduce a 
decision algorithm and a buffer to manage this overhead in an 
efficient way. Interesting results are obtained with this realistic 
scheme when compared against JPEG 2000. 

The paper is organized as follows. Section 2 presents the 
generalized lifting method and its multiscale approach. In section 3 
the coding strategy is described, as well as details about pdf 
estimation and managing in coding. Experimental results follow in 
section 4. Conclusions and ideas for future work are presented at 
the end. 

2. GENERALIZED LIFTING 

The generalized lifting decomposition shown in fig. 1 was 
introduced in [10]. The GL decomposition scheme enables the 
implementation of linear and non-linear operations. The GL 
involves first a polyphase decomposition or Lazy Wavelet 
Transform (LWT), followed by generalized predict (P) and update 
(U) steps. 

 
Fig. 1. Generalized Lifting Scheme 
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Let us analyze the generalized predict operator P. In the classical 
lifting case, P takes x[n] as input in order to predict y[n] and the 
details signal y'[n] is seen as a prediction error. In the GL case, P is 
viewed as a mapping between y[n] and y'[n] that takes into account 
a context represented by samples from x[n–i] for ,i C C being 
the set of sample positions that constitutes the context. Formally, 
the generalized predict operation can be written as 

  [ ][ ] '[ ]
i C

P
with context x n iy n y n . 

Assuming discrete signals, the mapping itself is discrete. To 
get perfect reconstruction, the mapping P should be invertible, that 
is, it should be an injective mapping. If the number of possible 
values for y[n] and y'[n] is the same, then the mapping should be 
bijective. The same reasoning can be done for the generalized 
update operation. That is, it is an injective mapping 

  '[ ][ ] '[ ]
i C

U
with context y n ix n x n . 

Apart from the injectivity that is required to get perfect 
reconstruction, the generalized predict (P) and update (U) 
operators may be arbitrary. In [11], a design of P that minimizes 
the energy of the details coefficients is proposed. The design can 
be intuitively described as follows: assume that the pdf of y[n] 
conditioned on the context ( )

i C
x n i  is known. For any given 

context ( ) i i C
x n i x , in order to minimize the energy of y'[n], 

the most probable value of y[n] should be mapped to '[ ] 0y n . 
The next most probable value of y[n] should be mapped 
to '[ ] 1y n ; the next one to '[ ] 1y n , etc. As can be seen, values 
of y[n] of decreasing probability are successively assigned to 
values of y'[n] of increasing energy. Note that this design of the 
generalized predict does not rely on the exact pdf values but on the 
order of the pdf values. So two different pdfs with the same order 
of their pdf value will produce the same mapping. 

We have introduced the use of the generalized lifting 
operator for lossy image coding in [9]. The GL was based on a 
unique generalized predict P (in particular, no generalized update 
was used). The mapping criterion of P in [9] was the minimization 
of the energy of the wavelet coefficients. A 2-dimensional non-
separable context that involved 4 samples was used. The 
assumption in [9] was that the pdf of the image to encode was 
known at the coder and the decoder. So the generalized predict was 
designed on the basis of this pdf. In this paper, we assume that the 
pdf of the image is not known; our approach here is to use a 
reference pdf which remains unchanged during the coding process. 
Our goal is to demonstrate that GL-based image coding is possible 
even when an approximate pdf is used instead of the exact pdf of 
the image.  

3. CODING SCHEME 

In this paper, we propose a lossy coding algorithm that does not 
assume knowledge of the pdf of the image to be coded. Instead, we 
assume the image to encode belongs to a given class of images and 
that we have some estimate of the image class pdf. The GL 
encoder is illustrated in fig. 2. The GL operation is performed in 
the wavelet domain. We use a well known linear-phase 
biorthogonal wavelet (9/7 or CDF 9/7 after Cohen-Daubechies-
Feauveau [4]) to perform a 5-scale discrete wavelet transform 
(DWT), this wavelet filter is also used by JPEG 2000 lossy 
compression mode. 

