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Abstract. In this paper, we address the modality integration issue on the 
example of a smart room environment aiming at enabling person identification 
by combining acoustic features and 2D face images. First we introduce the 
monomodal audio and video identification techniques and then we present the 
use of combined input speech and face images for person identification. The 
various sensory modalities, speech and faces, are processed both individually 
and jointly. It’s shown that the multimodal approach results in improved 
performance in the identification of the participants. 

1   Introduction 

Person identification consists in determining the identity of a person from a data 
segment, such as a speech, video segment, etc. Currently, there is a high interest in 
developing person identification applications in the framework of smart room 
environments. In a smart room, the typical situation is to have one or more cameras 
and several microphones. Perceptually aware interfaces can gather relevant 
information to recognize, model and interpret human activity, behaviour and actions. 
Such applications face an assortment of problems such a mismatched training and 
testing conditions or the limited amount of training data. 

In this work we present the audio, video and multimodal person identification 
techniques and the obtained results in the CLEAR’06 Evaluation Campaign inside the 
CHIL (Computers in the human interaction loop) project [1]. The CLEAR’06 Person 
Identification evaluation is a closed-set task, that is, all the possible speakers are 
known. Matched training and testing conditions and far-field data acquisition are 
assumed, as well as no a priori knowledge about room environment.  

For acoustic speaker identification, the speech signals are parameterized using the 
Frequency Filtering (FF) [2] over the filter-bank energies, which is both 
computationally efficient and robust against noise. Next, in order to model the 
probability distribution of the parameters generated by each speaker, Gaussian 
Mixture Models (GMM) [3] with diagonal covariance are used. 
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In the case of visual identification, an appearance-based technique is used due to 
the low quality of the images. Face images of the same individual are gathered into 
groups. Frontal images within a group are jointly compared to the models for 
identification. These models are composed of several images representative of the 
individual. The joint recognition enhances the performance of a face recognition 
algorithm applied on single images. Individual decisions are based on a PCA [4] 
approach given that the variability of the users’ appearance is assumed to be low 
and so are the lighting variations. 

Multimodal recognition involves the combination of two or more human traits 
like voice, face, fingerprints, iris, hand geometry, etc. to achieve better performance 
than using monomodal recognition [5], [6]. In this work, a multimodal score fusion 
technique, Matcher Weighting with equalized scores, has been used. This technique 
has obtained an improvement for the correct identification rate on the closed-set 
15/30 seconds training and 1/5/10/20 seconds testing conditions on the CLEAR’06 
Evaluation task. 

This paper is organized as follows: In Sections 2 and 3 an overview of the audio 
and video algorithms and techniques is given. Section 4 presents the technique for 
multimodal fusion. Section 5 describes the evaluation scenario and the experimental 
results. Finally, Section 6 is devoted to provide conclusions. 

2   Audio Person Identification 

The speaker identification (SI) task consists in determining the identity of the speaker 
of a speech segment. In this task it is usually assumed that all the possible speakers 
are known. For this evaluation, recordings using one microphone of an array from 26 
speakers have been provided. 

The first stage of current speaker recognition systems is a segmentation of the 
speech signal into regular segments. The speech signal is divided into frames of 
30ms at a rate of 10ms. From each segment a vector of parameters that 
characterizes the segment is calculated. In this work we have used the Frequency 
Filtering (FF) parameters [2]. These parameters are calculated as the widely used 
Mel-Frequency Cepstral Coefficients (MFFC) [7] but replacing the final Discrete 
Cosine Transform of the logarithmic filter-bank energies of the speech frame with 
the following filter: 

( ) 1H z z z−= −  (1) 

Fig.  1 shows the calculation procedure of the FF parameters. These features have 
several interesting characteristics: 

−  They are uncorrelated. 
−  They are computationally simpler than MFCCs. 
−  They have frequency meaning. 
−  They have generally shown an equal or better performance than MFCCs in both 

speech and speaker recognition. 
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Fig. 1. Calculation procedure of the FF parameters 

In order to capture the temporal evolution of the parameters the first and second 
time derivatives of the features are generally appended to the oFF, basic static feature 
vector. The so called delta coefficients [8] are computed using the following 
regression formula 
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Where Δot(i) is the delta coefficient at time t computed in terms of the corresponding 
static coefficients ot-Θ to ot+Θ. The same formula is applied to the delta coefficient with 
another window size to obtain acceleration coefficients. 

