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Abstract

Obtaining 3D geometry from images is a well studied
problem by the computer vision community. In the con-
crete case of a single image, a considerable amount of prior
knowledge is often required to obtain plausible reconstruc-
tions. Recently, deep neural networks in combination with
3D morphable models (3DMM) have been used in order to
address the lack of scene information, leading to more ac-
curate results. Nevertheless, the losses employed during the
training process are usually a linear combination of terms
where the coefficients, also called hyperparameters, must
be carefully tuned for each dataset to obtain satisfactory re-
sults. In this work we propose a hyperparameters-free loss
that exploits the geometry of the problem for learning 3D
reconstruction from a single image. The proposed formu-
lation is not dataset dependent, is robust against very large
camera poses and jointly optimizes the shape of the object
and the camera pose.

1. Introduction
3D technology is key for a wide range of industries.

Medicine, construction, cinema and many other disciplines
can nowadays digitalize the world we perceive using 3D re-
construction algorithms, create new objects by means of 3D
printers or analyze the world using 3D segmentation tech-
niques. The methods used for reconstructing 3D objects
range from highly accurate scanners based on photometry,
which are voluminous and expensive, to scanners based on
structured light, which may be less precise but portable and
much cheaper. These solutions, yet valid, do not reach the
mainstream users, since they require specific hardware. De-
signing new algorithms capable of reconstructing 3D ob-
jects precisely from a single or multiple RGB images will
help democratizing 3D technology, allowing more people to
take advantage of its possibilities.

Figure 1: Overview of our random projections approach for
implicit 3D shape regularization.

Inferring the geometry of objects from a single or multi-
ple images is a well-studied problem by the computer vision
community. Traditionally, the employed techniques have
been based in geometry and/or photometry [12, 32], which
usually require a large amount of images in order to cre-
ate precise reconstructions. Recently, the capacity of deep
neural networks [9] to obtain hierarchical representations of
the images and to encode prior knowledge has been applied
to 3D reconstruction in order to learn the implicit mapping
between images and geometry [7, 33].

Nevertheless, employing deep neural networks to solve
3D related problems implies some issues that need to be
addressed. One of the main drawbacks is the 3D data repre-
sentation. The trivial generalization from 2D images to 3D
space are the 3D voxel grids. This representation, which is
simple and allows the use of 3D convolutions, does an inef-
ficient use of the target space when trying to reconstruct sur-
faces. Moreover, state of the art methods that use this repre-
sentation mostly work at resolutions around 128x128x128
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voxels [7, 33], which are too small for most of the appli-
cations. 3D meshes [15, 31] are a more convenient repre-
sentation because they efficiently model surfaces and can be
easily textured and animated for computer graphics applica-
tions. However, 3D meshes are defined in a non-Euclidean
space, where the usual deep learning operations like con-
volutions are not defined. Geometric deep learning [3] is
nowadays a hot research area to bring basic operations to
non-Euclidean domains like graphs and manifolds, which
is the case of 3D meshes. Finally, 3D Morphable Models
(3DMM) [2] are used for category-specific problems to re-
duce the dimensionality of plausible solutions and lead to
more robust and likely predictions.

Another challenge when working on 3D reconstruction
using deep learning is the lack of labelled data. In tasks
like image recognition, there exist large annotated datasets
with millions of images [8]. Unfortunately, the data is not
as abundant in 3D as it is in 2D and, consequently, re-
searchers have walked around this limitation with different
strategies. Defining losses in the image domain [29, 23] is a
common approach since it provides flexibility to use differ-
ent kinds of annotations like sparse sets of keypoints, fore-
ground masks or pixel intensities. A second strategy is the
use of synthetic data [22, 23, 25] since it provides perfect
3D groundtruth. Unfortunately, the systems trained with
synthetic data tend to suffer from poor generalization due
to the distribution gap between the training and the testing
distributions.

Finally, subject to the 3D data representation and the
availability of labels, several works have proposed different
losses to learn their models [7, 33, 15, 31, 29, 23]. These
losses usually present a number of terms related by weight-
ing hyperparameters that need to be tuned for an effective
optimization. Nevertheless, finetuning these parameters for
each reconstruction dataset is a hard and computationally
expensive task that presents high chances of achieving sub-
optimal results.

The main contributions of our work are:

• The Multiview Reprojection Loss (MRL), a novel sin-
gle term loss for learning model-based 3D reconstruc-
tion from one image that does not require tuning any
hyperparameter.

