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Abstract—The quantification of the attention received by
advertisements is of paramount importance to determine its ef-
fectiveness. In this work, a simple and effective objective method
for the assessment of the attention given to advertisements is
provided. The proposed method is based on computing the
oriented trajectory of the different test persons along with their
head pose. This way, it is possible to determine if a given
person is looking towards the advertisement. While other similar
methods use more complex setups, requiring a camera at each
advertisement location, our method needs only a single (or a few)
ceiling camera. Even though the apparent simplicity, the method
can compute attention measures at each point of the scene.

I. INTRODUCTION

Several methods have been established to determine the de-
gree of attention received by an advertisement. The goal is the
objective comparison of the attention taken by different ads,
either static or dynamic (screens). The objective is twofold;
on the one hand, to determine the effectiveness of the ad,
determined either by its content or by its place of visualization;
on the other hand, to be able to more accurately charge for
the advertising content.

To be useful, the determination of the attention metrics must
be robust, non-invasive and adaptable to different environ-
ments, often cluttered with many objects. Another important
requirement is that the complete setup has to be as cheap as
possible to make it competitive in a variety of situations.

There are some metrics commonly used to evaluate audience
measurement [1]: some of the most usual are:

e Dwell time (DT): The total amount of time a observer
spends in the same area as the sign being evaluated.

o In-view time (IVT): The total amount of time that the ob-
server is facing the sign (not necessarily paying attention
to the screen).

o Attention/Engagement time (AT): The total amount of
time the observer is actively looking at the sign. The
Attention time allows to quantify the degree of attention
a given sign has received.

In this contest, we have that necessarily DT > IVT > AT.

Most methods to determine these quantities require a camera
at each analyzed point [2]. A camera placed over the ad facing
the customer can measure whether a customer is actively
looking towards the ad or not. The drawback of these methods
is that they require a camera for each measurement point,
which can be cumbersome and affected by occlusions.

We propose a method that, relying only in top-view cameras,
can determine audience measurements in all points of the
room. Top-view cameras are non-intrusive, cost effective, are
almost immune to occlusion problems between costumers
and can alleviate privacy problems. The cameras are used
to determine the trajectory of the persons and their head
orientations. With these measures and by taking into account
physiological parameters of the human vision, we can estimate
the values for the Dwell, In-view and Attention times at all
points of the room Moreover, additional information can be
obtaine d, such as the distance of viewing and the relative
angle of viewing, thus allowing a richer analysis of the scene.
In this sense, our method can be seen as a generalization of the
methods previously described, as it allows determining metrics
at any point and also allows to capture more information. The
method has been designed for static (analog or digital) signage
although it can be easily extended to dynamic digital signage.

As an example of the type of analysis that our method
permits, we will introduce a new measure, the focus of
attention received at each point of the room. This measure
quantifies the amount of attention a region receives during
a period of time. While the temporal metrics are useful for
defined targets (signs on the walls, for instance), this new
measure allows to find the room spots that receive more
attention. We will justify in Sect. V that the attention to a
target depends on the distance so, for instance, to be able to
see the same details in an image at double distance this image
has to be twice as large. The new measure will be based not
only on the amount of time that a target is observed but also in
the distance to the observer plus other parameters that affect
the attention (speed of movement, angle of vision with respect
to the trajectory, etc.). This technique can provide values for
all the objects in a room, not only of those located at the walls.
This allows to determine the objects in a store that are more
attractive to users.

The main contributions of this paper are:

e A non-invasive, cost-effective method to compute the
temporal metrics used to quantify the attention received
by a sign.

« A method to evaluate the intensity of focus of attention
at all points of the room.

e A system to determine the regions that receive more
attention in a given room.

e To test the method



This paper is organized as follows: Sect. II provides a review
of the state-of-the-art of audience measurement and related
technologies. In Sect. III, a more detailed view at the audience
metrics is given. The proposed system is detailed in Sect. IV
and Sect. V. Experimental validation of the proposed system is
given in Sect. VI. Finally, conclusions are drawn in Sect. VII.

