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ABSTRACT

This paper' deals with the notion of connected operators. These operators are becoming popular in image
processing because they have the fundamental property of simplifying the signal while preserving the contour
information. In a first step, we recall the basic notions involved in binary and gray level connected operators.
Then, we show how one can extend and generalize these operators. We focus on two important issues: the
connectivity and the simplification criterion. We will show in particular how to create connectivities that are
either more or less strict than the usual ones and how to build new criteria.

KEYWORDS: Mathematical morphology, Connected operators, Nonlinear filtering, Complexity criterion,
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1 INTRODUCTION

The first connected operators reported in the literature are known as opening by reconstruction. They appeared
experimentally® for binary images. Initially, they consisted in eroding a binary image by a connected structuring
element and in reconstructing all connected components that had not been totally removed by the erosion. It was
called opening because it is an increasing, anti-extensive and idempotent process. It therefore possesses the three
fundamental properties of an algebraic opening. Moreover, it was called by reconstruction because 1t involves
a reconstruction process of the connected components that have not been totally removed by the erosion. On
this very simple example, one can see that the binary opening by reconstruction has the fundamental property of
simplifying the signal while preserving the contour information. Indeed, the connected components of the binary
image are either totally eliminated (the simplification effect) or perfectly preserved (the contour preservation).

This original idea was fruitful because it led to geodesic operators on sets? , to markers for numerical fune-
tions® , to multi-resolution decomposition with filters by reconstruction’ , to the concept of dynamics' | to area
opening!! . Moreover, an intensive work has been done on the efficient implementation of these transformati-

ns'? . These transformations by reconstruction involved not only openings but also closings, alternated filters or
even alternating sequential filters. They are becoming very popular because, on experimental bases, they have
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been claimed to simplify the image while preserving contours. This rather surprising property makes them very
attractive for a very large number of applications such as noise cancellation, segmentation, pattern recognition,
ete.

The study reported in'%® revealed that filters by reconstruction belong to a larger class of transformation called
connected operators that have the fundamental property of interacting with the signal by means of connected
components (in the case of binary images) or of flat zones (in the case of gray level images). This viewpoint
opens the door to various generalization of connected filters. The objective of this paper is to discuss two lines
of generalization. The first one deals with the simplification criterion and we will propose a new criterion called
complezity useful for several applications. The second generalization deals with the connectivity. This notion is
closely related to the definition of elementary objects in the scene. The connectivity can be modified to eliminate
some drawbacks of connected filters for certain types of images or applications. We will discuss connectivities
that are either more or less strict than the “usual” connectivity used in image processing.

The organization of this paper is as follows: section 2 is devoted to the notion of binary and gray level
connected operators. Section 3 deals with the complexity criterion, whereas section 4 focuses on the notion of
connectivity. Finally, section 5 presents the conclusions and discusses possible extensions of this work.

2 BINARY AND GRAY-LEVEL CONNECTED OPERATORS

The original idea of binary connected operators relies on the separation of an analysis step and of a decision
step as illustrated in Fig. 1. The first one assesses a characteristic of a binary connected component following a
given criterion, whereas the second one states whether or not a connected component has to be preserved.

connected component connected component of the
removed by the operator background removed by the operator

Decision

Analysis

Input binary image Output binary image

Figure 1: Example of binary connected operator
In'®®  the concept of binary connected operators is formally defined as follows: first, a connectivity has to
be defined. In the discrete case, this step generally reduces to the definition of a local neighborhood system
describing the connections between adjacent pixels. The classical choices involve 4, 6 or 8 connectivity, however,
in section 4, we will come back to this notion. Once the connectivity has been selected, the notion of connected
operators can be defined as follows:

DEFINITION 2.1 (BINARY CONNECTED OPERATORS). A binary operator ¢ is connected when for any binary
image X, the symmetrical difference X \ ¢(X) is exclusively composed of connected components of X or of its
complement X°.

