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ABSTRACT

The "old’ remote falls short of requirements when confronted with
digital convergence for living room displays. Enriched options to
watch, manage and interact with content on large displays demand
improved means of interaction. Concurrently, gesture recognition
is increasingly present in human-computer interaction for gaming
applications. In this paper we propose a gesture localization frame-
work for interactive display of audio-visual content. The proposed
framework works with range data captured from a single consumer
depth camera. We focus on still gestures because they are gener-
ally user friendly (users do not have to make complex and tiring
movements) and allow formulating the problem in terms of object
localization. Our method is based on random forests, which have
shown an excellent performance on classification and regression
tasks. In this work, however, we aim at a specific class of localiza-
tion problems involving highly unbalanced data: positive examples
appear during a small fraction of space and time. We study the im-
pact of this natural unbalance on the random forest learning and we
propose a framework to robustly detect gestures on range images in
real applications. Our experiments with offline data show the effec-
tiveness of our approach. We also present a real-time application
where users can control the TV display with a reduced set of still
gestures.

Categories and Subject Descriptors
[Interactive media and games]

General Terms
Human Computer Interaction, Random forest, gesture recognition,
object detection, range data

Keywords
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1. INTRODUCTION

Digital television is definitely out of production studios and into
the consumer market. True digital convergence provides increased
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flexibility for accessing a large variety of content from the liv-
ing room instead of from the office desktop. Emerging technolo-
gies and concepts such as format-agnostic production or layered
scene description enlarge the range of options being offered to the
viewer. With such increased offer and flexibility, the old remote,
designed to command station and volume adjustments, fails to meet
requirements of increased interaction. Tablet displays have been
successful introducing a new paradigm in gesture based interaction
(e.g. muti-touch [1]) to counter the absence of screen pointers, but
living-room displays rather require touch-less interaction.

Gesture localization and recognition methods are increasingly tak-
ing an important role within human-computer interaction systems.
In fact, these methods are becoming part of commercial systems
for interactive creation and display of media content [12] or gaming
applications [7]. One of the key elements towards their applicabil-
ity in real world problems is the irruption of low-cost or consumer
depth cameras, which have paved the way to cope with critical il-
lumination problems of classical vision approaches.

In situations when motion does not play a semantic role, gesture
detection and localization is a particular case of an object detection
and localization problem. Take for instance hand digits; motion is
present when changing from one digit to another, but it does not
provide any meaning. Indeed, one is interested in retrieving the lo-
cation of the hand poses contained in an alphabet of gestures. This
kind of gestures turn out to be very convenient for interactive appli-
cations, since they can effectively reduce user fatigue, i.e., to avoid
the gorilla arm syndrome. A challenge of such a gesture localiza-
tion problem is that natural scenes present cluttered backgrounds
and moving objects, and on top of that, still gestures may usually
appear as objects of small size, and thus represented by a few pix-
els.

1.1 Related work

The state-of-the-art basically focuses on recognition rather than on
localization. Kollorz et al. [6], recognize still hand gestures by
using a Time-of-Flight camera. In their approach, they use projec-
tions of the image and optional depth features in combination with
a nearest neighbor classifier. Similarly, Ren et al. [11] recognize
hand gestures with a modified Earth Mover’s Distance. Both ap-
proaches are limited by its strong dependence on the hand segmen-
tation, thus being prone to errors under clutter or complex scenes.

Regarding object detection and localization methods, random forests
and their variants have attracted the attention of the image process-
ing and computer vision community [2, 14, 5] due to its excellent
performance for classification and regression tasks. Demirdjian and



Chenna [3] proposed a temporal extension of random forests for
the task of gesture recognition and audio-visual speech recognition.
However, as before, their gesture recognition approach strongly re-
lies on spatial and temporal segmentation. In fact, this approach is
not shown to work properly in real applications, since experiments
are performed on temporally and spatially segmented sequences.
Shotton et al. [13] use random forests on range data to detect body
parts. Their ultimate goal is to estimate human poses, which at the
same time may pave the way towards pose-based gesture recog-
nition. However, their approach relies on a dense labeling of the
human body in order to detect each part. Gall et al. [5] propose
a Hough forest framework for dealing with different tasks, includ-
ing object detection and localization. Although they overcome the
problem of the dense labeling, their Hough forest framework is
tested on standard datasets where objects of interest (positive) have
arelatively large size compared to background (negative).