For each speaker that the system has to recognize, a model of the probability 
density function of the parameter vectors is estimated. These models are known as 
Gaussian Mixture Models (GMM) [3], which is a weighted sum of Gaussian 
distributions: 
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where λj is the model, o is the vector of parameters being modeled, J is the number of 
speakers, M is the number of Gaussian mixtures, wm is the weight of the Gaussian m, 
and N is a Gaussian function of mean vector μm and covariance matrix Σm. The 
parameters of the models are estimated from speech samples of the speakers using the 
well-known Baum-Welch algorithm. 

In the testing phase of a SI system a set of parameter vectors O={oi} is 
calculated from the testing signal. After that, the likelihood that the vector O is 
produced by each speaker is calculated and it is chosen the speaker with the biggest 
likelihood, i.e.: 

( ){ }j
j

Ls λ|maxarg O=  
(4) 

where s is the recognized speaker and L(O|λj) is the likelihood that the vector O was 
generated by the speaker of the model λj. 
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3   Video Person Identification 

In this section, the Visual Person ID task is presented. Recognition is stand-alone, 
taking detection and tracking for granted. That is, the system is semi-automatic. 

We have developed for this task a technique for face recognition in smart 
environments. The technique takes advantage of the continuous monitoring of the 
scenario and combines the information of several images to perform the 
recognition. Appearance based face recognition techniques are used given that the 
scenario does not ensure high quality images. As the visual identification evaluation 
is a close-set identification task, models for all individuals in the database are 
created off-line using two sets of video segments: the first one consists on one 
segment of 15 s per each individual in the database, while the second one consists 
on one segment of 30 s per individual. 

The proposed system works with groups of face images of the same individual. 
For each test segment, face images of the same individual are gathered into a group. 
Then, for each group, the system compares such images with the model of the 
person. 

We first describe the procedure for combining the information provided by a face 
recognition algorithm when it is applied to a group of images of the same person in 
order to, globally, improve the recognition results. Note that the proposed system is 
independent of the distance measure adopted by the specific face recognition 
algorithm.  

Combining groups of images. Let {x}i ={x1, x2, ... , xM} be a group of M probe 
images of the same person, and let {C}j = {C1, C2, ... ,CS} be the different models or 
classes stored in the (local or global) model database. S is the number of individual 
models. Each model Cj contains Nj images, {y}n

j = {y1
j, y2

j, ..., yNj
j} where Nj may be 

different for every class. Moreover, let 

(x , y ) :j Q Q

i nd xℜ ℜ → ℜ  (5) 

be a certain decision function that applies to one element of {x}i and one element 
of {y}n

j, where Q is the dimension of xi and yn
j. It represents the decision function 

of any face recognition algorithm. It measures the similarity of a probe image xi to 
a test image yn

j. 

We fix a decision threshold Rd so that xi and yn
j represent the same person if 

d(xi, yn
j) < Rd. If, for a given xi the decision function is applied to every yn

j ∈ Cj, we 
can define the δ value of xi relative to a class Cj, δij as 

{ }#  /  ( , )j j

ij n j i n dy C d x y Rδ = ∈ <  (6) 

That is, δij counts the number of times that the face recognition algorithm 
matches xi with an element of Cj. With this information, the δ-Table is built: 
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Table 1. δ-Table 

 C1 C2 . . . Cs 

+X1 δ11 δ 12 . . . δ1S 

X2 δ21 δ22 . . . δ2S 

. . . . . . . . . . . . . . . 
xM δM1 δM2 . . . δMS 

Based on the δ-Table above, we define the following concepts: 

• Individual Representation of xi: It measures the representation of sample xi by 
class Cj: 

j

ij
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(7) 

• Total representation of xi: It is the sum of the individual representations of xi 
through all the classes: 
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• Reliability of a sample xi given a class Cj: It measures the relative representation 
of sample xi by class Cj considering that sample xi could be represented by other 
classes: 
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The assignment ρij =ρ(xi, Cj) = 1 when the total representation is zero will be 
commented when discussing the model updating. 