 
Fig. 2. Coding Scheme 

As an initial and simple strategy, a uniform scalar quantizer is 
applied before the GL operator to preserve the bijectivity of the 
GL decomposition. A 2-dimensional non-separable quincunx 
sampling pattern is used. The four closest neighboring pixels 
compose the context while the central sample is the value to be 
mapped. To fully exploit the energy minimization potential of the 
mapping, we iterate the GL decomposition over the approximation 
signal to generate a multiscale GL decomposition. We reach the 
condition where, for a given wavelet subband, only one wavelet 
coefficient of this subband is left as the GL approximation 
coefficient. We define this condition as maximally-iterated (MI) 
GL decomposition. 

In our proposal, we use the pdf of the image class instead of 
the pdf of the image to encode. The class pdf is obtained through a 
training process, and once trained; the class pdf remains 
unchanged and known for both the coder and the decoder. During 
the coding process, a decision algorithm (DA) handles the 
overhead produced by the disparity between the class pdf and the 
actual pdf of the image to encode. The GL mapped coefficients as 
well as the overhead information are encoded with an arithmetic 
encoder. 

3.1 Training of the class pdf 

In the ideal case [9], both the encoder and the decoder knew 
exactly the pdf of the image to encode. The P mapping under this 
condition is ideal since the energy minimization is optimal. In this 
paper, we remove this assumption but assume that the image to 
encode belongs to a given image class. Through a training process, 
we estimate the class pdf. For this pdf estimation, the simplest 
possible strategy is used: we define a set of training images that 
should represent the image class and compute the histogram of 
y[n] samples conditioned by the context C. The class pdf is defined 
as the normalized (so that the sum of probabilities is equal to one) 
histogram of the class. As mentioned in section 2, two pdfs having 
different values but the same order of their pdf values will give the 
same mapping. So here we hope that the order of the class pdf 
values will be statistically close to the order of the pdf values of 
the image to encode. 

In the proposed coding algorithm we have the combination 
of two decompositions: wavelet and GL. The statistical behavior 
depends on the combination wavelet/subband-scale and GL-scale. 
For this reason, the training process is conducted locally at every 
wavelet subband and at every GL decomposition scale for every 
wavelet subband. 

3.2 Decision algorithm 

The operation of the GL mapping when the exact pdf of the image 
is not known is more complex. The main issue is to know how to 
handle the cases of y[n] values conditioned by ( )

i C
x n i  for 

130



which the class pdf is equal to zero. In practice, it means that these 
values of y[n] values conditioned by ( )

i C
x n i  have never been 

seen in the training set. As a result, the mapping of these values 
has not been defined. In practice, we distinguish between three 
possible cases:  

1. The class pdf value for [ ] ( )
i C

y n x n i  is different from zero. 
In this case, a mapping has been defined: 

  [ ][ ] '[ ]
i C

P
with context x n iy n y n . 

As a result, this mapping is performed and '[ ]y n  is generated 
as output coefficient. 

2. The class pdf value for [ ] ( )
i C

y n x n i  is equal to zero and 

the particular context ( )
i C

x n i has never been seen in the 
training set. In this case, the original y[n] is used as output 
value. During the decoding process, the decoder will see that 
the current context has never been seen in the training set and 
therefore, will interpret the coefficient value as the value of the 
unmapped y[n]. 

3. The class pdf value for [ ] ( )
i C

y n x n i  is equal to zero but 

the particular context ( )
i C

x n i has been seen in the training 
set (with other values of y[n]). In this case, no mapping of the 
y[n] has been defined but we cannot just use the unmapped y[n] 
value as output coefficient because the decoder will not know 
whether the received value is a mapped y'[n] or an unmapped 
y[n] value. To solve this problem, we use as output coefficient 
an escape code to signal the receiver that we are in this third 
case and store the actual y[n] value in an overhead buffer that is 
encoded separately by an arithmetic encoder (see figure 2). The 
value of the escape code is context dependent. For a given 
context, the escape code value is defined as the output value of 
lowest energy that is never used for that context. To illustrate 
this case, consider the histogram plots of the class pdf, for a 
given context, shown in fig. 3. On the left (a), a plot of the 
instances of [ ] ( )

i C
y n x n i  found during the training is 

shown. On the right (b), the mapped values that correspond to 
those instances are shown. Now, suppose during the encoding 
process we find [ ] 2y n  for this context. We see from fig. 3(a) 
that during the training process this case was never found, then 
we have ( [ ] 2 ( ) ) 0

i C
p y n x n i . An escape code has to be 

sent. The decision algorithm (DA) of fig. 2 searches in the 
mapped domain (fig. 3b) for the first available value, in this 
case 3. The output coefficient value will then be 3, and 

[ ] 2y n  will be fed to the buffer. 

