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Abstract. This paper deals with the notion of connected operators. These operators are becoming
popular in image processing because they have the fundamental property of simplifying the signal
while preserving the contour information. In this paper, we discuss some practical approaches
for the extension and the generalization of these operators. We focus on two important issues:
the simplification criterion and the connectivity. We present in particular complexity- and motion-
oriented connected operators. Moreover, we discuss the creation connectivities that are either more
or less strict than the usual ones.
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1. Introduction

The first connected operators reported in the literature are known as opening by re-
construction [4]. This original idea led to geodesic operators on sets [5], to markers
for numerical functions [7], to multi-resolution decomposition with filters by recons-
truction [10], to the concept of dynamics [2], to area opening [14], to the flat zones
approach to segmentation [1]. Moreover, an intensive work has been done on the
efficient implementation of these transformations [15]. These connected operators
involved not only openings but also closings, alternated filters or even alternating
sequential filters. They are becoming very popular because, on experimental bases,
they have been claimed to simplify the image while preserving contours. This rather
surprising property makes them very attractive for a very large number of applica-
tions such as noise cancellation, segmentation, pattern recognition, etc.

The study reported in [13, 11] revealed that filters by reconstruction belong to
a larger class of transformation called connected operators that have the fundamen-
tal property of interacting with the signal by means of connected components (in
the case of binary images) or of flat zones (in the case of gray level images). This
viewpoint opens the door to various generalization of connected filters. Two lines
of generalizations are reported in [8]. The first one deals with the simplification
criterion and a new criterion called complexzity was proposed. The second genera-
lization deals with the connectivity. This notion is closely related to the definition
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of elementary objects in the scene. The connectivity can be modified to eliminate
some drawbacks of connected filters such as the so-called leakage. In [8], we discus-
sed notions that are either more or less strict than the “usual” connectivity used in
digital image processing. The objective of this paper is to make a summary of these
two lines of generalization and to further investigate the approach. We will intro-
duce in particular a new simplification criterion which is motion-oriented, and we
will propose a practical solution to handle a theoretical problem related to “strict”
connectivity.

The organization of this paper is as follows: section 2 is devoted to the notion of
binary and gray level connected operators. Section 3 deals with the simplification
criterion, whereas section 4 focuses on the notion of connectivity. Finally, section 5
presents the conclusions and discusses possible extensions of this work.

2. Binary and Gray-level Connected Operators

The original idea of binary connected operatorsrelies on the separation of an analysis
step and of a decision step as illustrated in Fig. 1. The first one assesses a charac-
teristic of a binary connected component following a given criterion, whereas the
second one states whether or not a connected component has to be preserved.

connected component connected component of the
removed by the operator ~ background removed by the operator
\

-~

Input binary image Output binary image

Fig. 1. Example of binary connected operator

In [13, 11], the concept of binary connected operators is formally defined as fo-
llows: first, a connectivity has to be defined. In the discrete case, this step generally
reduces to the definition of a local neighborhood system describing the connections
between adjacent pixels. The classical choices involve 4-, 6- or 8-connectivity, howe-
ver, in section 4, we will come back to this notion. Once the connectivity has been
selected, the notion of connected operators can be defined as follows:

Definition 2.1 (Binary connected operators) A binary operator v is connecled
when for any binary image X, the symmetrical difference X \ ¢(X) is exclusively
composed of connected components of X or of its complement X°.

The extension of connected operators for gray level functions relies on the concept
of partition [13, 11]. Let us recall that a partition of the space E is a set of connected
components {A4;} which are disjoint and the union of which is the entire space. Each
A; is called a partition class. Moreover, a partition {A4;} is said to be finer than
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another partition {B;} if any pair of points belonging to the same class A; also
belongs to a unique partition class B;. Consider now a binary image and define
its assoctated partition as the partition made of the connected components of the
binary sets and of their complements. The definition of connected operators can be
expressed with associated partitions:

Theorem 2.2 (Binary connected operators via partition) A binary operator
¥ 1s connected if and only if, for any binary image X, the associated partition of
(X)) is less fine than the associated partition of X.

