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3D Shape Reconstruction from a Humanoid Generated Video Sequence

P. A. Martı́nez1 D. Varas2 M. Castelán1 M. Camacho2 F. Marques2 G. Arechavaleta1

Abstract— This paper presents a strategy for estimating the
geometry of an interest object from a monocular video sequence
acquired by a walking humanoid robot. The problem is solved
using a space carving algorithm, which relies on both the
accurate extraction of the occluding boundaries of the object as
well as the precise estimation of the camera pose for each video
frame. For data acquisition, a monocular visual-based control
has been developed that drives the trajectory of the robot
around an object placed on a small table. Due to the stepping
of the humanoid, the recorded sequence is contaminated with
artefacts that affect the correct extraction of contours along the
video frames. To overcome this issue, a method that assigns a
fitness score for each frame is proposed, delivering a subset
of camera poses and video frames that produce consistent
3D shape estimations of the objects used for experimental
evaluation.

I. INTRODUCTION

Most humanoid robots rely on vision systems in order to
perceive the environment and resemble human capabilities.
In particular, monocular vision is preferred for small-sized
humanoids that are certainly constrained to be equipped with
lightweight, low-cost and low-energy consumption devices.
For these robots, there is a tradeoff between a suitable
camera and the quality of the images acquired during the
biped march, as the stepping impacts cause jerky camera
movements which generate continuos blurring along the
related video sequence. Localizing the robot is an additional
complex problem due to discrepancies in time among sensor
readings, i.e., the orders of magnitude from the acquired
frequency signals differ for each sensor and the rate of
divergence from the walking reference trajectory is high for
small distances.

In the context of 3D object reconstruction, analyzing a
monocular video sequence acquired by a humanoid robot
represents a difficult task which involves solving for camera
localization as well as extracting meaningful image features
under challenging motion conditions. This paper investigates
the feasibility to estimate, in a multi-view fashion, the 3D ge-
ometry of an interest object from the video frames generated
along the march of a humanoid. In order to capture multiple
views, the robot performs a circular trajectory generated
through a locomotion control that corrects the positions and
orientations of the robot in accordance with vectors lying on
a virtual circle of known radius.
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Fig. 1: The proposed strategy. A humanoid robot records a video
sequence that samples multiple views of the shape of an interest
object. A visual-based locomotion control uses the monocular
localization of the robot to correct its stepping and perform the
required trajectory. An analysis of the recorded sequence is applied
in order to determine the suitability of each frame for the purposes
of contour extraction. Finally, from the selected frames, a particle
filter-based object segmentation process is coupled with a space
carving algorithm for estimating the geometry of the object. The
figure shows the 25 camera poses of the selected video frames and
the estimated 3D shape of the object.

For object segmentation, a strategy has been developed
that aims at selecting a suitable set of video frames for
robustly reconstructing the 3D shape of the object. In a first
stage, blurred images are eliminated from the sequence as
well as those frames where parts of the object appear outside
the image limits. From this subset, object segmentation is
performed using a region-based particle filter approach, from
which a consistency score is assigned for each frame. The
video frames with the highest scores that also observe a
uniform distribution of the sampled object views are finally
selected for 3D shape recovery. The process is illustrated in
Figure 1, where the final selected video frames are shown as
camera poses surrounding an object of interest. In this sense,
the main contribution of this paper is a method that is capable
of analyzing a video sequence generated by a humanoid robot
for the purposes of 3D object reconstruction from multiple
views.

The rest of the paper is organized as follows: Section II
presents the relevant work that approaches both 3D shape
estimation and object segmentation; Section III describes
the proposed strategy to record the video sequence of the
object; Section IV depicts the method developed to analyse



the recorded video and select the image frames with the most
suitable contours for 3D reconstruction; Section V shows
the 3D shape recovery results for three different objects and
finally Section VI provides concluding remarks and future
lines of research.

II. RELATED WORK

The classical computer vision problem of monocular 3D
object reconstruction has been adapted to robotic platforms in
order to provide them with a way to perceive the environment
and interact with it, i.e. make a decision, develop a navigation
task or grasp an object. For humanoid robots provided with
a stereo vision system, solutions have been proposed using
next-best-view (NBV) techniques. The problem, commonly
approached in a multi-objective optimization manner, con-
sists of estimating the next camera pose that maximizes
the unknown volume of the object given a current voxel
grid. When coupling NBV with humanoid platforms, the
new camera poses are also required to agree with the set
of admissible head and body configurations of the robot.