At this moment, given that the class pdf is unchanged, we 
repeat the escape code as many times as necessary during the 
coding process even if the particular instance of [ ] ( )

i C
y n x n i  

has already been sent. In a future version of the algorithm, an 
adaptive pdf strategy will prevent repetitions of the escape code. 
The decision algorithm would eventually provide proper feedback 
to the adaptation mechanism. 

 
  [ ]( [ ] )

i Cwith context x n ipdf y n    [ ]( '[ ] )
i Cwith context x n ipdf y n  

(a) (b) 

Fig. 3. Mapping operation in the class pdf for a given context 

 

 
Fig. 4. Examples of SST images used to train the class pdf 

4. EXPERIMENTAL RESULTS 

In this section, we evaluate the R-D performance of the coding 
algorithm for a class of images, namely, remote sensing images of 
sea surface temperature (SST). To compute the class pdf, we use 
100 images of 512 × 512 pixels. A CDF 9/7 wavelet was used to 
transform the set of images in 5 scales. A MI-GL decomposition 
was then applied to each wavelet subband. Fig. 5 shows the image 
SST to be coded; this image does not belong to the training set so 
that the pdf is not biased. 

A comparison between JPEG 2000, the R-D characteristic of 
the ideal case in which the pdf of the image to encode is 
completely known, and the proposed codec in which only the pdf 
of the image class is known is shown in fig. 6. As expected, when 
we have complete knowledge of the pdf of the image (ideal pdf 
curve in fig. 6) we reach the upper performance limit of the GL 
algorithm. Fig. 6 shows that even when the pdf of the image is not 
known (class pdf curve), the use of a class pdf allows the GL coder 
to outperform the R-D characteristic of JPEG2000 by about 0.4 dB 
in the interval from 0.2 to 0.5 bpp. The performance of GL 
algorithm in fig.6 is typical for images of the class that do not 
belong to the training set. A mean coding gain of 0.3 dB at 0.25 
bpp, and 0.5 dB at 0.5 bpp was obtained for a set of these images. 
Overhead produced by buffer ranges from 3 to 6 % of the total 
bitrate in the best case, to a range of 5.7 to 10 % in the worst case. 
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Fig. 5. SST test image 

 
Fig. 6. Rate-distortion plot for SST 

5. CONCLUSIONS 

The main contribution of this paper is the demonstration that for a 
class of images, the GL method improves the R-D performance 
even when the pdf of the signal to encode is not known. We have 
implemented a multiscale, maximally-iterated GL mapping that is 
applied independently to all wavelet subbands; a class pdf that has 
been used to enable the GL operator to perform the mapping; and a 
decision algorithm minimizes the energy of the overhead and 
prevents ambiguity in the decoder. The results are very 
encouraging as a typical improvement over JPEG 2000 of about 
0.4 dB in the interval from 0.2 to 0.5 bpp has been demonstrated, 
while overhead produced by buffer does not exceed 10 percent in 
worst case. 

Of course, the scheme described in this paper has to be 
considered as an initial scheme on which many improvements can 
be studied and tested. Important issues to be tackled in the future 
involve 1) the study of pdf estimation strategies that do not assume 
that the image belongs to a given class (the pdf should ideally 
model the statistics of the wavelet coefficients after the initial 
DWT); 2) the inclusion of the quantization process within the GL; 
3) the design criterion of the generalized predict P; 4) the 
optimization of the Decision Algorithm (DA); and 5) finally the 

design of an efficient entropy coder specifically devoted to 
coefficients resulting from a Generalized Lifting. 
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