• A notable decrease of time and complexity for train-
ing single view 3D reconstruction models using real or
synthetic data.

• A qualitative evaluation on FaceWarehouse dataset [4]
and a quantitative one on MICC dataset [1] where we
obtain comparable results to the state of the art.

MRL can be plugged in any model-based 3D reconstruc-
tion system. In this work, focus on the problem of learn-
ing single view 3D face reconstruction using 3DMM from

real or synthetic 3D data. We show how MRL outper-
forms the standard multiterm losses, obtain excellent qual-
itative results on the neutral expressions of the Faceware-
house dataset [4], and achieves state of the art results in the
MICC Florence 3D Faces dataset [1].

The rest of the paper is structured as follows. Sec-
tion 2 reviews the state of the art for 3D reconstruction
from a single image using deep learning models. Section
3 presents the novel single term Multiview Reprojection
Loss and describes it geometrically. Section 4 compares
MRL performance with respect to popular 3D reconstruc-
tion methods. Finally, Section 5 draws the conclusions of
our work. Supplementary material can be found online at
https://imatge-upc.github.io/mrl/.

2. State of the art
Classical methods used to obtain 3D reconstructions

from multiple views are based either on multiview geom-
etry or on photometric stereo. Geometry based techniques
aim to estimate the 3D position of surface points from the
object. Usually, the first stage of a geometric reconstruc-
tion process is a keypoint detector. Then, the detected
keypoints are matched using handcrafted image descriptors
like SIFT [21] or ORB [26]. Finally, multiview geome-
try is employed to formulate the reprojection error, which
can be minimized using non-linear least squares algorithms
like Levenberg-Marquardt. These techniques, also known
as Structure from Motion (SfM), are appropriate for recon-
structing rigid objects with detailed textures and when sev-
eral views are available. On the other hand, photometric
based techniques focus on estimating the normals of the sur-
face of the objects by observing them under different light
conditions. This group of algorithms, also known as Pho-
tometric Stereo or Shape from Shading (SfS) [12], make
strong assumptions about the physical properties of the sur-
face of the target objects, which often are not fulfilled.

Since AlexNet [20] succeeded in training a convolutional
neural network (CNN) for large scale image recognition,
multiple computer vision tasks have been tackled with deep
neural networks [9]. Among them, 3D reconstruction has
also benefited from their learned representations, obtaining
important performance gains with respect to hand-crafted
classic techniques. In general, two big groups of learning-
based 3D reconstruction methods can be differentiated by
the fact of using or not a 3DMM, which we define as model-
based and model-free approaches respectively.

2.1. Model-free approaches

Methods that do not include a 3DMM in their core
[33, 10, 31, 13, 16, 15], also called model-free, are usu-
ally oriented to solve more generic problems, such as re-
constructing objects with different shapes, and are highly
conditioned by the 3D representation they use.

https://imatge-upc.github.io/mrl/


For instance, methods based on 3D voxel grids [33, 10,
13] tend to use binary cross entropy as objective to optimize
their architecture. Eventually, 3D voxel grid geometries
can be projected into the image plane to construct super-
vision signals defined in the image domain, such as depth
errors [16] or binary masks errors [33]. Despite their flex-
ibility, 3D voxel grid methods are very inefficient at rep-
resenting surfaces, and hierarchical models are required to
achieve denser representations [10]. Although they have
been mostly assessed in synthetic datasets [6], 3D voxel
grid methods have also obtained state of the art results in
real applications [13].

Meshes are a common alternative to 3D voxel grids since
they are more efficient at surface modelling and have more
potential applications. Recent works [15, 31] suggest that
state of the art results can be achieved by minimizing the
Chamfer Loss while regularizing the surface through the
Laplace-Beltrami operator and other geometric elements
such as normals [31]. In addition, a family of novel and rele-
vant operators that have been successfully applied to 3D re-
construction with meshes [31] are the Graph Convolutional
Networks (GCN) [3], which generalize the convolution op-
erator to non-Euclidean domains.

2.2. Model-based approaches

Model-free methods, specially the mesh based ap-
proaches, need to be heavily regularized by using geomet-
ric operators in order to obtain plausible 3D reconstructions
and, despite its flexibility, they are difficult to train. Model-
based approaches offer a simpler solution to regularize sur-
faces by modeling them as a linear combination of a set of
basis [2]. Thus, the learning problem is reduced to esti-
mate a vector of weights to linearly combine the basis of
the model.