The first attempts in reconstructing the shape of an object
by a humanoid robot have probably been described in
[1]. Here, an optimal set of camera and body poses were
calculated in order to acquire a set of views of the object
for achieving a partial reconstruction. For isolating object
from background, a red table was used to place the object.
The 3D model was estimated from the registration of five
disparity maps obtained from stereo images of the object.
While this work did not focus on estimating the complete
geometry of the object, it showed how a partially recon-
structed model would suffice for recognizing the object in
cluttered environments. A method for achieving a complete
reconstruction that considered obstacle avoidance was later
proposed in [2], with successful simulation results. In this
approach, a 3D occupancy grid covered the object and an
updating operation of the occupancy values of the grid was
performed for each captured stereo frame.

More recently in [3] a strategy was presented for acquiring
monocular views of an object by a small size humanoid.
From these image views, contours of the object were ob-
tained to reconstruct 3D shape using the space carving
approach of [4]. The task of extracting contours was sim-
plified using a color based thresholding technique and, as
a consequence, the objects to reconstruct were painted in
red while the acquisition scenario was covered in blue. For
controlling the robot, an extended Kalman filter approach
was developed to estimate the position and width of the
object with respect to the robot. Camera localization was
achieved by solving for extrinsic camera parameters from a
set of eight colored landmarks of known distance.

A common aspect to note from the above approaches
is that image features and therefore the 3D shape of the
object are inferred from still camera poses. In other words,
in order to calculate its next state, the robot has to make a
pause and interrupt its motion. Rather than being related with
mechanical limitations, this pause is a consequence of the
optimization process implied in the tasks of calculating the

next camera pose or updating information about the object’s
shape. Although these approaches profit on the versatility of
head and body pose configurations of the humanoid robot,
exploiting the full range of data contained in the frames of
a video sequence has been neglected.

Indeed, when video information is considered, some prob-
lems arise. One of the conventional image quality degra-
dation is the blurring of moving camera sequences [5]. In
[6], a system that detects blurred images and classify them
using the magnitude and the direction of its gradients is
proposed. Althought experiments show satisfactory results,
an annotated database is needed to train an SVM classifier.
Besides fast camera motion, other difficulties such as changes
of the object position and shape are problems that should be
handled by the system [7].

In contrast with other tracking methods, particle filters [8]
can robustly track objects from a sequence of different views
as they neither are limited to linear systems nor require the
noise involved in the process to be Gaussian. In [9], a particle
filter with edge-based features is proposed. This method has
been widely used since it provides a robust framework for
tracking curves in clutter. However, the space of possible
deformations is limited and some transformations of the
object shape may not be correctly estimated. This restriction
could be critic especially in a multiview scenario. We adapt
this idea using shape descriptors without any restriction in
the space of possible deformation.

Image-based features for particle filters were introduced
by [10]. In it, color histogram is used to robustly track
objects in the scene. This feature has the advantages of being
scale invariant and robust to partial occlusions and rotations.
Moreover, it can be efficiently computed. In our work, we
use the Diffusion distance [11] instead of the Bhattacharyya
distance [12] for histogram comparison since it leads to better
perceptual performance. As the color of an object can vary
through time, the target model is adapted during temporally
stable image observations in [13]. Note that [10], [13] do not
provide shape estimation.

In our work, we propose to use the region-based particle
filter presented in [14] to allow tracking and segmenting
objects in sequences of different views. This is a suitable al-
gorithm for this task as a geometrical shape is not considered
to represent the object. Instead, its contours are propagated
between image pairs of consecutive views.

As far as the separation of object from background is
concerned, efforts have been developed for coupling 3D
object segmentation with successful results in grasping tasks.
In [15], a model-free algorithm was proposed to partition
the surface normals of depth images acquired with an RGB-
D sensor, identifying the connecting regions that belong to
several objects in a cluttered scene. Other approaches have
also been introduced for stereo images, as in [16], where
the principle of fixation by an active observer was used to
emulate foveated vision, resulting in an improved selection
of the object’s contours. While both approaches are capable
of performing segmentation from background as new objects
are included in the observed scene, the sensors remain fixed



and this assumption does not fit into biped robotic platforms.
It is worth commenting on the growing popularity of

RGB-D sensors, which has allowed the recent development
of the now called RGB-D SLAM (Simultaneous Local-
ization and Mapping) systems [17] [18]. These methods
have proved successful in SLAM tasks which include a
dense 3D reconstruction of the observed scene. However,
they have been tested over databases that consider smooth
transitions between video frames such as hand-held camera
and wheeled robot motion [19]. Unfortunately, as the march
of a humanoid robot implies constant swinging, the risk of
sudden changes in the motion of the camera may compromise
the applicability of these approaches.