II. RELATED WORK

In the literature there is a good amount of works using
computer vision and other sensing technologies to analyze
the attention that people pay to public signs. A good review
can be found at [2]. An important factor in these methods
is the placement of the cameras. The majority of methods
use frontal-view or top-view cameras. Frontal cameras can be
situated at or near the sign and take a frontal view of the
customer. The advantages of this setup are that from a frontal
position the face and eyes of the customer can be detected,
making possible a fine analysis of the direction of the gaze.
Additionally, information such as the identity, age or gender of
the customers can be extracted. However, this setup requires a
camera at each analysis position and is affected by occlusions
and has privacy considerations. Another popular setup is to use
top-view ceiling cameras. Top-view camera-based tracking is
a non-invasive method to estimate the trajectories of people in
indoor environments and can avoid the privacy and occlusion
problems suffered by front-facing cameras if multiple users
interact with each other. A single camera can analyze several
spots resulting in cost-effective solutions. The drawbacks are
that the system can not capture the face/eyes of the customers,
so information such as age and gender can not be determined.

In [1], a study of digital signage audience measurement
using cameras located at the signage displays and facing the
customers is presented. Temporal metrics of a persons Dwell
time, display In-view time and Attention time are extracted
by body and face detection and head pose estimation. An
estimation of the gender and age of the customers are also
obtained. A new approach to automatic modelling of a retail
store consumer behaviour based on audience measurement
data is introduced in [3]. Among other parameters, the In-
view and Attention time have been used. They show that under
controlled environment the viewership data can be used to
predict purchase decisions.

Eye-tracking technology has been used to analyze the direc-
tion of the customer gaze and to determine if he/she is actively
looking at a given sign or product. For instance, [4] investigate
the visual saliency of in-store signage and products and how
this saliency affects to the customer decisions. The analysis
is done by using data from eye-track and sales data from
grocery stores. Eye-tracking is also used in [5] to investigate
the role and limitations of peripheral vision for preference-
based choice tasks in a real supermarket setting.

RGB-D cameras are a choice in many works [6], [7],
[8], [9] because the ability to capture depth information
additionally to RGB significantly simplifies segmentation of
the persons’ bodies and limbs, allowing a more precise and
powerful analysis. In [6], in addition to a sparse array of
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RGB-D cameras, other sensor modalities (active radio beacons
emitted by customers mobile devices) are used to determine
the customer localization in the store. This allows to capture
information of the consumer activities in the store.

A popular use of RGB-D sensors is to place them as top-
view cameras. For instance, in [7] a RGB-D camera is lo-
cated above a shelf. Several customer behaviors are analyzed,
including the reaching gesture, browsing and weighing up a
book, etc.. Their method estimates which shelf the customer
reaches as well as the gesture itself. A related approach is
the one in [8] where a real-time human posture and activity
recognition system is proposed, with a single top-view depth-
sensing camera. This method is capable of tracking users’
positions and orientations, as well as recognizing postures and
activities (standing, sitting, pointing, etc.).

III. ORIENTED TRAJECTORIES

Our primary analysis is based on the computation of the
Dwell, In-view and Attention times from the oriented trajec-
tories. The oriented trajectories are computed by determining,
at each frame captured from a top-view camera, the position
(2',y’) and head orientation of the user, relative to the room
coordinates. For simplicity, we assume a rectangular room and
the camera to be aligned with the room.

A person inside the room can be parametrized using an state
vector X:

x=[p,v,v,9] (D

where p' = (2/,y’) indicates the position of the person
in the room coordinate system, v is the direction defined
by the person’s trajectory, v is the instantaneous velocity of
the person and ¢ is the angle of the head, also in the room
coordinate system (see Fig. 1 (a)).

An oriented trajectory is defined as the temporal sequence
of states for all the times instants k£ a person is in the field of
view of the camera: T = {x;}.

In order to be able to compute the temporal information
(Attention time and In-view time), for each of the objects of
interest (signs) we also capture at each time instant the angle
that forms the line connecting the center of the head and the
center of the sign, 0y (see Fig. 1 (a)).



IV. TEMPORAL ANALYSIS

The determination of the temporal metrics (Attention, In-
view and Dwell time) are based solely on the angles 6y, ¢y,
captured at each time instant. The Dwell time is simply the
total amount of time that the customer is visible by the top-
view camera. In-view time can be defined as the time the
user is able to see the sign. There are several definitions of
the In-view time. For instance, the Media Rating Council’s’
(MRC) guideline for an In-view ad [10] is when more than
50% of the ad is in view for more than 1 second. On the
other side, [1] defines the In-view time as the case when a
camera located at the top of the ad can detect the face of
the customer using a frontal-face detector. We will use an
approach similar to [1] as it can be related with the measured
angles 60, ¢. In fact, a typical frontal face detector such as the
one in OpenCV [11], [12] can detect slightly non-frontal faces,
up to angles or approximately 45°in both directions. This is
equivalent to consider that a customer has an ad in-view when
|6—¢| < 45° (See Fig. 2). To avoid spurious detections we will
keep the requirement stated in [10] that the sign has to be in-
view for more than one second. For this, we will analyze the
temporal sequence {xy}, classifying each instant as in-view
(x}f) or not-in-view. We extract the subsequences where all
consecutive angles are classified as in-view and that are larger
than one-second {x:"}; (j denoting sub-sequence index). Then
for a given trajectory ¢, the In-view time is:

T/ = Zlength({x}:’}iyj) -ty )
J

where ty is the duration of the instant (video frame) that
depends only on the video frame rate.

For the computation of the Attention time, the requirement
is that the customer is actively looking at the ad. In [1],
this was determined by estimating the gaze direction of the
customer using an AAM model of the face. Our equivalent
approach is to consider the cases where |# — ¢| is small enough
so the ad is inside the cone of vision where the customer is
capable of full attention, this is, when |0 — ¢| < 25°. We have
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derived this value based on studies of the physiology of the
visual field [13]. As previously, we classify each instant as
attention (Xj;) or non-attention and we keep the subsequences
of consecutive attention instants {x{ }; that are larger than one
second. For a given trajectory, the Attention time is:

Ty = length({xi}i;) -ty )
J

By summing over all the trajectories, the final values of the
Attention (7'%) and In-view (T") times can be computed:

T — Z T;a7 T — ZTzw (4)

V. EXTENDED ANALYSIS

In this section, a generalization of the concept of Attention
time is proposed. This metric can be computed for each point
inside the room, thus providing an estimate of the probability
of a group of persons to focus their attention on a given
region or spot inside a room. This metric includes some
important factors not considered in the attention time, such
as the distance from the customer to the evaluated point,
the trajectory velocity or the difference between trajectory
direction and head orientation.

The method is based on determining the trajectories and
directions of visualizations of all the individuals entering the
visualization zone. This determination of the direction of visu-
alization is performed by measuring the head’s orientation in
each instant of time. This is, we approximate the gaze direction
by using the direction of the head and no determination of
the direction of the eyes is performed, as it would require a
complex and expensive multi-camera configuration.

A. Instantaneous attention

Based on the previous considerations, an instantaneous
estimation of the probability at each location can be obtained.
Then, this probability will be integrated for the duration of
the trajectory of each individual and averaged for the different
individuals during the evaluation.

For each located head and in each time instant, the visu-
alization zone is determined by an angular sector (of angular
span 2) that goes from the head’s location until the limit of
the room in the direction of the head (See Fig. 1 (b)). We
consider that all points p = (z,y) inside this visualization
zone to receive an increase in the received attention that can
be explained by a ’visual ray’ from p’ to p.

Inside this angular sector, the attention of a person in any arc
at distance r is considered constant. Let A(r) be the amount
of attention over this arc and [ = r{2 the angular span of the
arc. Then, this property can be expressed by:

Alr) -1 =Gy 5)

being Cj a constant. Thus, if Q is fixed, A(r) = Cy/r. We
will assume that constant C is the same for all the different
persons. C; can be determined by normalizing the probability
maps at the last step of the process.



We consider the amount of attention to be maximal in the
direction of the head (¢) and to decay exponentially as we
look to a point at an angle « from this direction:

(loe — ¢l)

Ala) = Ay exp{ — T} (6)

where A represents the value of the attention at angle ¢ (the
head’s angle in the room coordinate system) and o determines
the velocity of the exponential decay.

In addition to the effects of distance and head’s angle, we
will consider also the velocity of the person and the relative
position of the head with respect to the person’s trajectory. We
consider that the degree of attention varies according to the

walking speed as:
A(v) = — 0
k4w

where « is a small regularization constant and v is given by the
difference of the positions of the head in successive frames.
When persons walk, they usually look into the direction
of their trajectory (represented by 1)). Deviations of the gaze
direction from the trajectory direction indicate a strong interest
in some object along this direction. The effect of the angle of
the head (¢) with respect to the trajectory direction () is
modeled by a function depending on this angular difference:

A(lY = ¢l) =1+ ol — ¢ (®)

The complete instantaneous attention function for a point
p = (z,y) given that the person’s head is located at p’ =
(2',y’) and oriented along ¢ will be obtained as a product of
all the partial attentions:

A(p, X) = A(r) - A(a) - A([¢ — ¢]) - A(v) ©)
B. Single trajectory attention

Individuals will move inside the room from a starting point
to an exit point. The trajectory followed by an individual ¢ can
be represented by the evolution of the state sequence at each
discrete intervals k:

E :Jj?k = {x?’.xf}

(10)

An example of a trajectory is presented in Fig. 6 (a).
Trajectory direction v is represented using a white line. The
red arrows indicate the instantaneous direction of te head ¢
and the yellow boxes mark some of the detections of the head.