Due to the lack of 3D data, some works have driven their
experiments towards the evaluation of models trained on
synthetic data [22] [23]. Yet obtaining successful results, it-
erative error feedback (IEF) [5] is usually required for good
generalization, which unfortunately implies multiple passes
through the network. To speed up the IEF, [14] performs
this process in the latent space. Since using synthetic data
provides perfect labels, the losses are designed to explicitly
model the error between predictions and groundtruth model
parameters. Moreover, regularization is added as another
loss term by enforcing the norm of the 3DMM parameters
to be small.

On the other hand, some methods overcome the scarcity
of 3D data by defining losses directly in the image domain
[29, 28, 23]. This avoids using IEF since the data is trained
and tested in the same distributions. On the other hand,
annotations on the image domain are required [34] or dif-
ferentiable renderers [17] are necessary to construct self-
supervised losses using the raw pixel values [29]. Again,

regularization is needed on the predicted model weights to
ensure the likelihood of the predicted 3D shapes.

A common feature of most methods used for learning 3D
reconstruction is the need of some sort of regularization ap-
plied to the predicted 3D shape. Regularization is added as a
weighted combination of terms in the loss, either geometric
operators for meshes, or norms of the predicted shape model
parameters for model-based approaches. These terms pro-
vide the model with stability but, at the same time, add com-
plexity to the model and consequently to its optimization.
In [14], an adversarial regularization is proposed in order to
penalize predicted samples that fall out of the target distri-
bution. This statistical approach is more generic and simple.

Our work follows the direction of [14] with the objective
of finding more generic losses to learn model-based single
view 3D reconstruction that simplify the optimization of the
architectures. In contrast to them, we propose a geomet-
ric approach, instead of a statistical one, that fuses the data
terms and the regularization terms into a single objective
held by the geometry of the problem. In this way, we elim-
inate all the hyperparameters of the loss.

3. Mutiview Reprojection Loss

In this section we present our MRL, a loss without hy-
perparameters for learning single view 3D reconstruction.
Firstly, we describe the elements of a single view learning-
based reconstruction problem. Then, a detailed explanation
is given on how data and regularization terms can be fused
into a single term using geometry in order to learn 3D shape
and pose simultaneously.

3.1. Problem statement

A learning-based single view 3D reconstruction problem
can be defined as finding the unknown mappings from an
input image I to a 3D shape x ∈ R3N , being N the number
of points, and to the camera pose c = [R|t], R being the
rotation of the camera and t = (tx, ty, tz) ∈ R3 the spatial
position of the camera. We model the rotation of the camera
R as a unit quaternion q = (q0, q1, q2, q3) ∈ H1 to avoid
the Gimbal lock effect, which is the loss of one degree of
freedom in a three-dimensional mechanism.

We split the mappings to be learned in four functions: E ,
X , Q and T . The former function E is intended to extract
relevant features from I and the rest to map these features to
x, q and t respectively, so that x̂ = X (E(I)), q̂ = Q(E(I))
and t̂ = T (E(I)).

Most of the current methods based on deep neural net-
works [22, 23] learn the mapping functions E , X ,Q and T
by linearly combining different loss terms.

Each of these terms is responsible for controlling a prop-
erty of the reconstruction, and its contribution to the final
loss is adjusted by a weighting hyperparameter that must be



Figure 2: Modules used in the architecture to evaluate the
proposed single term loss.

tuned. In general, these loss terms can be divided in data
terms and regularization terms [29].

Data terms are the ones that guide the network predic-
tions towards matching the ground truth labels during train-
ing. In the considered 3D reconstruction setup, these corre-
spond to the the 3D shape x and the camera pose {q, t}:

Ldata = Lx + αLq + βLt. (1)

As noted in [18], the relation between hyperparameters
α and β varies substantially depending on the problem and,
consequently, the choice of these parameters has a severe
impact for the camera pose estimation.

On the other hand, regularization terms control the re-
sulting 3D shape x in terms of geometric and semantic like-
lihoods. In this sense, using a 3DMM allows to control ge-
ometry and semantics in a lower dimensional space. More
precisely, the use of a 3DMM enables the definition of a 3D
shape as:

x = m+ Φidαid, (2)

wherem represents the mean of x, and Φid and αid are
the identity basis and the identity parameters respectively.