The concept of gray level connected operators can be introduced if we define a
partition associated to a function. To this end, the use of flat zones was proposed
in [13, 11]. The set of flat zones of a gray level function f is the set of the largest
connected components of the space where f is constant (note that a flat zone can be
reduced to a single point). It can be demonstrated [13] that the set of flat zones of
a function constitutes a partition of the space. This partition is called the partition
of flat zones and leads to the following definition:

Definition 2.3 (Gray level connected operators) An operator ¥ acling on gray
level functions is connected if, for any function f, the partition of flat zones of U(f)
1s less fine than the partition of flat zones of f.

There are several ways of creating gray level connected operators. A simple
one, relying on threshold decomposition and stacking, is illustrated in Fig. 2. The
threshold decomposition generates one binary image X, for each possible gray level
value A. The binary image is decomposed into a set of connected components that
are processed by the binary connected operator ¢». Finally, the stacking consists in
reconstructing a gray level image g = U(f) from the set of binary images (X))
[6, 3, 12]:

g=9() =\ (] ¢Xn) (1)
A opu<A
Note that if the binary connected operator i is increasing, the stacking can be
simplified:

g=3(f) =\ (X)) (2)

A
Following this procedure, it can be shown [13, 11] that the resulting gray level ope-
rator W 1s a connected operator because the partition of flat zones of f is always

finer than the partition of flat zones of ¥(f).

This way of creating connected operators opens the door to several generalization.
In this paper, we will focus on two points: first, the analysis step of Fig. 1. As can
be seen, by modifying the criterion that is assessed in this block, a large set of binary
as well as gray level connected operators can be created. Second, the connectivity
definition that is defined after the thresholding operation in Fig. 2. This processing
step defines the elementary image objects on which the decision is going to interact.
A modification of the definition of the connected components after thresholding leads
to a different notion of elementary objects.
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Binary connected
operator

Binary connected
. operator
= Threshold Connectivity Reconstruction
by definition . g
X of grey level function
A

Binary connected
operator

Binary connected
operator

Fig. 2. Example of construction of gray level connected operator from a binary connected operator

|

3. Filtering criterion

3.1. CrassicAL CRITERIA

As examples, let us briefly recall the classical criteria used for the opening by re-
construction, the area opening and the h-maz operator. The first two operators can
deal with binary (scheme of Fig. 1) as well as gray level images (scheme of Fig. 2)
whereas the last one is devoted to gray level images only.

—  Opening by reconstruction [4]: This filter preserves all connected components
that are not totally removed by a binary erosion by a structuring element of
size h. This opening has a size-oriented simplification effect: in the case of
gray level images, it removes the bright components that are smaller than the
structuring element. By duality, a closing by reconstruction can be defined. Its
simplification effect is similar to that of the opening but on dark components.

—  Grray level area opening [14]: This filter is similar to the previous one except
that it preserves the connected components that have a number of pixels larger
than a limit k. It is also an opening which has a size-oriented simplification
effect, but the notion of size is different from the one used in the opening by
reconstruction. By duality an area closing can be defined.

—  h — max operator: The criterion here is to preserve a connected component of
the binary image X, if and only if this connected component hits a connected
component of the binary image X, 5. This is an example where the criterion
involves two binary images obtained at two different threshold values. The
simplification effect of this operator is contrast-oriented in the sense that it
eliminates image components with a contrast lower than h. Note that, the h —
max 1s an operator and not a morphological filter because it is not idempotent.
By duality, the h — min operator can be defined.
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3.2. COMPLEXITY CRITERION

In [8], a connected operator dealing with the complexity of objects is proposed. The
idea is to define a binary connected operator that removes complex binary connected
components. To this end, the simplification criteria relies on the ratio between the
perimeter P and the area A. Intuitively, it can be seen that if a connected component
has a small area but a very long perimeter, it corresponds to a complex object.