This is exactly the case of the binary opening by reconstruction which acts only by preserving or removing con-
nected components. The extension of the notion of binary connected operators to gray level connected operators
relies on the concept of partition'®® . Note that, the extension cannot be done directly because the connectivity



has no equivalent in the case of gray level functions. Let us recall that a partition of the space E is a set of
connected components {A4;} which are disjoint and the union of which is the entire space. Each A; is called a
partition class. Moreover, a partition {A;} is said to be finer than another partition {B;} if any pair of points
belonging to the same class A; also belongs to a unique partition class B;. Consider now a binary image and
define its associated partition as the partition made of the connected components of the binary sets and of their
complements. The definition of connected operators can be expressed with associated partitions:

THEOREM 2.2 (BINARY CONNECTED OPERATORS VIA PARTITION). A binary operator ¢ is connected if and
only if, for any binary image X, the associated partition of 4)(X) is less fine than the associated partition of X.

The concept of gray level connected operators can be introduced if we define a partition associated to a
function. To this end, the use of flat zones was proposed in'%® . The set of flat zones of a gray level function
f is the set of the largest connected components of the space where f is constant (note that a flat zone can be
reduced to a single point). It can be demonstrated!'® that the set of flat zones of a function constitutes a partition
of the space. This partition is called the partition of flat zones and leads to the following definition:

DEFINITION 2.3 (GRAY LEVEL CONNECTED OPERATORS). An operator U acting on gray level functions is
connected if, for any function f, the partition of flat zones of V(f) is less fine than the partition of flat zones

of f.

There are several ways of creating gray level connected operators. The simplest one consists in extending
a binary connected operator. Indeed, as shown in>%? | any binary operator can generate a gray level operator
by threshold decomposition and stacking. This procedure is illustrated in Fig. 2. The threshold decomposition
generates one binary image X for each possible gray level value A, that is 2V binary images if the gray levels
are quantized with N bits. Note that each binary image X, is associated to a specific gray level A. Each binary
image is processed by a binary connected operator ¢». Finally, the stacking consists in reconstructing a gray level
image ¢ = ¥(f) from the set of binary images ¥(X}):

g=0()=\/([] (X)) (1)

Note that if the binary connected operator 1 is increasing, the stacking can be simplified:

g="0(f) = \/(¢(X2) (2)

A

Following this procedure, it can be shown!'®® that the resulting gray level operator ¥ is a connected operator
because the partition of flat zones of f is always finer than the partition of flat zones of ¥(f).
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Figure 2: Example of construction of gray level connected operator from a binary connected operator

|

The processing structure illustrated in Fig. 2 explains why gray level connected operators simplify while
preserving the contour information. Indeed, as in the case of binary connected operators, a binary decision



process states whether a flat zone has to be preserved or removed. Moreover the decision process is separated
from the reconstruction process. Even if the scheme of Fig. 2 is not the only way to create gray level connected
operators, in the sequel we will focus on this approach.

This way of creating connected operators opens the door to several generalization. In this paper, we will focus
on two points: first, the analysis block of Fig. 1. As can be seen, by modifying the criterion that is assessed in this
block, a large set of binary as well as gray level connected operators can be created. Second, the connectivity that
is defined during the thresholding operation in Fig. 2. This thresholding operation generally defines the connected
components of the binary image to be processed by the binary operator. It therefore defines the elementary image
objects on which the decision is going to interact. A modification of the meaning of the connected components
after thresholding leads to a different notion of elementary objects.

3 FILTERING CRITERION

3.1 Classical criteria

As examples, let us briefly recall the classical criteria used for the opening by reconstruction, the area opening
and the h-maxz operator. The first two operators can deal with binary (scheme of Fig. 1) as well as gray level
images (scheme of Fig. 2) whereas the last one is devoted to gray level images only.

e Opening by reconstruction: As discussed in the introduction, this filter preserves all connected components
that are not totally removed by a binary erosion by a structuring element of size h. This opening has
a size-oriented simplification effect: in the case of gray level images; it removes the bright components
that are smaller than the structuring element. By duality, a closing by reconstruction can be defined. Its
simplification is similar to that of the opening but on dark components.

o Gray level area opening'': This filter is similar to the previous one except that it preserves the connected
components that have a number of pixels larger than a limit A. It 1s also an opening which has a size-oriented
simplification effect, but the notion of size is different from the one used in the opening by reconstruction.
By duality an area closing can be defined.

e h — mazx operator: The criterion here is to preserve a connected component of the binary image X, if
and only if this connected component hits a connected component of the binary image X, ;5. This is an
example where the criterion involves two binary images obtained at two different threshold values. The
simplification effect of this operator is contrast-oriented in the sense that it eliminates image components
with a contrast lower than h. Note that, the A — max is an operator and not a morphological filter because
it i1s not idempotent. By duality, the A — min operator can be defined.