III. MONOCULAR VISION-BASED LOCOMOTION
CONTROL

Acquiring multiple views of the object of interest is the
first step in the reconstruction of its geometry. For each video
frame, it is also necessary to register the position and orien-
tation of the camera, which is estimated under a monocular
vision-based framework. We have chosen PTAM (the Parallel
Tracking and Mapping software of the University of Oxford
[20]) to solve this problem as it is able to track hundreds of
features, perform both local (incremental) and global bundle
adjustments and grow the 3D map when new keyframes
appear. These tasks are computed in parallel resulting in real-
time applications. For the monocular case, an initialization
that simulates a stereo pair to approximate the depth of the
initial 3D points is crucial to obtain coherent results.

For generating the robot trajectory we propose a monoc-
ular vision-based locomotion control that drives the camera
of the robot to face towards the center of the table where
the object is located. Additionally, the position of the robot
is constrained to keep a constant distance from the center of
the table in order to emulate a surrounding trajectory.

A. Robot localization

The output of the camera localization process is a rotation
matrix Rw and a translation column vector tw = [xw,yw,zw]

T

that relate the world and the camera, in other words, the rigid
body transformation from the axis of the world to the axis
of the camera. For controlling the march of the robot we are
only concerned with the position of the robot on the xy- plane
and its orientation angle. Note that the head (camera) of the
robot has been locked to be fully aligned with its body, thus,
the homogeneous matrix that maps the robot body frame to
the world frame can be approximated as

Tw
b ≈ Tw

c =

[
Rw tw
0 1

]
, (1)

with w, c and b respectively standing for world, camera and
body. The position of the robot in world coordinates can be
directly taken from the translation vector tw. The orientation
angle of the robot can be found from the first two elements
of the translation vector transformed into camera coordinates
as

θc = tan−1(yc/xc), (2)

Fig. 2: Three objects to reconstruct. From left to right, example
images of recorded sequences Mug, Duck and Action Man.

where [xc,yc,zc] =−RT
wtw.

B. Locomotion control

In order to solve the problem of multi-view 3D reconstruc-
tion from object segmentations the robot needs to surround
the object of interest. For this task, we propose a locomotion
control that directs the next position of the robot to lie
along the circumference of a known radius circle while its
orientation is directed towards the center of the circle. For
an effective translation to occur along the circumference of
the circle, an angular displacement s from the current to the
following robot’s state has to be considered.

Let xre f
CoM = [xw,yw]

T be the reference position of the center
of mass (CoM) on the xy-plane of the world taken from
the translation vector tw. The orientation angle θ

re f
c can

be calculated as shown in Eq. 2. The current state of the
robot is defined by the pair (xre f

CoM,θ re f
c ) and its projected

position lying on the radius r circumference may be defined
as the vector xp = [xp,yp]

T = r(xre f
CoM/||xre f

CoM||). The target
state of the robot at time k + 1 is defined as (xt ,θt) and
can be obtained by adding the angular displacement s to
the projected vector xp. The target orientation θt is directly
estimated from xt and its direction is inverted as the robot
is facing towards the center of the circle.

The reference linear velocity of the CoM, ẋre f
CoM is com-

puted considering a proportional control based on the dis-
tance between the current estimate of the robot’s CoM
position and the computed target position. Likewise, for the
reference angular velocity, θ̇

re f
c , the difference between the

current and target orientation is used. Therefore, the errors

ex = xre f
CoM−xt and eθ = θ

re f
c −θt

are regulated by imposing the exponential convergences

ėx =−λxex and ėθ =−λθ eθ ,

where λx and λθ are experimentally tuned constant propor-
tional gains. This procedure is performed while the robot
does not reach the end of the surrounding trajectory and is
formally described in Algorithm 1.

The input of the walking pattern generator (WPG) is given
by ẋre f

CoM while the output considers a dynamically stable
trajectory of the CoM, the position of the foot in contact
and the next footstep placement. The WPG solves quadratic
programs with a predefined time horizon as it is proposed in
[21]. In this case, the reference orientation θ

re f
c is used to

express the inequality constraints that define the admissible
region to place the next footstep. The computation of the



Data: Localization xre f
CoM at current time k,

orientation θ
re f
c at current time k,

radius r,
angular step s.

Result: Reference linear velocity ẋre f
CoM at time k+1,

reference angular velocity θ̇
re f
c at time k+1.

while xre f
CoM outside stopping region do

[xp,yp]
T = r(xre f

CoM/||xre f
CoM||)

xt = [xt ,yt ]
T = r

[
cos(tan−1(yp/xp)+ s)
sin(tan−1(yp/xp)+ s)

]
θt = tan−1−(yt/xt)
ẋre f

CoM =−λx(xre f
CoM−xt)

θ̇
re f
c =−λθ (θ

re f
c −θt)

Apply a WPG given (ẋre f
CoM, θ̇ re f

c )
Generate locomotion with inverse kinematics

end
Algorithm 1: The robot performs a surrounding trajectory
in accordance with a circle of radius r and an angular
displacement s.