• Representation of Cj: It estimates the relative representation of a group of 
samples {x}i by a class Cj. Weighting is performed to account for the contribution 
of the group {x}i to other classes:  
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• Match Likelihood for class Cj: It relates a class representation and its match 
probability. If r = R(Cj), then: 
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Fig. 2. Examples of ML for different σ values (N=5) 
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where σ adjusts the range of R(Cj) ‘s values (see Fig. 2). 

• Relative Match Likelihood for a class Cj: It relates the ML of a class Cj and the 
maximum ML of the other classes: 
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This measure determines if the selected class (that with maximum ML) is widely 
separated from other classes. A minimum value of ML is required, to avoid analyzing 
cases with too low ML values. 

Relying on the previous concepts, the recognition process is defined, in the 
identification mode, as follows: 

1. Compute the δ-Table. 
2.  Compute the match likelihood (ML) for every model. 
3.  Compute the RML of the class with the highest ML(Cj).  

The group is assigned to the class resulting in a highest RML value. In this work, a 
PCA based approach [4] has been used. This way, the decision function is the 
Euclidean distance between the projections of xi and yn

j on the subspace spanned by 
the first eigenvectors of the training data covariance matrix:  

( , )j T T j
i n i nd x y W x W y= −

 
(13) 

where WT is the projection matrix. 
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The XM2VTS database [9] has been used as training data for estimating the 
projection matrix and the first 400 eigenvectors have been preserved. Due to the 
images being recorded continuously using the corner cameras, face images can not be 
ensured to be all frontal. Mixing frontal and non-frontal faces in the same models can 
be quite a problem for face recognition systems. To avoid this situation, eye 
coordinates are used to determine the face pose for each image. Only frontal faces are 
used for identification. 

Note that, in our system, models per each person have been automatically 
generated, without human intervention. All images for a given individual in the 
training intervals are candidates to form part of the model. Candidate face bounding 
boxes are projected on the subspace spanned by the first eigenvectors of the training 
data covariance matrix WT. The resulting vector is added to the model only if different 
enough from the vectors already present in the model. 

4   Multimodal Person Identification 

In a multimodal biometric system that uses several characteristics, fusion is possible 
at three different levels: feature extraction level, matching score level or decision 
level. Fusion at the feature extraction level combines different biometric features in 
the recognition process, while decision level fusion performs logical operations upon 
the monomodal system decisions to reach a final resolution. Score level fusion 
matches the individual scores of different recognition systems to obtain a multimodal 
score. Fusion at the matching score level is usually preferred by most of the systems. 

Matching score level fusion is a two-step process: normalization and fusion itself 
[10], [11], [12], [13]. Since monomodal scores are usually non-homogeneous, the 
normalization process transforms the different scores of each monomodal system into 
a comparable range of values. One conventional affine normalization technique is z-
score, that transforms the scores into a distribution with zero mean and unitary 
variance [11],[13]. 

After normalization, the converted scores are combined in the fusion process in 
order to obtain a single multimodal score. Product and sum are the most 
straightforward fusion methods. Other fusion methods are min-score and max-score 
that choose the minimum and the maximum of the monomodal scores as the 
multimodal score.  