Definition 3.1 (Complexity criterion)
C="P/A (3)

The complexity criterion is not an increasing criterion because if the set X is
included in the set Y, there is a priori no relation between their complexity. The
reconstruction of the gray level function can therefore be achieved by the formula
of Eq. 1. However, as discussed in [8], this reconstruction process severely decreases
the contrast of the image. In practice, the reconstruction defined by Eq. 2 leads to
more useful results and is assumed to be used in the sequel.

The complexity operator is idempotent, anti-extensive but non increasing. It
is therefore not a morphological filters in the strict sense. In practice, this opera-
tor removes complex and bright objects from the original image. A dual operator
dealing with the complexity of dark objects can be easily defined. An example of
processing can be seen in Fig. 3. The original image is composed of various objects
with different complexity. In particular the text and the texture of the fish can be
considered as being complex by comparison with the shape of the fish and the books
on the lower right corner. Fig. 3.B shows the output of the complexity operator.
On this result, a dual complexity is applied (Fig. 3.C). This can be considered as an
alternated operator. As illustrated on this example, the complexity operators effici-
ently remove complex image components (text and texture of fish) while preserving
the contours of the objects that have not been eliminated. In both cases, the filters
have removed objects of complexity higher that 1 in the sense of Eq. 3. Note that
the simplification effect is not size-oriented, because the filters have removed large
objects (the “MPEG” word) as well as small objects (the texture of the fish). The
simplification is not contrast-oriented as can be seen by the difference in contrast
between “Welcome to” and “MPEG” which have been jointly removed.

3.3. MoTioN CRITERION

In this section, a new connected operator allowing to deal with the motion informa-
tion in an image sequence is introduced. The idea is to define a binary connected
operator removing binary connected components that do not undergo a given mo-
tion and to extend this operator for gray level images by the scheme of Fig. 2.

Consider two consecutive frames and assume a translation as motion model (see
Fig. 4). Suppose, for instance, that we would like to eliminate all connected com-
ponents of the current (binary) frame (at time 7') that do not undergo a given
translation (V;, V,). A simple solution consists in looking in the next frame (at time
T+ 1) at the location defined by the translation if the same connected component is
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B) Result of the complexity C) Result of the dual comple-
operator xity operator

A) Original Image

Fig. 3. Example of processing with the complexity connected operator

present. If this is the case, the connected component of the current frame is retained
otherwise it is removed.

Original frame T

Bad matching
< > i

o Filtered frame T

Original frame T+1

O |2
v
Translation '

Good matching

Fig. 4. Binary motion connected operator

In practice, the matching between two connected components is not perfect and
a given tolerance of mismatch M (measured in % of matching pixels) has to be
accepted. The gray level operator is generated from the binary operator by using
the scheme of Fig. 2. Note that here also, the motion criterion i1s not increasing.
The gray level operator has the ability to remove bright objects from the scene that
do not undergo a given motion.

Several filtering results can be seen in Fig. 5. The large bright boat on the left
side of the picture moves following a translation (V, V,) = (19,0). Fig. 4 allows the
estimation of the influence of the motion (V,,V,) and mismatch M parameters. As
can be seen in the central column of Fig. b, the filter has preserved the large boat
and has removed most of the remaining bright image components. In this figure one
can also see that a proper mismatch is M ~ 88%.