The computation of the attention for a given trajectory
consists of integrating the attention function A in (9) in the
interval O : k. As the time is discrete, the integration is in fact
a summation.

> Ak (z,y, XF)
k

- % %:Ai(x,y,Xik)

Ai(p) (11)

This attention function represents an indication of the nor-
malized attention of an individual at a given point. This is, the
likelihood of each point to be observed by the individual.

C. Multiple trajectory attention

To evaluate the attention provided by multiple trajectories
(multiple individuals), the individual trajectories will be added
and normalized.

7;’:1 (12)
> > Alp)

i=1
VI. EXPERIMENTAL RESULTS
A. Computation of times

To validate the computation of view and attention times, a
set of recordings have been captured with a ceiling camera.
In these recordings, several individuals walk in predetermined
trajectories across the room, while looking at the four posters
that are affixed to each of the four walls of the room.

The experimental set-up is illustrated in Fig. 3. The figure
shows a top-view diagram of the room with four posters (red,
orange, white and green) on each of the walls. Note that the
fact that the walls are outside the field of view of the ceiling
camera is not a problem for the proposed algorithm.

The picture at the center of the figure shows the view from
the ceiling camera. The lines on the floor mark the trajectories
the individuals are asked to follow. The posters are colored A4
paper, glued to the wall at a height of 150 cm from the floor.

There are two types of trajectories: linear and circular. In
linear trajectories (marked on the floor by strips of tape of
different colors), the individuals are instructed to look at only
one poster for the complete trajectory. There are 4 stripes that
can be walked in two directions and four posters, resulting in
32 combinations. For the circular trajectories, the individuals
look consecutively at the nearest poster (a different one in each
quadrant of the trajectory).

Each trajectory lasts 12.5 seconds or 250 frames (recorded
at 20 Hz) in each trajectory. Individuals of different charac-
teristics have been recorded: men and women, with hair and
without hair, high and low, with a hat and without a hat.

For each recording, the position and the direction of the
head at each frame is manually annotated, to create ground
truth data of the trajectories. This will allow to validate the
method by comparing the times automatically computed using
the proposed algorithm and the ground truth data. As our goal
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Fig. 3: Experimental setup



Fig. 4: Example of trajectories. Vectors at each point of the
trajectory indicate the direction of the head

is to demonstrate the validity of the method to measure times,
we have opted for manual annotation instead of using any
of the existing tracking algorithms. For a real application,
there are several tracking algorithms for top-view cameras
(see for instance [14] for a review of methods) with excellent
performance that can be used for this purpose. In particular,
using a particle filter method it is possible to track both the
position and head angle simultaneously. Fig. 4 shows the
results of 2 trajectories (rectilinear and circular).

For each recorded trajectory, the manual trajectory annota-
tions have been used to compute the angles of vision from
each point of the trajectory to the corresponding posters.

Dwell, In-view, and Attention times have been calculated
as in (4). The Dwell time is based on the number of frames
in which the individual is completely detected. The In-view
time is calculated as the number of consolidated frames at
45°. A frame is considered as consolidated at a given angle
«a if during the next 20 frames (1s) the viewing angle |6 — ¢|
remains equal to or less than «.. Attention time is calculated by
using, a consolidation angle of 25°, as indicated in Section IV.
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Fig. 5: Temporal analysis of the circular trajectory

The results are summarized in Table I and Fig. 5. For
each trajectory and each target, the computed viewing times
(Dwell, Tid / In-view, TZ-” / Attention, T}') are shown. Times
are indicated in frames (fr) and their equivalent in seconds
(s). In the linear trajectory, the test person looks at the red
target during the whole recording. In the circular trajectory, the
person looks alternately and consecutively at the four targets.

