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Abstract— The generation of synthetic genomic sequences
using neural networks has potential to ameliorate privacy and
data sharing concerns and to mitigate potential bias within
datasets due to under-representation of some population groups.
However, there is not a consensus on which architectures,
training procedures, and evaluation metrics should be used
when simulating single nucleotide polymorphism (SNP)
sequences with neural networks. In this paper, we explore the
use of Generative Moment Matching Networks (GMMNs) for
SNP simulation, we present some architectural and procedural
changes to properly train the networks, and we introduce an
evaluation scheme to qualitatively and quantitatively assess
the quality of the simulated sequences.

I. INTRODUCTION

Genomic studies increasingly make use of large datasets
and biobanks composed of thousands to hundreds of thou-
sands of individual sequences. However, there are several
challenges when dealing with such personal genomes: first,
privacy restrictions can limit the scope of data sharing and
access. Second, some of these datasets are very large intro-
ducing difficulty in storage, transfer, and processing. Finally,
many of these datasets are highly imbalanced with extreme
overrepresentation of some population groups (commonly
European-descent individuals), and underrepresentation of
others, leading to models that perform poorly when faced
with individuals from underrepresented population groups
[1]. Effective simulation tools, such as generative neural
networks, can help to mitigate some of these challenges.
By sharing trained generative networks, new synthetic se-
quences can be created to train machine learning models
without the need to share the original sequences, (which
can be prohibitive due to their size or privacy). Furthermore,
through conditional synthesis (generation of sequences given
a desired phenotype or ancestry), bias within datasets or
biobanks can be partially removed by augmenting datasets
with simulated samples from underrepresented groups.

Modern biobanks used in GWAS and similar studies typi-
cally include sequences of single nucleotide polymorphisms
(SNPs). SNPs are the positions (less than 1%) within the
human genome that are known to change between individ-
uals. These positions (when biallelic) can be codified in a
binary system, with 0’s denoting the common variant, and
1’s the minority variant. The nature of the sequences needs to
be taken into account when designing generative networks:
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SNP sequences are sparse (they include many more 0s than
1s), high-dimensional, and commonly lack repetitive motifs.
This completely differs in nature from other common signals,
such as images or audio. The frequency distribution and
correlations between SNPs vary across population groups,
which can cause the techniques and treatments developed
using data from one group not to generalize well to other
population groups.

In this paper, we make use of a Generative Moment-
Matching Network [2] to generate realistic genotype se-
quences given a desired ancestry. GMMNs, described in
more detail in the following sections, are able to generate
synthetic data that match the statistical moments of real data.
This method has the same intent as other generative ap-
proaches, such as Generative Adversarial Network (GAN) [3]
or Variational Autoencoders (VAEs) [4]. However, GMMNs
can be easier to train than GANs or VAEs. Training a GAN
requires solving a commonly difficult min-max optimization
problem between two networks: a generator, and a discrim-
inator. Similarly, a VAE tries to minimize reconstruction
error and a KL-Divergence with two networks: an encoder
and a decoder (generator). While such approaches require
jointly training two networks, GMMNs require only training
one unique network (the generator), which can lead to
lower memory and computational requirements. In addition,
GMMNs do not need to observe the data directly (as GANs
or VAEs do), but instead can observe “sketches” (e.g. random
feature descriptors [5]) that capture the statistical properties
of the database as a whole. This allows for a privacy-
friendly setting and permits a more accessible data sharing
framework.

The contributions of this work are as follows: we introduce
two modifications to the GMMN framework, a binarization
step, and an iterative re-start of random projections, both
described in section 3, that allow for a correct training and
sequence simulation. Additionally, we propose two evalua-
tion schemes: a qualitative evaluation through dimensionality
reduction techniques, and a quantitative evaluation through
supervised machine learning based classifiers.

II. RELATED WORK

Generating realistic synthetic genotype sequences remains
a challenge, as there are several evolutionary (selection
and mutation) and demographic forces (drift) influencing
genomes. Accurate simulation models should provide re-
alistic allele frequency patterns and linkage disequilibrium
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(LD) profiles. There is an extensive literature of simulation
methods based on evolutionary models such as the Wright-
Fisher model [6]. Such techniques simulate recombination
and create synthetic descendants by using available ge-
netic sequences as ancestors. However, these models ig-
nore evolutionary forces including selection and mutation.
Coalescent simulation [7], [8] is a standard procedure to
generate artificial genotypes under various models, usually
seen as an extension of the classic Wright-Fisher model.
Examples of such include Hudson’s ms program [9] that
allows for mutation and migration within subpopulations,
and ms reimplementations with improvements for modern
datasets such as msprime [10], mbs [11], msms [12]. Because
these models simplify reality, each of them has their own
limitations, as the goal of any simulation tool is to find a
compromise between the accuracy and efficiency [13].