In order to obtain plausible shapes, αid needs to have a
small norm. Consequently, losses include an extra regular-
ization term that force this condition during training:

Lreg = γ||αid||22. (3)

The final loss simply sums the data and regularization
terms:

L = Ldata + Lreg. (4)

Following this multiterm driven strategy, most of the
methods for 3D reconstruction need to estimate the weight-
ing hyperparameters for each specific dataset, a hard and
expensive process that might lead to suboptimal results.

3.2. A unique term loss for single view 3D recon-
struction

We introduce a novel formulation of the loss for learn-
ing 3D reconstruction from a single image that does not
require any weighting hyperparameter. We get inspiration
from [18], where they propose to unify the data term into
a single expression that exploits the geometry of the scene
for the task of camera pose estimation. The proposed single
view reprojection loss is defined as:

Ldata = ||P(q, t)(x)− P(q̂, t̂)(x̂)||1, (5)

where P represents a projective transform from 3D to
the 2D image plane:u′v′

w′

 = K[R(q)|t]xH (6)

x2D =

(
u
v

)
=

(
u′/w′

v′/w′

)
, (7)

being K the calibration matrix, R(q) the rotation matrix
induced by the quaternion q and xH the shape in homoge-
neous coordinates.

This formulation, introduced in [18], elegantly unifies
learning position and rotation within a single term. In con-
trast to [18], our loss aims to predict the 3D shape x as well.
In order to reduce the number of parameters, we exploit the
3DMM-oriented shape from Equation 2 to develop Equa-
tion 5 as:

Ldata = ||P(q, t)(m+ Φidαid)−
P(q̂, t̂)(m+ Φidα̂id)||1. (8)

By using Equations 5 or 8 as losses, one can simultane-
ously learn shape and pose by minimizing the reprojection
error. Unfortunately, optimizing 3D shape and pose by pro-
jecting into a single image plane is not possible without reg-
ularization. As it can be observed in Figure 3, the network
learns to generate flattened shapes x̂, which produce mini-
mum reprojection error, but at the same time are not likely
to belong to the distribution of 3D facial shapes.

3.3. Implicit regularization via random projections

In a multiterm loss like Equation 1, a trivial solution to
regularize the predictions of x̂ would be to add an extra
term, ||α̂id||22, to keep the norm of α̂id small. This would
introduce an extra hyperparameter that we would like to
avoid.

Instead, we propose to implicitly regularize the learning
process of x̂ by projecting to multiple image planes. To
do so, we modify the projection function P to include a



Figure 3: Effect of training with Equation 5. While the re-
projection error is minimized, the 3D shape is not plausible.

distortion matrix D that reformulates the projection matrix
as:

PD(q, t) = K[R(q)|t]Dx, (9)

and rewrite the single term loss from Equation 8 to
project to multiple random views:

L =

V∑
v=1

||PI(qv, tv)(x)− PD(qv, tv)(x̂)||1, (10)

where qv and tv represent the camera pose of a random
view, I is the identity matrix and D is a distortion matrix
caused by the difference between q, t and q̂, t̂, which is
computed as D = [R(q)|t] · [R(q̂)|t̂]−1.

In practice, we find that the optimization process is more
stable when the camera pose parameters {q̂, t̂} and the 3D
shape x̂ are related by addition instead of product. Thus,
we reformulate Equation 10 as:

L =

V∑
v=1

||PI(qv, tv)(x)− PI(qv, tv)(x̂)||1

+||PI(qv, tv)(x)− PD(qv, tv)(x)||1. (11)

It can be easily proved that, using Equation 11, the gradi-
ents of loss with respect x̂,∇x̂L, do not depend on the error
caused by q̂ and t̂, and vice versa. We think that this is the
reason why training with Equation 11 produces a more sta-
ble optimization than using Equation 10.

We define the expression in Equation 11 as the Multiview
Reprojection Loss (MRL), which represents the main contri-
bution of our work. MRL allows to simultaneously learn the

3D shape and the camera pose without explicit regulariza-
tion of x̂, since it penalizes the error signals consistently.

4. Experiments

This section evaluates MRL in in terms of accuracy and
robustness. Section 4.1 describes the architecture of the
convolutional neural network trained with MRL in a private
dataset. The trained model is evaluated from three different
perspectives: Section 4.2 compares in terms of reprojection
loss MRL with a multiterm loss, Section 4.3 show the ro-
bustness of the model to diverse face appearances, while
the results on the public FaceWareHouse [4] and MICC [1]
datasets are reported in Sections 4.4 and 4.5, respectively.