TABLE I: Camera position and orientation error

Sequence Mean position error Mean orientation error
Mug 7.4 mm ± 4.3 mm 3.05◦ ± 1.82◦
Duck 8.9 mm ± 5.4 mm 3.35◦ ± 1.95◦

Action Man 7.5 mm ± 4.1 mm 2.85◦ ± 1.90◦

joint trajectories of the robot from the WPG outcome is based
on the real-time inverse kinematics method suggested in [22].

For experimental evaluation, the video sequences of three
different objects, which will be referred to as Mug, Duck and
Action Man, were recorded using the proposed locomotion
control. The radius of the circular trajectory was set to 0.6 m
and the angular step s was set to 3◦. For all sequences,
the video acquisition rate was of nine frames per second
with a resolution of 640×480 pixels. The number of frames
recorded for the Mug, Duck and Action Man sequences
was 2148, 2370 and 2123, respectively. Example images
taken from these sequences are shown in Figure 2. For all
experiments, rich textured papers were placed on the surface
of the table in order to guarantee an appropriate environment
for monocular SLAM.

Results of applying the control for acquiring the Mug
database are shown in Figure 3, where the bird-eye view
of the performed trajectory is shown in (a) with a close-up
view in (b). The red circle appearing in the figure depicts the
target positions to be reached by the robot during the video
acquisition. The actual trajectory of the robot is depicted in
blue. As a consequence of performing SLAM, a sparse 3D
map of the world is incrementally built during the acquisition
of the video sequence. The final generated map appears in
Figure 3 (a) as grey dots inside the circular trajectory and the
position of the mug is marked with a circle approximately
centered at (0.1,−0.1). Additionally, a subset of four images
from the recorded video is shown in Figure 3 (c) in order
to provide a visual idea of the observed scenario along the
performed trajectory. From the figure, it is noticeable how

Blurring
estimation

Region-based
Particle Filter Image selectionObject position 

estimation

Pre-processing

Fig. 4: Proposed framework. The aim is to robustly extract a set
of object segmentations from different views imposing a minimum
quality for its reconstruction. A pre-processing step discards images
in which the object may not be correctly segmented. Then, a
region-based particle filter obtains object segmentations. Finally,
best segmentations are selected to generate the 3D reconstruction.

the footstep generation of the robot successfully achieves
the expected circular trajectory, with camera orientations
pointing towards the center of the table.

In order to provide a quantitative performance of our
control, for each video sequence we measured the distance
from every estimated camera position to the nearest position
(projection vector of length 0.6 m) on the reference circum-
ference, as the aim of the control is to achieve a trajectory
resembling a circle. These distances were considered once
the camera poses first entered the circular area, i.e., from
the red arrow in Figure 3 (b). The average error in position
is shown in Table I, where the proposed scheme delivers a
dismissible error of at most 1 cm for the three sequences.
The orientation error was also measured considering the
angular distance between the current orientation camera
angle and the angle of the nearest vector on the reference
circumference. The average difference reveals departures of
3◦ from the expected behavior, confirming the applicability
of this strategy for recording video sequences to sample
multiple views of the interest object.

IV. OBJECT SEGMENTATION FROM A VIDEO SEQUENCE

Once the video has been recorded, the object must be
segmented in order to create a 3D model. In this work,
we adapt the region-based particle filter presented in [14]
to extract the 2D shape of the object from partitions (See
Figure 5(b)) associated with a set of multiple views of the
object. Only images containing the entire object without blur
are processed and a subset of these images is finally selected
to reconstruct the object in accordance with their final
segmentation quality. A diagram of the proposed framework
is presented in Figure 4.

A. Pre-Processing

As the shape of the object is extracted from a partition,
the final quality of the model is highly dependent on the
image partitions generated along the sequence. These ob-
ject segmentations at different views are used by a space
carving algorithm to reconstruct the 3D model. Although
the smoothness of this model increases with the number of
segmentations extracted from different views, the larger the
number of images considered in this process the higher the
probability of an erroneous object shape estimation at least
in one view. Thus, a subset of images from the sequence is
selected to robustly create a 3D reconstruction of the object.
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(a) Bird-eye view of trajectory.
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(b) Detail of trajectory. (c) Example video frames along the generated trajectory.

Fig. 3: Applying the proposed control to record a video sequence. The blue path depicts the estimated robot positions along the
circular trajectory. The virtual circle that helps controlling the actual trajectory is shown in red. The counterclok-wise direction of the
march is highlighted with dashed arrows. Orientations of the robot separated every 20 frames are shown with arrows facing towards the
center of the circle. The projection of the sparse 3D map recovered, as a consequence of SLAM, during the robot’s march (mostly features
over the table where the object was placed) is shown as grey dots. The location of the mug over the table is marked with a small circle
approximately centered at (0.1,−0.1). A close up view of (a) is presented in (b), while example video frames corresponding to green
arrows in (a) appear in (c).