3.2 Complexity criterion

In this section, a new connected operator dealing with the complexity of objects is introduced. The idea 1s to
define a binary connected operator that removes complex binary connected components. To this end, we propose
to measure for each connected component the ratio between its perimeter P and its area A.

Complexity criterion = C = P/ A (3)

Intuitively, 1t can be seen that if a connected component has a small area but a very long perimeter, it



corresponds to a complex object. For instance in the case of a circle of area A, the complexity is C = Qﬁ/\/z
and for a square of the same area A, then C = 4/\/Z Both objects have the same area, but the circle is more
simple than the square.

The complexity criterion is not an increasing criterion because if the set X is included in the set Y, there
s @ priori no relation between their complexity. The reconstruction of the grey level function can therefore be
achieved by the formula of Eq. 1. However, in practice, this reconstruction process severely decreases the contrast
of the image. This phenomenon is illustrated in Fig. 3 on a 1D signal. One can see the original image, its threshold
decomposition and the decision taken by the binary complexity operator on each level. As the complexity criterion
is not increasing, the decision taken at a given level does not depend on the decision taken on lower levels. If
the reconstruction of the gray level image is done following Eq. 1, the gray level value of the simplified signal
corresponds to the level just below the lowest level where the signal has been declared to be “complex”. This
rule results in a sever loss of contrast. If the reconstruction is defined by Eq. 2, the restitution level is the highest
level where the signal was “simple” and the contrast is better preserved. In practice, this second rule leads to
more useful results. Finally, note that both reconstruction techniques lead to gray level connected operators.
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Figure 3: Comparison of reconstruction of the gray level image following equations 1 (by Min) and 2 (by Max)

The complexity operator is idempotent, anti-extensive but non increasing. It is therefore not a morphological
filters in the strict sense. In practice, this operator removes complex and bright objects from the original image.
A dual operator dealing with the complexity of dark objects can be easily defined.

An example of processing can be seen in Fig. 4. The original image is composed of various objects with
different complexity. In particular the text and the texture of the fish can be considered as being rather complex
by comparison with the shape of the fish and the books that are on the lower right corner. On the right side
of Fig. 4, one can see the output of the complexity operator as well as its residue. The residue is the difference
between the operator input and output and shows what has been removed by the operator. Finally, on the output
of the complexity operator, a dual complexity is applied (second row of Fig. 4). This can be considered as an
alternated operator. As illustrated on this example, the complexity operators efficiently separate complex image
components (text and texture of fish) while preserving the contours of the objects that have not been removed.
In both cases, the filters have removed objects of complexity higher that 1 in the sense of Eq. 3. Note that the
simplification effect is not size-oriented, because the filters have removed large objects (the “MPEG” word) as
well as small objects (the texture of the fish). The simplification is not contrast-oriented as can be seen by the
difference in contrast between “Welcome to” and “MPEG” which have been jointly removed.

Based on the original operator ['y, and its dual @, a large set of operators can be created. Let us mention in

particular:



e the alternated operator ®,I'; illustrated in Fig. 4 and its dual Iy,

e the alternating sequential operator: I'p®pTp_1Pp_1 - - [1Pq,

e Multiresolution decompositions™ %8 .

Complexity operators are useful in a large number of applications where complex objects have to be processed
differently from simple objects, involving in particular image analysis task and segmentation-based coding. In
this last case, it is very important to be able to select the image components that are more efficiently coded by
their contour than by the pixels of its interior. This selection criterion is exactly the complexity criterion that is
proposed in this paper.

Welcome to

MPEG

Original image Result of the complexity operator Residue

Result of the dual complexity operator Residue

Figure 4: Example of processing with the complexity connected operator

4 THE CONNECTIVITY

In the scheme of Fig. 2, the definition of the connectivity is implicitly done in the thresholding block. Indeed,
after this first step, the various connected components are assumed to be known and will be processed by the
binary connected operators. In discrete space, the notion of connectivity usually relies on the definition of a
local neighborhood system that defines the set of pixels that are connected to a given point. In practice, 4-,
6- and 8-connectivity are the most popular choices. In the examples of Fig. 4, a 4-connectivity was used. The
objective of this section is to discuss one possible line of extension of the connectivity notion and its influence on
the resulting set of connected operators.