Normalization and Fusion Techniques. Scores must be normalized before being 
fused. One of the most conventional normalization methods is z-score (ZS), which 
normalizes the global mean and variance of the scores of a monomodal biometric. 
Denoting a raw matching score as a from the set A of all the original monomodal 
biometric scores, the z-score normalized biometric xZS is calculated according to Eq. 14. 

std(A)

mean(A)a −=zsx  (14) 

where mean(A) is the statistical mean of A and std(A) is the standard deviation. 
Histogram equalization (HE) is a non linear transformation whose purpose is to 

equalize the variances of two monomodal biometrics in order to reduce the non linear 
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effects typically introduced by speech systems. The HE technique matches the 
histogram obtained from the speaker verification scores and the histogram obtained 
from the face identification scores, both evaluated over the training data. The 
designed equalization takes as a reference the histogram of the scores with the best 
accuracy, which can be expected to have lower separate variances, in order to obtain a 
bigger variance reduction. 

In Matcher Weighting (MW) fusion each monomodal score is weighted by a factor 
proportional to the recognition rate, so that the weights for more accurate matchers 
are higher than those of less accurate matchers. When using the Identification Error 
Rates (IER) the weighting factor for every biometric is proportional to the inverse of 
its IER. Denoting wm and em the weigthing factor and the IER for the mth biometric xm 
and M the number of biometrics, the fused score u is expressed as 

∑
=

=
M

m

mm xwu
1

 (15) 

where  

∑
=

=
M

m
m

m
m

e

ew

1

1

1

  

(16) 

Before carrying out the fusion process, histogram equalization is applied over all 
the previously obtained monomodal scores. Since the best recognition results have 
been achieved in the acoustic recognition experiments, the histogram of the voice 
scores has been taken as a reference in the histogram equalization. 

After the equalization process, the weighting factors for both acoustic and face 
scores are calculated by using the corresponding Identification Error Rates, as in 
Eq. 16. Z-score normalization is also applied, and final fused scores are obtained by 
using Eq.  15. 

5   Experiments and Discussion 

5.1   Experimental Set-Up 

A set of audiovisual recordings of seminars and of highly-interactive small working 
groups seminars have been used. These recordings were collected by the CHIL 
consortium for the CLEAR 06 Evaluation. The recordings were done according to the 
“CHIL Room Setup” specification [1]. A complete description of the different 
recordings can be found in [14]. Data segments are short video sequences and 
matching far-field audio recordings taken from the above seminars.  

In order to evaluate how of the duration of the training signals affects the 
performance of the system two training durations have been considered: 15 and 30 
seconds. Test segments of different durations (1, 2, 5, 10 and 20 seconds) have been 
used during the algorithm development and testing phases. A total of 26 personal 
identities have been used in the recognition experiments. 
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Each seminar has one audio signal from the microphone number 4 of the Mark III 
array. Each audio signal has been divided into segments which contain information of 
a unique speaker. These segments have been merged to form the final testing 
segments of 1, 5, 10 and 20 seconds (see Table 2) and training segments of 15 and 30 
seconds. Video is recorded in compressed JPEG format, with different frame-rates 
and resolutions for the various recordings.  

Far-field conditions have been used for both modalities, i.e. corner cameras for 
video and Mark III microphone array for audio. In the audio task only one array 
microphone has been considered for both development and testing phases. In the 
video task, we have four fixed position cameras that are continuously monitoring the 
scene. All frames in the 1/5/10/20 sec segments and all synchronous camera views 
can be used and the information can be fused to find the identity of the concerned 
person. To find the faces to be identified, a set of labels is available with the position 
of the bounding box for each person’s face in the scene. These labels are provided 
each 1s. The face bounding boxes are linearly interpolated to estimate their position in 
intermediate frames. To help this process, an extra set of labels is provided, giving the 
position of both eyes of each individual each 200 ms. 

Table 2. Number of segments for each test condition 

 Number of segments  
Segment 
Duration 

Development Evaluation 

1 sec 390 613 
2 sec 182 0 
5 sec 78 411 

10 sec 26 289 
20 sec 0 178 

The metric used to benchmark the quality of the algorithms is the percentage of 
correctly recognized people from test segments. 

5.2   Results 

In this section we summarize the results for the evaluation of different modalities and 
the result improvement with the multimodal technique. Table 3 shows the correct 
identification rate for both audio and video modalities and the fusion identification 
rate obtained depending on the length of the used test files. 