4.1. Implementation details

We make use of a standard architecture to predict the first
50 identity parametersαid of a 3DMM, the camera rotation
as a quaternion q = (q0, q1, q2, q3) and the spatial camera
translation t = (tx, ty, tz). Similarly to [22, 29, 28, 23] we
choose a convolutional neural network as encoder E based
on VGG-16 [27] to extract image features, and then three
multiyer perceptrons (MLP), S, Q and T , with 1 hidden
layer of 256 units, that are added on top of E to regress αid,
q and t respectively.

Given an input image I, the three outputs of our model
can be expressed as: αid = S(E(I)), q = Q(E(I)) and
t = T (E(I)). For better initial conditions, we initialize the
output layers of the three MLP in order to predict ŝ = ~0,
q̂ = [1, 0, 0, 0] and t̂ = [0, 0,−60], values that project the
mean 3D shape to the center of the image. All the models
are trained using Adam [19] with a learning rate of 10−4,
batch size of 32 samples and a total of 60 epochs.

We train our models using a private dataset formed by
more than 6,000 3D scans of different subjects acquired us-
ing Structure Sensor. Each entry of the database represents
a subject, and it is composed by a 3D scan of the face with
neutral expression, an average of four images of the sub-
ject from multiple views, and the intrinsics and extrinsics
matrices of the cameras associated to each image.

We register a 3D template to the 3D scans using a Non-
Rigid ICP algorithm in order to work with a fixed topology.
Then, a Procrustes analysis is performed with all the reg-
istered models, and PCA is applied to extract the identity
bases Φid and the associated eigenvalues Λ. Finally, we ex-
press each model on its PCA basis in order to obtain the
labels for training. For data augmentation purposes, each
database entry is fully symmetrized, computing the sym-
metric 3D models, and its associated symmetric images and
respective symmetric cameras. After the symmetrization,
the dataset contains nearly 50,000 images and 12,000 scans.



4.2. Multiterm vs Single term

Our first experiment is performed to validate the hypoth-
esis that MRL not only reduces complexity during training,
but also can lead to better results than using a classic multi-
term loss.

We define a standard multiterm loss composed of four
terms: one for each of the three outputs of our model αid,
q and t, and one for regularization of αid:

L = ||Φ(αid−α̂id)||1+α||q−q̂||1+β||t−t̂||1+γ||αid||22,
(12)

where α β and γ are weighting hyperparameters. For
the identity parameters αid, we select the loss proposed by
[22], which computes the error of the 3D shape instead of
the error of the shape parameters, since it is reported to pro-
vide better results.

A random search is performed across α, β, γ
hyperparameters. We sample 20 different com-
binations from the following discrete sets: α ∈
{10−1, 10−2, 10−3}, β ∈ {1, 10−1, 10−2, 10−3} and
γ ∈ {1, 10−1, 10−2, 10−3, 10−4}.

Table 1 shows the best results obtained in terms of cam-
era pose (first row) and 3D shape (second row) across all the
considered combinations of α, β, γ. The third row of the ta-
ble shows the performance achieved with a single training
with MRL.

Results indicate a superior performance of the model
trained with MRL in terms of reprojection error 1, which is
the most representative metric for 3D reconstruction since
it combines both 3D shape and camera pose errors. In ad-
dition, MRL also obtains competitive results in terms of 3D
shape error and camera pose, despite not having been opti-
mized for them, as in the multiterm models of the first and
second rows.

We illustrate why using the Euclidean distance to com-
pute the error of q̂ and t̂ is not as reliable as using the repro-
jection error 5. In figure 4, it can be observed that smaller
errors in translation and rotation of the camera pose do not
imply smaller errors of the 3D scene reprojected into the
image plane. This is due to the fact that errors in translation
can be compensated by errors in rotation, improving the re-
sulting projective transformation P = K[R(q)|t]. It can be
observed that the overall alignment is better with a single
train of our loss.

The whole optimization process for the multiterm loss
takes 8 days using a GeForce GTX 1080 Ti graphics card.
On the other hand, the training of the model with the pro-
posed MRL is achieved in only 24 hours with the same re-
sources, which is 8 times faster.

Figure 4: Reprojection errors in image domain produced by
the multiterm loss and the MRL.

Repro- Shape Camera Camera
jection 3D position rotation
(pixels) (mm) (mm) (degrees)

Best pose 5.4 1.7 2.39 2.51
Best shape 8.58 1.5 2.50 2.62

MRL (ours) 3.29 1.7 2.86 3.04

Table 1: Prediction errors of the best models for shape and
camera pose estimation, compared to the model trained with
MRL.