Fig. 6 illustrates the results obtained with the connected operator followed by its
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B) Original image T + 1

c.1)
(Va, Vy) = (18,0), M = 96%

C.3)
(Va, V) = (20,0), M = 96%

D.1) D.2) D.3)
(Vo, Vy) = (18,0), M = 88% (Vo, Vy) = (19,0), M = 88% (Va, Vy) = (20,0), M = 88%

E.1) E.2) E.3)
(Vo, Vy) = (18,0), M = 82% (Vo, Vy) = (19,0), M = 82% (Va, Vy) = (20,0), M = 82%

Fig. 5. Example of processing with the motion connected operator

dual for four values of the translation. Now the simplification deals with bright as
well as dark objects. As can be seen, the connected operator allows to extract the
small boat (A:(Vy, Vy) = (0,0)), the background (C:(V;, V) = (10, 0)) and the large
boat (D:(Vg, Vy) = (19,0)). Moreover, it does not extract any particular objects if
no objects follows a given motion (B:(V,,V,) = (5,0)).
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C) (mevy) = (1070) D) (V$7Vy) = (1970)

Fig. 6. Example of processing with the motion connected operator (M = 88%)

4. The Connectivity

In discrete space, the notion of connectivity usually relies on the definition of a
local neighborhood system that defines the set of pixels that are connected to a
given point. In practice, 4-, 6- and 8-connectivity are the most popular choices. In
the examples of the previous section, a 4-connectivity was used. The objective of
this section is to discuss some possible extensions of the connectivity notion and its
influence on the resulting set of connected operators.

4.1. CLASSICAL CONNECTIVITY

The notion of connectivity has been introduced in morphology [12] starting from the
following definition:

Definition 4.1 (Connectivity class) A connectivity class C is defined on the sub-
sets of a set F when:

1.0eCandvVzekl, {z} €C

2. For each family {C;} of C, NC; Z0=UC; €C

It was shown in [12] that this definition is equivalent to the definition of a family
of connecled pointwise openings {v,,x € F} associated to each point of E:

Theorem 4.2 (Connectivity characterized by openings) The definition of a
connectivity class C is equivalent to the definition of a family of openings {v,,z € E'}
such that:

LYzekl v.({z}) ={z}
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2.V e yeE and X CE, v.(X) and v, (X) are either equal or disjoint.
3 VeeFand XCF,z¢ X = 7,(X)=0

Intuitively, the opening 75 (X) is the connected component of X that contains x.
Based on this definition of the connectivity, a generalization was proposed in [12].
It relies on the definition of a new connected pointwise opening:

vo(X) = 7 (8(X)[ )X ,ifz e X and ve(X)=0,ifeg X (4)

where 6 1s an extensive dilation. It can be demonstrated that this new function is
indeed a connected pointwise opening and therefore defines a new connectivity. This
connectivity is less “strict” than the usual ones in the sense that it considers that
two objects that are close to each other (that is they touch each other if they are
dilated by 8) belong to the same connected component. This generalization can lead
to interesting new connected filters, however, in order to have a flexible tool one
would like also to define connectivities that are more “strict” that the usual ones,
that is they should split what is usually considered as one connected component. In
[8] such a tool was proposed. However, it was shown that the resulting notion is not
a real connectivity. The purpose of the following section 1s to discuss this issue of
“strict” connectivity.

4.2, “STRICT” CONNECTIVITIES AND PSEUDO-CONNECTIVITIES

The intuitive idea of “strict” connectivity relies on the segmentation of the binary
connected components. Indeed, the objective is to split the connected components
into a set of elementary shapes that are going to be processed separately. The con-
nected operator will take individual decision on each elementary shape. Ideally, the
shapes should correspond to our perception of the main parts of the object.

To our knowledge, two attempts have been reported in the literature to define
“strict” connectivities.

—  Segmentation by openings [9]: Given a family of connected poiniwise openings,
vz, and an opening v, a new family of connected pointwise opening, o, can be
created by the following rule:

oo(X) = 9(X), if e €9(X)  and  0u(X) = {a},if 2 € X\ 1(X) (5)

and as usual 0,(X) = 0,ifz ¢ X. It is shown in [9] that o, is actually a
connected pointwise opening and therefore defines a connectivity. Intuitively,
this connectivity considers that the connected components of a binary sets are
made of the connected components of its opening by 7 and the points that are
removed by the opening are considered as isolated points, that are connected
components of size one.