1.2 Proposal

In this paper, we present a gesture localization method based on
random forests. Our algorithm relies on depth data captured from a
single sensor and does not require a dense labeling of data for train-
ing. Furthermore, our method does not require neither segmenting
the body parts performing the gesture nor temporal segmentation.
The proposed approach admits a broad range of still gestures due
to two main reasons. First, one can define gestures with different
body parts or sets of body parts. For instance, still gestures can be
performed with one hand, two hands or hand and head. Second, our
approach can discriminate rather subtle differences between similar
gestures. Our contributions are the following:

e Our approach implies a novel formulation of gestures as ob-
jects, allowing us to constrain the problem of localization

while keeping a high user acceptance and suitable ergonomics.

e We present an efficient tree-wise boosting framework for ran-
dom forests that addresses highly unbalanced localization
problems, where positive classes are represented by a few
pixels and appear during a few frames.

e We experimentally show that, compared to common training
strategies, boosted learning of trees selects the best training
samples, thus preventing from manually selecting the best
training patches per class. Compared to other boosting strate-
gies for random forests, our approach achieves higher gener-
alization performance.

e We propose a depth-invariant gesture localization method that
integrates votes casted by the random forest. Our method
takes into account temporal consistency of the votes in a very
efficient manner.

e We present an online implementation of our approach that
serves users to control an interactive display by means of an
easy-to-learn reduced set of still gestures. This interactive
display is part of the system developed within the European
project FascinatE [4].

2. CLASSIFICATION FORESTS

Classification forests are a specific class of random forests [2] de-
signed for classification tasks. Classification forests are an ensem-
ble of m classification trees, which are binary trees. Nodes n in
each tree have a learned probability distribution py, (¢|I¢, x) that re-
flects how likely is a class c given a pixel x in the image I; . These

(b)

Figure 1: Gesture Localization with Random Forests (best
viewed in color). (a) A number of votes (green dots) are casted
for the target gesture (b) votes are aggregated to estimate a
probability density (overlaid in red on the input depth map)
and a localization is estimated (green square).

probability distributions are learned by recursively branching left
or right down the tree, according to some node-specific weak clas-
sifier, until some stopping criteria are met and thus a leaf node is
reached. Weak classifiers associated to each node are binary func-
tions of feature vectors obtained from images Z. The robustness of
forests is based on the combination of several classification trees.
Usually, one performs this combination by averaging the distribu-

tions over the leaf nodes {l1, - - - ,las } reached in all the M trees:
M
plels,x) = 4 z_jlpzm(cut,x) M

Each tree is trained separately with a small subset of the training
data obtained by sampling with replacement. Learning is based
on the recursive splitting of training data into left £ and right R
subsets, according to some binary test f and a threshold 6. The
binary test is a function of the feature vector v obtained from each
training example.

At each node, a test f and a threshold 0 are randomly generated,
and the one that maximizes some criteria is selected. We employ
the information gain as a test selection criterion:
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where | | denotes the number of elements of the subset and H () is
the Shannon entropy of the classes in a subset. The process con-
tinues until a maximum depth D is reached or the information gain
cannot be further maximized.

2.1 Tests and Features

To build our random tests, we employ the depth-based features pro-
posed in [13]. Specifically, for a given pixel x the test f has the
following expression:

v

where dp is the depth map associated to image I and u and v
are two randomly generated pixel displacements that fall within a
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Figure 2: Tree-Wise Boosting approach for Random Forests (best viewed in color). Green thick arrows denote the samples used
for training each tree. These samples are obtained by sampling with replacement from the whole training set. Red dashed arrows
indicate the samples that have been misclassified by the decision tree. These samples come from the out-of-bag set, indicated by the

blue dotted arrows.

patch size. Pixel displacements are normalized with the depth eval-
uated at pixel x in order to make the test features invariant to depth
changes.