The times computed for the linear trajectory correspond
completely with the indications given to the persons, showing
that only the red sign is viewed. In this case, the three times are
almost the same. In the circular trajectory, the In-view time is
shared among the different targets. The red target has a higher
viewing time because the person is walking more slowly in
this part of the trajectory. The Attention times are lower than
the In-view times, which is logical as the individual is slowly

TABLE I: Viewing times on a linear and circular path

Trajectory Target Values
T4 TV e
Rd  I50 $ha i
Lo orange 3465 00s 0005
White %00 000s 0,005
Green 3365 000s 0005
Red o550 1500 s
o DA R BE
white 555 Tise 0008
Green 550 130 1008

turning from one target to the another. The Attention time for
the white target is zero because the person has a tangential
trajectory too close to the wall and he’s never looking at the
target for more than one second, so the attention is never
consolidated. The other targets also have a small amount of
non-consolidated frames (see Fig. 5). To further validate the
method, 21 rectilinear trajectories and 20 different circular
trajectories have been analyzed, obtaining in all of them results
according to the instructions given to the test persons. This
show that the proposed method allows to measure Dwell, In-
view, and and Attention times in a simple way.

B. Computation of density of attention

The density of attention measure has been applied to a
practical case in which Ng different persons walk a room and
observe objects without any given guidelines. Fig. 6 shows an
example of a trajectory and all the Ny trajectories in the test.

As in the previous case, each frame has been manually
annotated with the position and head orientation of the per-
sons. The annotations have been used to compute individual
A;(p) (11) and total A(p) (12) attention functions for all
points in the room. The analysis is restricted to Ny regions of
interest (ROIs), r = 1--- Ng, as shown in Fig. 7 (in this case,
Npr = 3). We compute the amount of attention of a single test
person to a given ROI, A7 as the average of A;(p) over all
points p of the ROI. Similarly, the total attention over the ROI
A" is computed by summing the attentions.

(a) Single trajectory

(b) All trajectories

Fig. 6: Trajectories and head angles in a real scenario



PICTURE AREA 1

Fig. 7: Attention heath map and rectangular ROIs

The attention over a ROI, for one trajectory A} and for all
trajectories A", is computed as the average of A;(p) and A(p)
over all points p of the ROL

To test the method, each person ¢ assigns a value SV, in
the range [1-10] to each ROI r according to the interest paid
to this ROI. An external observer also evaluates the interest
OV that each ROI has raised in the person under test. The
evaluations are averaged to compute the interest function I

SVI +OVy
Nr
St SVE+ OV
k=1

I (%) = -100 (13)

The total interest over a region r is computed over all the
trajectories:

Nt

3 SV o,
Ngr Np
> 2 SV +ovE
k=11=1

I"(%) = - 100 (14)

The method is evaluated with the error between the interest
I" and the attention A" computed using the proposed method.

|1 — A"
I'r
To evaluate the method, we have recorded 4 persons walking
a total of ten trajectories through the room (this is, Ng = 4
and N = 10) and looking at the three ROIs (N = 3). The
results are presented in Table II.

B (%) = (15)

TABLE II: Interests values and attention function

ROl I" (%) A" (%) E™ (%)
1 3897 3858 1.01
2 2872 3157 9.03
3 3231 2985 8.24

Fig. 7 (left) shows a heat map showing in false color
the amount of attention received over the ROIs. Errors are
always below 10%, thus showing the ability of the method to
determine the regions that receive more interest.

VII. CONCLUSIONS

The present article presents a novel technique for the
measurement of human attention. This method is based in
oriented trajectories captured using a top-view ceiling camera
and presents several advantages over alternative methods of
determining human attention in indoor environments: For one

side, the use of a top view camera ensures that the method
is cost-effective, non-intrusive, occlusion-free, and avoids pri-
vacy concerns. On the other side, it allows to obtain not only
the metrics commonly used in determining the attention over
specific spots (i.e. signs) but also allows an extended analysis
of the customer behavior. The new proposed measures, also
based on the oriented trajectories, allow computing the atten-
tion for each point in the room. This additional analysis would
not be possible for systems based on front-view cameras. The
experimental validation shows that this method can effectively
be used to determine which areas received most attention or
to compare the relative attention received by different objects.
One possible drawback of the method is that it does not
allow to discriminate the attention given to objects located at
at a given place at different heights. In the future we plan
to investigate the use of RGB+D sensors to solve this by
estimating the pitch angle of the head. To analyze extended
areas, an extension to multiple overlapping cameras should be
investigated as well.
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