4.1 Classical connectivity

The notion of connectivity has been introduced in morphology?® starting from the following definition:

DEFINITION 4.1 (CONNECTIVITY CLASS). A connectivity class C is defined on the subsets of a set E when:

1.0eCandVzekl, {z} €C
2. For each family {C;} of C, NC; #0=C;€C

It was shown in® that this definition is equivalent to the definition of a family of connected pointwise openings
{7z, 2 € E} associated to each point of E:

THEOREM 4.2 (CONNECTIVITY CHARACTERIZED BY OPENINGS). The definition of a connectivity class C is
equivalent to the definition of a family of openings {v,,x € E} such that:

LY ee B () = ()
2. Ve yeFE and X CE, v.(X) and v, (X) are either equal or disjoint.
3 VeeFand XCFE, z¢ X = 7,(X)=0

Intuitively, the opening v5(X) is the connected component of X that contains z. Based on this definition
of the connectivity, a generalization was proposed in® . It relies on the definition of a new connected pointwise
opening

vp(X) = 7 (8(X)[ )X ,ifr € X and ve(X)=0,ifz ¢ X (4)

where § is an extensive dilation. It can be demonstrated that this new function is indeed a connected pointwise
opening and therefore defines a new connectivity. This connectivity is less “strict” than the usual ones in the sense
that it considers that two objects that are close to each other (that is they touch each other if they are dilated
by &) belong to the same connected component. This generalization can lead to interesting new connected filters,
however, in order to have a flexible tool one would like also to define connectivities that are more “strict” that
the usual ones, that is they should split what is usually considered as one connected component. The purpose
of the following section is to define such a tool and to present it in a framework where one can progressively go
from strict connectivity to loose connectivity.

4.2 From loose connectivity to strict pseudo-connectivity

Let us describe the intuitive idea of our generalization on the example of Fig. 5. This figure shows a binary
image resulting from the thresholding of the image of Fig. 4 and its 4-connected components. There are 42
connected components. As can be seen, the main part of the fish is merged with its head and with some part of
the books below it. Intuitively, one would like to segment this connected component and process separately each
of 1ts main parts.

The definition of a “strict” connectivity leads to the segmentation of the binary connected components. This
segmentation can naturally be done by classical binary segmentation tools (see® and the references herein). One of
the simplest approaches consists in computing the distance function Distx on the binary set X and in computing
the watershed of —Distx. The watershed transform associates to each minima of —Distx a region called a
catchment basin. Note that the minima of —Distx are the maxima of the distance function, in other words, they
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Figure 5: Binary image (left) and its 4-connected components (right)

correspond to the ultimate erosions of the set. This approach is illustrated on Fig. 6 and results in the creation of
48 connected components. As can be seen the connected component corresponding to the fish has been segmented
in five different connected components.
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Figure 6: Distance function —Distx (left) and the resulting connected components (right)

If this segmentation driven by the ultimate erosion creates too many connected components, the number of
connected components can be defined by the number of connected components in the classical sense of an erosion
of size { of X. This can be implemented via the segmentation of a thresholded version of the distance function:

'DXJ = —(DiStX /\l) (5)

An example can be seen in Fig. 7. The distance function has been thresholded at 3 and produces 46 connected
components. Now the fish has been segmented in three components. The parameter [ of Dx; allows to go
progressively from the classical connectivity when [ = 0 to the extreme case where the number of connected
components are defined by the number of ultimate erosions when [ = co.

Note that the approach can be easily modified to include within the same framework the “loose” connectivity
described by the connected pointwise opening v, of Eq. 4. Indeed, consider the distance function of the background
Distxc and create the function Dx = Distx — Distxc (see Fig. 8). This function defines all the possible erosions
and dilations with the structuring element used to define the distance. The segmentation by watershed of the
thresholded version of Dx defined as in Eq. 4 by:

Dxi=—(Dx \1) (6)

leads to a definition of the connected components of X which is:
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Figure 7: Thresholded distance function —Dx 3 (left) and the resulting connected components (right)

e equal to the classical connectivity C if [ = 0,
e looser than C if { < 0: two components are connected if their distance i1s smaller that [,

e more strict than C if [ > 0: one component is segmented by the watershed algorithm in a number of
connected components equals to the number of connected components (in the sense of C) of its erosion of
size [.