Even if this solution is theoretically sound, in practice it turns out that this
way of segmenting the connected components leads to a loss of one of the main
features of connected operators. In practice, connected operators are used be-
cause they can simplify while preserving the shape information of the remaining
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image components. Suppose we use an area opening of size larger than one with
the connectivity defined by the connected pointwise opening of Eq. 5. The fil-
ter will eliminate all the isolated points (area equal to one) and all the small
connected components resulting from the opening. The shape information of
the remaining components will not be preserved because most of the time, this
shape information relies on the set of isolated points.

—  Segmentation by watershed [8]: The idea is to rely on classical binary segmen-
tation tools (see [7] and the references herein). One of the simplest approaches
consists in computing the distance function Distx on the binary set X and
in computing the watershed of —Distx. The watershed transform associates
to each minima of —Distx a region called a catchment basin. Note that the
minima of —Distx are the maxima of the distance function, in other words,
they correspond to the ultimate erosions of the set.

If this segmentation driven by the ultimate erosion creates too many connected
components, the number of connected components can be defined by the number
of connected components in the classical sense of an erosion of size [ of X. This
can be implemented via the segmentation of a thresholded version of the distance
function:

'DXJ = —(DiStX /\l) (6)

The parameter [ of Dx; allows to go progressively from the classical connecti-
vity when [ = 0 to the extreme case where the number of connected components
are defined by the number of ultimate erosions when [ = co. Note that one can
easily integrate within the same framework the loose connectivity described by
the connected pointwise opening v, of Eq. 4 by taking into account the distance
function of the background (see [8] for more details).

Let us define CBL(X) the transformation that assigns to x the catchment basin
of the function Dx ; that contains z. Consider now the operator:

CCL(X) = CBL(X)(X,ifz e X and CCL(X)=0,ifx ¢ X (7)
This transformation reduces to the classical connected pointwise opening v,
when { = 0. For [ > 0, it only creates a pseudo-connectivity. Indeed, in that
case, all conditions of theorem 4.2 are met except one: CClx i1s not increasing
and therefore not an opening. This is a drawback, but, using the watershed as
segmentation tool, our main concern is to segment the component of X in a
small number of regions and to keep as much as possible the contour information
of X, because it is one of the main attractive properties of connected operators.
Moreover, in practice for small values of [, this theoretical problem does not
prevent the creation of useful operators.

Fig. 7 illustrates several examples of area open-close [14] with several notions of
connectivity. The classical area open-close (4-connectivity) can be seen in Fig. 7.B.
This example illustrates a typical problem of connected operators called leakage.
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M E'i-'.!;!

WORLI

C) Connectivity obtained by D) Connectivity obtained
B) Classical 4-connectivity segmentation by opening (ope- by segmentation by watershed
ning by a square of 3*3) (I=1)

Fig. 7. Example of area filtering (open-close) with “strict” connectivity, area parameter A = 100

Small objects like the letters of the “MPEG4” word should have been removed. This
is however not the case for the “E” and the “G” because there is a thin connection
between these letters and the shirt of the man. Using the classical connectivity, the
operator processes the shirt and the “E” and “G” letters as a single object and the
connected operator reconstructs “too much”. Fig. 7.C shows the result obtained by
the “strict” connectivity of Eq. 5. As can be seen, the contour preservation property
is lost. Finally, Fig. 7.D gives the result obtained by the “strict” pseudo-connectivity
of Eq. 7. The leakage problem has disappeared and the contour preservation property
is not lost. In this example, thin connections between components are broken and
the final result corresponds more to a “natural” size-oriented simplification.