(a) Original image (b) Partition (c) Best estimation

Fig. 5: Discarding blur. In (a) a blurred image is presented. Images
(b) and (c) show its associated partition and the best estimation
of the object given this partition, respectively. The blurring effect
creates erroneous contours which are not capable to represent a
correct segmentation of the object. In this example, the beak of the
duck is not included and, as a result, this part of the duck would
not be reconstructed.

Two main situations can be found in which a region-based
particle filter may not correctly recover the shape of the
object. First, when a part of the object is not present in the
image. And second, when the blurring effect degradates the
quality of the object contours. In order to avoid erroneous
estimations, two pre-processing steps select those images in
which the object can be correctly segmented. These steps
estimate the position of the object in the scene and the
blurring of the image respectively.

1) Blurring estimation: Blur is one of the conventional
image quality degradations and it can be caused by various
factors. In our application, this effect arises due to the rapid
camera movement of the robot. The quality of partitions
decreases drastically when the blurring effect appears, pro-
ducing corrupted contours and mixing object and background
pixels in the same regions (Figure 5).

Since the image gradient is highly related to image blur-
ring [5], our blur detector computes the magnitude of this

gradient to estimate the blur present in an image. Then, a
histogram of the gradient is built (in this work, 20 bins
have been used). As the contours of a clear image are
more precisely defined than the contours of a blurred image,
its histogram is expected to contain some contours with
large values. On the contrary, contour magnitudes of blurred
images should be small.

To this extend, the accumulation of the last 10 bins of the
histogram is used to classify the image. If this summation
represents more than 0.5% of contour pixels, the image is
classified as clear. Otherwise, the blurring effect is said to
be present.

2) Position estimation: The position of the object in the
scene is computed using its relative position with respect to
the camera. Due to the camera movement, the object may
not be completely observed, and some of its parts can be
projected out of the image.

When this situation arises and the image is selected to
generate the 3D model, the part which is not included in the
scene will not appear in the final reconstruction even if it is
correctly segmented in other views. To avoid this problem, a
color-based particle filter [13] is used to estimate the position
and the bounding box of the object along the sequence.
Following a conservative policy, images where the detected
bounding box is closer than 25 pixels to an image border are
not taken into account to extract the object contours.

B. Region-Based Particle Filter

This method segments the object along a sequence prop-
agating its shape through time. To this end, similarities
between regions are analyzed. Then, parts associated with
both the object and background are put in correspondance
for each pair of views.



(a) Object mask (b) Partition (c) Original image

Fig. 6: Region-based particle filter initialization. In (a) the object
mask of the first frame can be observed. Image (b) shows an
oversegmentation of the original image, which is presented in (c).

In [14], a region-based particle filter is presented in which
Monte Carlo methods and a representation of the image in
terms of regions are combined. This algorithm, does not
only provide the position of the object as in the color-based
approach. Instead, it also estimates the shape of the object
along the sequence, given an object mask of the first frame.
This mask should be provided to the algorithm and in our
experiments it is set by hand (See Figure 6). The object mask
is used to create a color model of the object in the image
that serves as a reference to weight particle estimations. In
this work, a histogram has been used as object model. In
the region-based approach, the measurement at time k, zk, is
composed by the input image and its partition, whereas the
estate, xk, is formed by a union of regions from the partition
associated with the input image. In this work, partitions are
obtained using [23]. An example of image partition created
with this technique can be observed in Figure 6.

Each particle stands for a state represented by a union of
regions that define an estimation of the object. As particles
represent different estates of the tracked object, they are also
represented by unions of regions. Thus, in order to form the
new set of particles, not any propagation is allowed. In other
words, the measurement (partition) is used in the propagation
process. Then, the weight update equation can be written as:

w(i)
k ∝ w(i)

k−1 ∑
c

p(zk|xc
k)p(xc

k|x
(i)
k−1) (3)

where w(i)
k is the weight of the i-th particle at time k and c

swaps all the possible states.
This summation becomes intractable using a brute force

approach. For each particle, its probability of being repre-
sented by all the possible combinations of regions of the
next partition should be computed (p(xc

k|x
(i)
k−1)) and evaluated

(p(zk|xc
k)). To solve this problem, the algorithm takes advan-

tage of the two steps of a usual tracker: prediction (movement
prediction) and perturbation (particle randomness).