Distance function of the back-
ground: Distxe

Distance function of X: Distx Global distance function: Dx

Figure 8: Distance functions

Let us define CBL(X) the transformation that assigns to z the catchment basin of the function Dx; that
contains z. Consider now the operator:

cc!

xr

(X)=CB(X)(X,ifz e X and CCUX)=0,ifx ¢ X (7)

This transformation reduces to the classical connected pointwise opening 7, when [ = 0. Moreover, if [ < 0, it 1s
equal to the connected pointwise opening v, defined by Eq. 4. Therefore, for { < 0, the operator CClx defines a
real connectivity. This 1s however not the case for [ > 0. Indeed, in that case, all conditions of theorem 4.2 are
met except one: CClx is not increasing and therefore not an opening. A counterexample can be seen in Fig. 9. For
! > 0, The operator CClx almost defines a connectivity that will be called a pseudo-connectivity in the following.
This is a drawback, but, using the watershed as segmentation tool, our main concern is to segment the component
of X in a small number of regions and to keep as much as possible the contour information of X, because it is
one of the main attractive properties of connected operators. Moreover, it can be shown that the regions of the
space where CClx is actually not increasing increases with the value of . For small values of [, this theoretical
problem does not prevent the creation of useful operators.

Fig. 10 illustrates several examples of area opening'' with several notions of connectivity. The classical area
opening can be seen in Fig. 10.c and .f for two different values of the area parameter. In both cases, small
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Figure 9: Counterexample: Y C X but for [ > lj the connected components of Y are not included in the connected
components of X
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Figure 10: Example of area filtering with loose connectivity and strict pseudo-connectivity



bright objects have been removed. One can see one drawback of these filters: small objects like the letters of the
“MPEG” word have been removed and merged with surrounding areas. Moreover, their gray level values depend
on the surrounding regions. As can be seen, these objects have not been totally removed from the image because
the letters have been connected between themselves and with the shirt of the man. This is the classical problem
of “leakage” of connected operators. This problem is solved if the pseudo-connectivity is used. Fig. 10.d and
.g present the same area filter but with a threshold value of [ = 1 on the distance function. In this case, thin
connections between components are broken and the final result corresponds more to a “natural” size-oriented
simplification. Fig. 10.b and .e show the case where | = —2. Here, the effect is to merge connected components
if they are close to each others.

The example of Fig. 11 illustrates the problems that appear if a high threshold value on the distance function
is used. As can be seen, the contour preservation property is lost for certain objects.

a) Area = 100 b) Area = 800

Figure 11: Area opening with pseudo-connectivity with { =7

Finally, the last example of Fig. 12 shows two examples of simplified alternating sequential operators. With
the notations of the end of section 3.2, the operators are defined by: I'y®p1'y/2®p 2. The figure compares area-
and complexity-oriented simplification with the pseudo-connectivity obtained with /[ = 1. As can be seen, one
image actually corresponds to large objects of the scene, while the second one only preserves simple objects.

a) Area b) Complexity

Figure 12: Area- and complexity-oriented simplification with pseudo-connectivity with [ =1



5 CONCLUSIONS

In this paper, two lines of generalization of connected operators have be presented and discussed. The first
generalization deals with the simplification criterion. A general scheme relying on binary connected operators
can be used to create a large number of new operators. A complexity criterion has been proposed. The resulting
operator allows an efficient separation of simple objects from complex objects. The complexity is an example of
non increasing criterion and we have discussed its influence of the construction of the operator. This example can
be viewed as a basis for the construction of new filtering criteria in the future.

The second generalization concerns the connectivity. We have shown how to modify the notion of connectivity
to make it either more or less strict than the usual one. The interest of having a more strict notion has been
illustrated. It allows in particular to solve the “leakage” problem of usual connected operators. However, it was
shown that this generalization leads only to a pseudo-connectivity. This theoretical problem does not prevent the
creation of useful operators, but is a drawback if very strict (! > 1) connectivities are of interest. In the future,
we will focus on modifications of the approach to deal with very strict pseudo-connectivity.
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