Recently, new data-driven deep learning based simulation
procedures have been introduced into the field – without
defining an explicit evolutionary and demographic model.
Connectionist approaches rely on learning models capable of
generating realistic genotypes. The first technique to simulate
SNP sequences from a population-based perspective was
a class-conditional VAE-GAN by Montserrat et al. [14],
which showed success on training local ancestry inference
techniques. Yelmen et al. generate realistic surrogates of
real genotype snippets with GANs and Restricted Boltzman
Machines (RBM) [15]. Battey et al. tested VAE for geno-
type simulation and showed scaling issues of the method
[16]. More recently, Geleta et al. introduced an ancestry-
conditional VAE model for realistic genotype simulation
[17], [18] with high-fidelity with respect to real genotype
entropy variation and LD patterns. Generative models, ad-
ditionally, provide a means for estimating meaningful low-
dimensional representations which can be used for geno-
type imputation, classification, and visualization [17]. While
being promising, such generative models do not provide
extensive evaluation procedures to properly determine the
quality of the simulated sequences. Some methods adapt
a utility-preserving evaluation [14] where the quality of
the sequences is assessed by their capacity to train neural
networks in downstream task. Other methods use first order
statistics or visualizations with a limited amount of dimen-
sionality reduction techniques [15], [17]. Therefore, a proper
procedure for simulation quality evaluation is still required.

III. PROPOSED METHOD
A. Generative Moment Matching Networks

GMMNs [2] are deep generative models able to generate
new samples that statistically resemble the training samples.
Such networks learn a mapping x̃ = g(z) from a known
distribution (typically Gaussian) into the data space; new
samples are generated by sampling random vectors from z ∼
N (0, I) and processing them through the network. GMMNs
are trained by minimizing Maximum Mean Discrepancy
(MMD) criterion, which is a frequentist estimator that tries
to determine if two sets of samples, X = {xi}N1 and
Y = {yi}N1 , (in this case real and fake sequences) come

from the same or different distributions. Specifically, MMD
can be represented as the mean squared difference between
two statistics:

ℓMMD2 =
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where µx = 1
N

∑N
i=1 ϕ(xi) is a statistic, or “sketch”,

computed on the samples X . If the statistics µx and µy are
similar, then the two datasets are likely to come from the
same distribution.

Taking ϕ as the identity function, the statistic µx is
equivalent to the sample mean, which for genotype sequences
represents the frequency of each SNP. Other choices of ϕ
can be used to capture higher order moments of the data
distribution. Namely, as specified in [2], the kernel trick can
be applied to obtain an infinite dimensional feature space that
can capture all moments of the data. However, this requires
computing a pairwise kernel distance with every training
sample for each batch during the training process, which can
be computationally expensive. Instead, we can use random
features [5] to approximate any kernel with a finite number
of dimensions. The random features are computed as ϕ(x) =
f(Wx), where f(·) is a non-linearity, and W is a random
projection matrix following some pre-specified distribution.
When the number of features (dimension of f(Wx)) tends
to infinity, the feature space tends to the reproducing kernel
Hilbert space of the actual kernel. The type of kernel that
is approximated depends on the distribution of W and the
activation function applied. In this work we make use of
ReLU random features which approximate the arc-cosine
kernel [19].

Note that in order to train the network, the actual real
genomic sequences do not need to be accessed, but just the
statistic, or sketch, µx is required. Typically, the sketch has
a dimension D with D ≪ NM , where N is the number of
samples, and M is the number of SNPs at each sequence.
This provides a more compact representation of the data
which is easier to share and to incorporate into privacy-
preserving pipelines. However, this advantage is lost if the
kernel trick is applied as in [2], where the actual samples are
required to compute the pairwise kernel distances.

B. Network Architecture

In this work, we perform ancestry conditional simulation
by training a different GMMN for each ancestry group. Each
GMMN is trained with a different sketch µ computed with
the data of the specific ancestry group. This differs from
other approaches were the ancestry label is provided as an
extra input to the network [14]. While training a different
network for each ancestry group can require a larger number
of parameters (as many networks need to be trained), it
provides a more flexible setting in scenarios where only the
data of one ancestry group needs to be shared by sharing
the specific trained network. For each ancestry-dependent
network, we use the same architecture: a linear layer of
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Fig. 1: GMMN with Random Features.

dimension 5000× 4096, followed by a ReLU activation and
a batch norm, followed by another linear layer of dimension
4096×5000, finishing with a binary quantizer. Each network
is trained with the MMD loss with their respective sketch
vectors, where the sketch of the real data is pre-computed to
save computing time.