a) Prediction: In this step, the shape of the object in
the next frame is estimated to ensure a minimum quality of
the new set of particles. In order to perform this process
in a robust and efficient manner, a particle support partition
(PSP) is created taking into account the intersections between
particles. Using this partition, all particles can be propagated
with a single optimization process: label propagation. This
process labels regions from the new measurement with labels
from the particle support partition optimizing similarities

(a) Particle 1 at k−1 (b) Particle 2 at k−1 (c) Particle 3 at k−1

(d) PSP at k−1 (e) Partition at k (f) LP at k

Fig. 7: The region-based particle filter. In (a), (b) and (c) three
particles at k−1 are presented. The PSP created by the intersection
of these particles is depicted in (d). The new partition at k (e) and
the result of the label propagation process (f) are also shown.

between regions which are adjacent as it can be observed in
Figure 7. These similarities are computed over the contour
elements using color, texture and distance information. As it
is expected that the object shape does not change abruptly
between consecutive views, only regions in a neighborhood
of 50 pixels are considered adjacent. This adapts the concept
of adjacency presented in [24] (multiple static partitions) and
in [14] (rapid changes) to a multiple view scenario. The result
of the process is a labeled partition (LP) in which regions
from the new partition have been labeled with labels from
the PSP.

b) Perturbation: For each particle, N changes are
randomly proposed separately. These changes consist on
adding/removing regions that belong to the particle or its
neighborhood. Then, a greedy algorithm is proposed in which
those changes that improve a similarity measure (Diffussion
distance) between the particle and the model, are stored and
combined to form the final particle. Details of this algorithm
can be found in [14].

Finally, the estimation of the object is obtained as the
combination of the state of the particles. Note that in the
region-based case each particle has its own associated object
shape obtained through the two previous steps. Thus, the
object shape is estimated combining the masks of all the
particles. As a result of this combination, a certain probability
of belonging to the object is assigned to each region. The
final object shape is estimated considering those regions with
a probability higher than a given threshold (In this work, 50%
has been used). The capacity of estimating the 2D shape of
the object in an image view given its shape in a similar view
makes this algorithm suitable for reconstruction applications.

C. Image selection

As it has been previously commented, errors in the object
shape estimation rapidly degradate the quality of the final
reconstruction. In order to avoid this degradation, only a
subset of the views analyzed by the region-based particle
filter are used to create the 3D model.



Fig. 6: 3D shape estimation results. Random views of the recovered 3D models are shown in (a). The selected video frames for
reconstruction is shown, for two of the objects, in (b).(a) Camera positions of the selected video

frames for Duck and Action Man.
Fig. 5: 3D shape estimation results. Random views of the recovered 3D models are shown in (a). The selected video frames for
reconstruction is shown, for two of the objects, in (b).

TABLE II: Departures from physical dimensions

Object Width Depth Height
Mug 5.6 mm 6.9 mm 1.0 mm
Duck 5.2 mm 5.0 mm 6.0 mm

Action Man 5.0 mm 4.5 mm 5.2 mm

for carving. Note that (b) only presents scenarios for the
Duck and Action man video sequences as the corresponding
scenario for Mug appears in Figure 1.

Table II reveals that the recovered 3D models are also
consistent with the objects’ physical dimensions in the world,
as we measured the width, depth and height of each object
and each reconstruction in order to obtain a degree of
similarity between their corresponding bounding boxes. As
shown in the table, the average error was 5.3 mm in width,
5.5 mm in depth and 4.1 mm in height. Considering the
accuracy in the recovered geometry, this could be potentially
used in further tasks such as grasping and identification.

V. CONCLUSIONS AND FUTURE WORK

We have shown how a state-of-the-art technique in video
analysis can be adapted to the challenging video sequences
generated by a humanoid robot in motion. Particularly, the
complex task of estimating the 3D shape of an interest object
has been achieved by relying on a monocular visual-based
control of the robot and the robust extraction of silhouettes
from a selected subset of highly scored video frames. The
reported results are promising and future improvements can
be drawn in two directions. As far as the control of the
robot is concerned, relaxing the circular supposition might
generate camera views of the object that contain important
information, as the robot would be able to get closer or

farther from the object when needed. Also, incorporating
constraints to use a wider range of body postures is desirable
for the purposes of generating a richer set of camera views.
The capabilities of the video analysis strategy can be as
well extended and we are considering incorporating 3D
information related to the sparse cloud of points generated
during the march of the humanoid robot, which can be useful
for a rough object-from-background separation.
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(b) Rendered views of the estimated 3D geometry.Fig. 8: 3D shape estimation results. Random views of the recovered 3D models are shown in (a). The selected video frames for
reconstruction is shown, for two of the objects, in (b).

C. Image selection
As it has been previously commented, errors in the object

shape estimation rapidly degradate the quality of the final
reconstruction. In order to avoid this degradation, only a
subset of the views analyzed by the region-based particle
filter are used to create the 3D model.