4.3. Robustness against diversity

In order to assess the range of predictions that our model
trained using MRL is capable of generating, we randomly
select a set of face images with variability in ages, genders,
ethnic groups, facial hair and facial accessories.

Qualitatively, Figure 5 shows how our architecture ef-
fectively generates accurate 3D reconstructions with high
similarity to their respective images under several different
facial attributes. Moreover, it is robust against a wide range
of light conditions and environments.

4.4. Results on FaceWarehouse

In order to test the generalization of our MRL to other
datasets and provide results comparable to other works,
a qualitative evaluation is performed on FaceWarehouse
dataset [4]. It contains range scans from a total of 150 indi-
viduals on neutral and 19 different expressions.



Figure 5: Generalization against face diversity of the archi-
tecture trained using MRL.

For each image in the dataset containing a case in neu-
tral expression, we infer 50 identity parameters using our
architecture trained with the proposed MRL and we convert
them into a 3D shape using the 3DMM. Then, we use the
Iterative Closes Point algorithm to align the predicted and
groundtruth models and compute the point to surface Eu-
clidean distance.

The proposed method effectively estimates the 3D shape
of subjects from different gender, ages and ethnicities from
a single image. As it can be observed in Figure 6 we obtain
low errors that are comparable to the state of the art methods
[29, 23].

4.5. Results on MICC dataset

Finally, we evaluate the architecture trained with the
MRL on the MICC Florence Faces dataset [1]. It is formed
by a set of 3D face scans from 53 different subjects in neu-
tral facial expression. The images are provided in videos
recorded under controlled and uncontrolled environments,
and in indoor and outdoor scenes, fact that allows evaluat-
ing 3D reconstruction algorithms under different levels of
complexity.

Single view 3D estimation is performed on the most
frontal frame of each individual as in [30], which is always
contained in the indoor controlled subset. We align the re-
sulting 3D reconstruction to the groundtruth following the
procedure described in Section 4.4. For fair comparison
with previous methods, instead of computing the Euclidean

Figure 6: Qualitative evaluation of 3D reconstruction accu-
racy applied to different subjects in neutral expression from
FaceWarehouse dataset [4].

Method 3DRMSE

3DMM [24] 1.75± .42
Flow-based [11] 1.83± .39
Discriminative [30] 1.57± .33
MRL (ours) 1.47 ± .30

Table 2: 3DRMSE of different methods evaluated on MICC
dataset using a single view.

distance for each predicted vertex to the surface, we adopt
the 3D Root Mean Square Error (3DRMSE). Hence, given
a predicted 3D shape x̂ and its associated groundtruth x,
the metric is defined as 3DRMSE =

√∑
i(x− x̂)2/Nv ,

where Nv is the number of vertices.
We compare our method against the state of the art work

[30], and previous methods Flow-based [11] and 3DMM
[24]. As shown in Table 2, we obtain slightly better results
than all previous single view methods without the need of
fine tuning any hyperparameter related to the loss.

To end with, we also provide qualitative results in Figure
7 under controlled and uncontrolled environments. Given



Figure 7: Qualitative results on MICC dataset under con-
trolled (left) and uncontrolled (right) indoor environments

that groundtruth 3D scans from MICC dataset are obtained
with the subjects in neutral expression, the uncontrolled en-
vironment provides images misaligned with the 3D data
causing higher errors.

5. Conclusions
In this work, we proposed a geometry based loss called

MRL for learning single view 3D reconstruction problems
that does not contain any hyperparameters. Using our ap-
proach, the amount of time invested for training deep learn-
ing models can be drastically reduced with respect other
multiterm losses. Moreover, we proved empirically how
models trained using the MRL can simultaneously learn 3D
shape and camera pose within a single expression by using
random projections into the image planes. We obtain quan-
titative state of the art results with a single optimization and
predict precise 3D shapes under a wide range of different
facial characteristics, illuminations and environments.

Although our formulation generalizes to 3DMM with
expressions, we only performed tests on 3DMM based on
identity basis. The rest of scenarios should be revisited
in future work in order to validate the MRL under data

presenting more variability. Another limitation of the pre-
sented method is the need of real or synthetic data for train-
ing. Defining self-supervised losses in the image domain
together with multiview supervision could be explored to
remove this constrain while maintaining the simplicity of
the MRL.
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