The random features are implemented with a random
linear layer of dimension 5000 × 50000, sampled from a
Gaussian distribution, followed by a ReLU activation func-
tion. Note that the random linear layer that computed the
random features is not trained.

C. Output Binarization

Typically, generative networks output the simulated values
through a linear or sigmoid layer. However, when simulating
SNP sequences, only binary values are desired. Furthermore,
binarizing the data through direct thresholding is a non-
differentiable operator and does not allow the MSE loss
signal to backpropagate through the network. Therefore, a
differentiable alternative is required. In this work we make
use of the same approach as in [20] where a hard threshold
is applied in the forward pass (leading to binary simulated
sequences), but the backward pass is approximated as if a
scaled and shifted tanh operator was used during the forward
pass.

D. Random Features Re-start

In order to improve the quality of the simulation, we
propose the use of an iterative re-start strategy of the ran-
dom projections and sketch vectors. After a fixed number
of weight update steps or number of training epochs, the
random weights of the random feature projections are re-
sampled and the sketch vector of the training dataset is
recomputed. This allows us to improve the accuracy of the
simulation and avoids having the network overfit on the spe-
cific features and statistical moments captured by the sketch
vector. Note that a sketch with much larger dimensionality
would allow for the same level of simulation accuracy, how-
ever, a larger dimensionality of the sketch requires a larger

number of features to be computed at every batch leading to
a slower training procedure. By performing re-sampling we
obtain networks that capture rich features without the need
of computing very high-dimensional features at every batch.

E. Privacy And Data Sharing

Because access to the data is not required to train the
network, and only access to the sketches µ are needed, our
approach allows for a privacy-friendly setting with easy data
sharing. By simply sharing the sketch vectors and the random
projection matrices, different users can simulate new data
by training GMMNs. Furthermore, as shown in [21] some
computations can be already performed directly with the
sketches, without the need of simulation of actual sequences.
However, the sharing of sketches and/or trained networks,
does not provide any strong guarantees on the privacy of the
sequences used for training. Paradigms such as differential
privacy can be incorporated easily into this framework in
order to provide strong theoretical privacy guarantees, as it
has been explored in [22], but we leave the exploration of
its applications in genetic sequences as future work.

The use of different sketches for each ancestry group, and
the re-start of random projection and sketches, can be seen
as reflecting a real scenario where incoming available data
comes from different sources (hospitals, academic labs, com-
panies) each capturing populations from different countries
and regions.

F. Dimensionality Reduction for Qualitative Evaluation

When simulating natural signals such as images or audio,
visual or auditory inspection can be used to evaluate the
quality of the generated data. However, the high-dimensional
nature of genomic data does not allow for an effective
evaluation of simulated sequences through direct subjective
inspection. Therefore, dimensionality reduction of the se-
quences is required in order to perform visual evaluation.
Principal Components Analysis (PCA) has already been used
in previous works such as [17] to visualize the synthesized
sequences. We extend this approach into a more generic
framework: we suggest that any dimensionality reduction
technique that allows for projecting new unseen samples can
be used to perform qualitative evaluation by first learning
a projection into a lower dimensional space (usually 2 or
3 dimensions) with the real data, and later projecting the
synthetic data using the learnt projection. If the projection
of the synthetic data differs from the projection of the real
data, that prima facie indicates that the simulation is not
accurate. If the projections are not distinguishable between
real and fake data, it is a sign that the simulation might
be accurate. Visual inspection of dimensionality reduction
projections is of course not enough to confirm the quality
of the simulated data, and quantitative techniques are also
required. Some dimensionality reduction techniques that can
be used for such purpose include PCA, Linear Discriminat
Analysis (LDA), Independent Component Analysis (ICA),
Autoencoders (AE), ISOMAP [23], Parametric Uniform
Manifold Approximation and Projection (UMAP) [24], and
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many others. In this work we showcase the use of PCA,
ISOMAP, and Parametric UMAP. When applied to genetic
data, most of the previously mentioned techniques will
generate clusters according to the population structure of the
data which is commonly correlated with the geography.

G. Supervised Discriminators for Quantitative Evaluation

In this work, we explore the use of the accuracy of
classifiers trained to distinguish between real and fake se-
quences as a quantitative measure of the quality of the
simulation. Intuitively, if the simulation method is accurate,
the classifiers should not be able to discriminate between real
and fake samples and should obtain a classification close
to 50% (random chance). In practice, many classifiers can
memorize the training data obtaining a 100% classification
accuracy within the training set. Therefore, we make use of
the classification accuracy within a test set (sequences unseen
during the training of the classifier) as an evaluation metric
for the simulation method. Note that these classifiers have a
similar role as the discriminator in GANs [25], but instead
of providing a training gradient (as in GANs), they act as
evaluation measures of the simulation quality. In fact, such
classifiers can be used to evaluate the quality of any type of
simulator, not necessarily based on Neural Networks.