Images are selected according to the Diffussion distance
between the segmented object and the model. Moreover, the
camera position is taken into account to correctly represent
the entire 3D object. The image with the highest coefficient
is chosen first. Then, from the rest of images, the view with
the highest coefficient which is not included in a temporal
window of 7 frames centered in any chosen image is selected.
This process is iterated until 30 frames are chosen or the
coefficient falls below a given threshold. The resulting set of
views is used to robustly reconstruct the object.

IV. 3D RECONSTRUCTION RESULTS

As far as the 3D reconstruction of the object is concerned,
we used a method based on shape from occluding boundaries
known as space carving [4]. Roughly, this method uses the
camera matrix in order to reproject, towards the world, the
area bounded by the silhouette of the observed object in the
image. The camera matrix is calculated as

P = K[Rwtw], (4)

where K is the matrix of intrinsic parameters of the camera.
From a set of multiple silhouettes with known camera matri-
ces, a 3D model is finally recovered from the intersection of
all reprojected silhouettes into the voxel map. This process,
which resembles sculpting (carving), is usually posed using a
turntable and a fixed camera, simplifying the tasks of contour
extraction and estimation of the camera matrices.

TABLE II: Departures from physical dimensions

Object Width Depth Height
Mug 5.6 mm 6.9 mm 1.0 mm
Duck 5.2 mm 5.0 mm 6.0 mm

Action Man 5.0 mm 4.5 mm 5.2 mm

In this section, we show how by coupling a robust
contour extraction method with a trajectory that guarantees
exhaustive sampling of the image views of the object, it is
possible to estimate visually coherent 3D geometry. This is
illustrated in Figure 9, where voxel-colored rendered views
of the final reconstructed shapes are presented in (a) along
with the selected video frames (shown as camera poses) used
for carving. Note that (b) only presents scenarios for the
Duck and Action Man video sequences as the corresponding
scenario for Mug appears in Figure 1.

Table II reveals that the recovered 3D models are also
consistent with the objects’ physical dimensions in the world,
as we measured the width, depth and height of each object
and each reconstruction in order to obtain a degree of
similarity between their corresponding bounding boxes. As
shown in the table, the average error was 5.3 mm in width,
5.5 mm in depth and 4.1 mm in height. Considering the
accuracy in the recovered geometry, this could be potentially
used in further tasks such as grasping and identification.

V. CONCLUSIONS AND FUTURE WORK

We have shown how a state-of-the-art technique in video
analysis can be adapted to the challenging video sequences
generated by a humanoid robot in motion. Particularly, the
complex task of estimating the 3D shape of an interest object
has been achieved by relying on a monocular visual-based

(c) Incorrect re-
constructions.

Fig. 8: 3D shape estimation results. The selected video frames for reconstruction are shown, for two of the objects, in (a). Random
views of the recovered 3D models are shown in (b). Incorrect reconstructions of the object as a consequence of adding a low quality
segmentation appear in (c). For rendering the different views, we applied a voxel coloring method that assigns, for each surface voxel,
its corresponding pixel color taken from the camera that is closest to the voxel.

Images are selected according to the Diffussion distance
between the segmented object and the model. Moreover, the
circular distribution of the cameras is taken into account to
correctly represent the entire 3D object. The image with
the highest coefficient is chosen first. Then, from the rest
of images, the view with the highest coefficient which is
not included in a temporal window of 7 frames centered
in any chosen image is selected. This process is iterated
until 25 frames are chosen or the coefficient falls below a
given threshold. The resulting set of views is used to robustly
reconstruct the object.

V. 3D RECONSTRUCTION RESULTS

As far as the 3D reconstruction of the object is concerned,
we used a method based on shape from occluding boundaries
known as space carving [4]. Roughly, this method uses the
camera matrix in order to reproject, towards the world, the
area bounded by the silhouette of the observed object in the
image. The camera matrix is calculated as

P = K[Rwtw], (4)

where K is the matrix of intrinsic parameters of the camera.
From a set of multiple silhouettes with known camera matri-
ces, a 3D model is finally recovered from the intersection of
all reprojected silhouettes into the voxel map. This process,
which resembles sculpting (carving), is usually posed using
a turntable and a fixed camera, which greatly simplifies the
tasks of object segmentation and estimation of the camera
matrices. On the contrary, our method is capable of dealing

with a challenging video sequence recorded from a humanoid
robot in motion.

In this section, we show how by coupling a robust ob-
ject segmentation method with a trajectory that guarantees
exhaustive sampling of the image views of the object, it is
possible to estimate a visually coherent 3D geometry of the
interest object.