Related to acoustic identification task, it can be seen that the results, in general, are 
better as the segments length increases. Table 3 reports that for the different test 
segment lengths the recognition rate increases when more data is used to test the 
speaker models. Overall, using the 30 seconds training segments, an improvement of 
up to 8% in the recognition rate is obtained with respect to the case where 15 seconds 
segments are used. 

For the face identification evaluation, in general, these results show a low 
performance of the system. Results for the training set B (using a segment of 30s to 
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generate the models) show only a slight increase of performance with respect to 
training set A. It can also be seen that the results improve slowly as the segments 
length increases.  

Table 3. Percentage of correct identification for both audio and video unimodal modalities and 
multimodal fusion. The first column shows the duration of test segments in seconds. The 
second one shows the number of tested segments. Train A and B are the training sets of 15 
seconds and 30 respectively. 

 

   Train A    Train B  

Duration Segments Speech Video Fusion Speech Video Fusion 

1 613 75.0 20.2 76.8 84.0 19.6 86.2 

5 411 89.3 21.4 92.0 97.1 22.9 97.1 

10 289 89.3 22.5 94.1 96.2 25.6 98.0 

20 178 88.2 23.6 96.0 97.2 27.0 98.9 

The reasons for this low performance are manifold: First of all, the system uses 
only frontal faces to generate the models and for recognition. However, most of the 
face views found in the recordings are non frontal. Another reason for the low 
percentage of correctly identified persons is the low quality of the images. The need 
to cover all the space in the room with four cameras results in small images, were the 
person’s faces are tiny. In the worst cases, face sizes are only 13x13 pixels. 

In addition, poor illumination conditions in some recordings causes cameras to 
work at large diaphragm apertures. As a result, the depth of field is very shallow and 
several images are out of focus. Other recordings present interlacing errors. Figure 3 
shows several examples of all these problems.  

Another problem is that, due to the fact that face bounding boxes are interpolated 
from the 1 second labels, our system is, in many cases, considering as ‘frontal’ faces 
that are not really frontal ones. Figures (a), (b), (c) and (e) are examples of this situation.  

 

                           (a)                        (b)                (c)             (d)             (e)           (f) 

Fig. 3. Examples of face bounding boxes taken from several recordings shown at its relative 
sizes. Smallest image (c) is 13x13 pixels and larger image (a) is 29x47 pixels. Images are taken 
from the training segments of the AIT, IBM, ITC, UPC and UKA recordings. Images in the test 
sequences are similar. 
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This leads us to conclude that, under these conditions, a more elaborated technique 
should be used. For instance, non-frontal face views should be taken into account, as 
most of the views found in the recordings are non-frontal. Even in this case, person 
identification using face detection alone is probably not going to give good results in 
these conditions. Identification should be performed combining more features other 
than those obtained from face bounding-boxes.  

The determination of the weighting factors for the multimodal fusion has been 
done by using the training signals of 30 seconds as a development set. The first 15 
seconds have been used for training and the other 15 seconds for testing. The 
recognition results obtained in the evaluation for multimodal identification can also be 
seen in Table 3. Fusion results of both systems are also shown for the different 
lengths. Fusion correct identification rates are higher than the monomodal rates. The 
obtained fusion results outperform those obtained with both monomodal systems.  

6   Conclusions 

In this paper we describe two techniques for visual and acoustic person identification 
in smart room environments. A Gaussian mixture model of the  Frequency Filtering 
coefficients has been used to perform speaker recognition. For video, an approach 
based on joint identification over groups of images of a same individual using a PCA 
approach has been followed.  

For the acoustic identification task, the results show that the presented approach is 
well adapted to the conditions of the experiments. For the visual identification task, 
the low quality of the images results in a low performance of the system. In this case, 
results suggest that identification should be performed combining more features other 
than frontal face bounding-boxes.  

To improve the obtained results, a multimodal score fusion technique has been 
used. Matcher Weighting with histogram equalized scores is applied to the scores of 
the two monomodal tasks. The results show that this technique can provide an 
improvement of the recognition rate in all train/test conditions.  
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