We use Logistic Regression [26], K-Nearest Neighbors
Classifier (KNN) [27] and Multi-Layer Perceptrons [28]
for the evaluation task. We simulate the same numbers of
synthetic sequences per ancestry as real sequences available.
We randomly select 67% of both real and synthetic samples
to comprise the training set and use the remainder as the
testing set. We use five different random splits of the dataset
and perform multiple times training and validation of the
machine learning classifiers. Finally, we compute the average
performance of each model and use the standard deviation
to measure the variation in the accuracy results.

IV. EXPERIMENTAL RESULTS

We use a subset of the dataset presented in [29]. This
dataset includes human labeled genomic sequences from
several publicly available databases. Our dataset contains
5000 SNPs from chromosome 22 codified in a binary format
for 1683 individuals. Specifically, it includes a total of 358
Europeans (EUR), 403 Africans (AFR), 486 East Asians
(EAS), and 436 South Asians (SAS) individuals.

We train multiple GMMNs to explore (1) the effect of
replacing the sigmoid by a differential quantizer (binarization
layer), (2) of using ReLU features instead of the mean of the
dataset (ϕ = Identity), and (3) of re-starting random features
during training. In table I, we present the classification
accuracy (real vs fake) of the 3 discriminators: logistic
regression, k-NN, and MLP. Note that simple classifiers
(logistic regression and k-NN) can be fooled easily, leading
to a discriminative accuracy close to random chance (50%),
while the MLP obtains a better discriminative accuracy.
Because some classifiers discriminate better than the others,
we report the worst case scenario as the classification accu-
racy furthest from random chance (50% accuracy) within

the ∆ = |0.5 − Acc| column. A setting where at least
one of the classifiers can classify real vs fake with 100%
accuracy, will lead to ∆ = 0.5, while a simulator that can
fool all classifiers, will lead to ∆ = 0.0. Therefore, a good
simulation technique will have a ∆ close to 0, while a bad
one will have a ∆ close to 0.5.

As shown in the first two rows of table I, including a dif-
ferentiable binarization step instead of a sigmoid layer, leads
to a significant improvement in the simulation quality (∆
decreases from 0.49 to 0.25). This can be observed in figure
2, where the PCA of simulated data is shown. Subfigure b)
and c) shows the simulated data after and before thresholding
of the sigmoid layer and d) shows the simulated data using
the quanitzer layer. The real and fake data can be visually
discriminated if a sigmoid layer is used. The use of ReLU
features (instead of an identity mapping) might not lead to
improvements on the simulation accuracy as shown in the
second and third row of table I. Due to the stochastic nature
of random features, some instances of the random mapping
might not capture a correct set of features. However, by
including random re-starts (last row of table I) the simulation
accuracy with random features is highly increased obtaining
sequences that practically fool all the trained discriminators.
Finally, in figure 3 we show visualizations of UMAP and
ISOMAP using our best configuration of GMMNs (Quantizer
+ Random Features + RF re-start), and we show that no
apparent differences between real and simulated sequences
are present.

Fig. 2: PCA of: (a) real data and generated data (b) with
sigmoid output, (c) with sigmoid + threshold output, and (d)
with binary quantizer output. Real data PCA is plotted in the
background in b, c, and d.

V. CONCLUSIONS
In this work, we showed that GMMNs are able to success-

fully generate new, realistic samples given a desired ancestry
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Network Output ϕ RF Re-start Logistic KNN MLP ∆ = |0.5−Acc|
Sigmoid Identity - 0.99± 0.01 0.51± 0.01 0.99± 0.001 0.49

Quantizer Identity - 0.44± 0.009 0.57± 0.005 0.75± 0.001 0.25
Quantizer ReLU features ✗ 0.46± 0.01 0.52± 0.004 0.81± 0.03 0.31
Quantizer ReLU features ✓ 0.44± 0.007 0.54± 0.008 0.49± 0.05 0.06

TABLE I: Mean and standard deviation of accuracies of the supervised discriminators with different GMMN configurations.

Fig. 3: UMAP of (a) real data and (b) generated data.
ISOMAP of (c) real data, and (d) generated data.

and that simulation accuracy can be improved by using
differentiable binarization and restarting the random features
during training. Furthermore, we showed how evaluation of
the simulated data can be performed with dimensionality
reduction techniques and supervised classifiers. Finally, we
discuss the potential of the presented framework to become
a useful tool for privacy-preserving data sharing mechanism
for modern day biobanks, and most importantly, a way to
partially mitigate population bias within datasets.
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