The final results of our complete framework are illustrated
in Figure 8, where we present the chosen video frames after
applying the image selection process described in the previ-
ous section. In column (a), we have only included scenarios
for Duck and Action Man sequences as the corresponding
scenario for Mug appears in Figure 1. It is worth commenting
on the differences between the set of selected images from
the different scenarios. Particularly, in the Mug experiment a
large region of camera poses was left out of the quality set,
which can be explained as a consequence of the robot being
too far from the object along certain regions of the performed
path. In this case, the object was not placed in the center of
the table and, as a consequence, it appeared too small for
an accurate segmentation to become feasible. Nonetheless,
the rendered views of the 3D reconstruction provided in
Figure 8 (b) reveal that the shape of the mug was reasonably
recovered. Likewise, the rendered views obtained from Duck
and Action Man video sequences provide a range of object
views that qualitatively agree with an expected reconstructed
shape of the object.

Table II shows how the recovered 3D models are also
consistent with the objects’ physical dimensions in the world,
as we measured the width, depth and height of each object



TABLE II: Departures from physical dimensions

Object Width Depth Height
Mug 5.6 mm 6.9 mm 1.0 mm
Duck 5.2 mm 5.0 mm 6.0 mm

Action Man 5.0 mm 4.5 mm 5.2 mm

and each reconstruction in order to obtain a degree of
similarity between their corresponding bounding boxes. As
shown in the table, the average error was 5.3 mm in width,
5.5 mm in depth and 4.1 mm in height. Considering the
accuracy in the recovered geometry, this could be potentially
used in further tasks such as grasping and identification.

Finally, rendered views corresponding to incorrect 3D
reconstructions are additionally depicted in Figure 8 (c). For
this experiment, we included a single video frame observing
a low score in the image selection process. Note how the
recovered 3D models exhibit important missing parts such
as the handle, the beak and the head, respectively for Mug,
Duck and Action Man video sequences.

It is worth commenting that our method presents important
differences with other 3D reconstruction approaches. For
example, while [1] emphasizes the full body posture of the
HRP-2 in order to get still images of the object, we favor
multiple view exploration by relying on a powerful computer
vision segmentation strategy that works over humanoid-
locomotion generated video sequences. Also, while they
focus on the partial reconstruction of the object for the
purposes of later identification, our approach values the full
3D reconstruction of the interest object. For this reason,
comparing approaches would not provide enough insight and
has not been included in this paper.

VI. CONCLUSIONS AND FUTURE WORK

We have shown how a state-of-the-art technique in video
analysis can be adapted to the challenging video sequences
generated by a humanoid robot in motion. Particularly, the
complex task of estimating the 3D shape of an interest object
has been achieved by relying on a monocular visual-based
control of the robot and the robust extraction of silhouettes
from a selected subset of highly scored video frames. The
reported results are promising and future improvements can
be drawn in two directions. As far as the control of the
robot is concerned, relaxing the circular supposition might
generate camera views of the object that contain important
information, as the robot would be able to get closer or
farther from the object when needed. Also, incorporating
constraints to use a wider range of body postures is desirable
for the purposes of generating a richer set of camera views.
The capabilities of the video analysis strategy can be
as well extended and we are considering incorporating
3D information related to the sparse cloud of points
generated during the march of the humanoid robot, which
can be useful for a rough object-from-background separation.
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[15] A. Ückermann, C. Elbrechter, R. Haschke, and H. Ritter, “3d scene
segmentation for autonomous robot grasping,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2012, pp. 1734–
1740.

[16] A. Mishra, Y. Aloimonos, and C. Fermuller, “Active segmentation for
robots,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2009.

[17] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping:
Using kinect-style depth cameras for dense 3d modeling of indoor
environments,” International Journal of Robotics Research, vol. 31,
no. 5, pp. 647–663, 2012.

[18] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d
mapping with an rgb-d camera,” to appear in IEEE Transactions on
Robotics, 2014.

[19] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in IEEE Inter-
national Conference on Intelligent Robots and Systems, Vilamoura,
Portugal, 2012.

[20] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’07), Nara, Japan, November
2007.

[21] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl, “Online walking motion generation with automatic footstep
placement,” Advanced Robotics, vol. 24, no. 5-6, pp. 719–737, 2010.



[22] O. Kanoun, “Real-time prioritized kinematic control under inequality
constraints for redundant manipulators,” in Robotics: Science and
Systems VII, Los Angeles, CA, USA, June 2011.

[23] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “From contours to
regions: An empirical evaluation,” in IEEE Conference on Computer
Vision and Pattern Recognition, June 2009, pp. 2294–2301.

[24] D. Glasner, S. Vitaladevuni, and R. Basri, “Contour-based joint
clustering of multiple segmentations,” in CVPR, 2011.


	letter
	definitivoAck