4.3. ROBUST PSEUDO-CONNECTIVITY

As discussed in [8], the fact that CC. is not increasing leads to a lack of robustness
in the definition of the connectivity. In practice, this phenomenon is a problem for
large values of [. This drawback can be seen in Fig. 9.A. This example correspond to
the same filter as the one of Fig. 7.D but with { = co. In other words, all connected
components are segmented and the number of regions is defined by the ultimate
erosions. The lack of robustness leads to the apparition of false contours. In order
to improve the robustness of pseudo-connectivity one can either modify the segmen-
tation strategy or the signal to segment. The first option seems difficult to achieve
without loosing the contour preservation property of the operator. Therefore, we
will focus on the second option.
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B) Distance Distx

MPE{4
WOKLD

C) Binary components of a clo-
sing by reconstruction ¢”°¢(X)

D) Distance Distyrec(x)

Fig. 8. Comparison between the distance function of X and of its closing by reconstruction

Lprec()()

A careful analysis of the segmentation results shows that a large part of the lack
of robustness of the segmentation comes from small holes in the connected compo-
nents. This is illustrated in Fig. 8. Fig. 8.A shows an thresholded version of an
image and Fig. 8.B presents the corresponding distance function. As can be seen,
the distance function is rather complex and, because of the presence of small holes
within the connected components, the distance function possesses a large number
of regional maxima. As a result, a large number of connected components will be
created by the segmentation. This problem can be partially overcome if the distance
function is computed not on the original binary image X but on the result of a clo-
sing by reconstruction ¢"°°(X) (or an area closing). Fig. 8.C shows an example of
closing by reconstruction of a dilation with a structuring element of size 5*5. The
effect of this closing is to fill the small holes inside the connected components. As
a result, the distance function of ¢"¢(X) (Fig. 8.D) is much simpler and involves
in particular a reduced number regional maxima. The segmentation resulting from
this distance function Dist,rec(x) corresponds to a more natural decomposition of
the connected components.

The filtering results obtained following this approach are illustrated in Fig. 9.
The 1image on the left side gives an example of simplification with an area open-close
filter when the segmentation has been done on Distx (I = o0), whereas the image
on the right side shows a similar processing but the segmentation has been done on
Dist rec(xy. In this last example [ = oo, therefore the segmentation is also driven by



EXTENSIONS OF CONNECTED OPERATORS 13

A) Connectivity defined by the  B) Connectivity defined by the
segmentation of Distx, segmentation of Distyrec(x),

(1= o0) (1= c0)

Fig. 9. Comparison between the pseudo-connectivity and its robust version (area open-close,
A = 100)

the ultimate erosion. However, the simplified image does not involve false contours
as previously. We are still dealing with a pseudo-connectivity but its definition is
more robust.

5. Conclusions

In this paper, two lines of generalization of connected operators have been presented
and discussed. The first generalization deals with the simplification criterion. A
general scheme relying on binary connected operators can be used to create a large
number of new operators. Complezity and Motion criteria have been presented and
discussed. The operator resulting from the first criterion allows an efficient sepa-
ration of simple objects from complex objects. One can imagine a large number of
applications for this operator, one of the most interesting one being segmentation-
based representation and coding of images. Indeed, for this kind of application, it
is important to identify the objects that can be indeed efficiently represented by a
contour-texture approach. The second operator extracts or eliminates objects de-
pending on their motion. Here also a large number of applications can be foreseen,
in particular motion estimation and segmentation.

The second generalization concerns the connectivity. We have shown how to mo-
dify the notion of connectivity to make it either more or less strict than the usual
one. The interest of having a more strict notion has been illustrated. It allows in
particular to solve the “leakage” problem of usual connected operators. However, it
was shown that this generalization leads only to a pseudo-connectivity. This theo-
retical problem does not prevent the creation of useful operators, but is a drawback
if very strict (I > 1) connectivities are of interest. If very strict connectivities are
necessary, we have shown how to define them with more robustness.

In the future, we will focus on the investigation of the class of processing tools
that can be generated from these new connected operators: alternated operators,
alternating sequential operators, pyramids, etc.
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