This approach helps in automatically learning the most significant
low level configurations of the interest objects for detection.

3. TRAINING DETECTION FORESTS

In the following, we present detection forests as a particular ap-
proach of classification forests towards localization of gesture classes
in range data. In this work, we study the performance of classifi-
cation forests trained for all the C' classes and also C' — 1 forests
trained with each positive class against the rest. It has been re-
ported [10] that class-specific forests outperform multiclass detec-
tors, although their computational complexity grows linearly with
the number of classes.

‘We focus on highly unbalanced class distributions, where the classes
of interest, or positive classes, are a minority in comparison to
the negative class, both spatially (positive classes occupy a few
pixels) and temporally (positive classes appear in a few frames).
These highly unbalanced distributions are found in real world ges-
ture recognition and localization applications. On the one hand,
users are not constantly performing gestures, hence, the distribution
of gesture classes (positive) with respect to non-gesture (negative)
is biased towards the latter. On the other hand, the actual appear-
ance of a gesture may be represented by a relatively low number
of pixels, thus increasing the bias towards negative classes. This
unbalance makes that low false positive rates constitute actually a
large number of false positive votes. Taking into account this phe-
nomenon is highly important during training, since machine learn-
ing approaches will generally try to maximize the classification
rate, rather than the true positive classification rate. This basically
means that our objective is to minimize the false positive rate while
keeping a high classification rate.

In order to train a random forest, one usually samples a subset of the
training data for the construction of each tree. If one employs this
method on highly unbalanced datasets, the forest learning is clearly
biased. To address this problem, one can sample a small fraction
of the data and ensure that each class obtains approximately the
same number of training samples, i.e., the distribution at the root
node is approximately uniform. We compared this approach with a
weighted random forest scheme [14] based on weighting the posi-
tive examples with the inverse class frequency. Balancing the num-
ber of training samples presented a better performance since the
unbalance is so large that weighted random forest overpowers the
response on positive classes, thus increasing the false positive rate.

While balancing reduces the bias, it is still a common procedure for
training the forest. Indeed, balancing the training samples generally
presents the drawback of sampling highly correlated positive sam-
ples while loosely sampling the negative class. This drawback has
a greater impact on class-specific learning schemes, where loose
sampling has the effect of missing relevant samples of the negative
class that may effectively reduce the false positive rate. In order to
overcome this problem, we propose a boosted learning scheme. In
[5], boosted learning is applied to Hough forests. In their approach,
a forest of 15 trees is trained by first learning a sub-forest of 5 trees
and then picking a fixed number of positive and negative samples,
consisting in the samples that are harder to classify. These samples
are used to train the next 5 trees, and the whole process is repeated
in order to train the remaining 5 trees. In this paper, we propose a
different approach to boost the trees. Our approach is designed in a
tree-wise manner: in [5] base learners are subforests, while in our
approach base learners are decision trees. Hence, in our training
approach, each tree is tested with training data separately, while in
[5] several trees are evaluated as a forest and hence, they can be
tested with training data multiple times.

Our method performs training of detection forests as follows (see
Fig. 2). We train the first tree with a balanced set of samples from



each class. Once the tree is trained, we evaluate it against the out-
of-bag set [2]. The wrongly classified samples are added to the
training set of the second tree (up to a maximum number of training
samples). This new training set is completed by sampling with
replacement from the full training set until balance is achieved. We
train the second tree with this training subset and we repeat the
process until the forest is fully trained.

In the proposed approach, we do not attempt to balance the wrongly
classified samples. This is because the majority of wrongly classi-
fied samples are false positives that we want to incorporate into our
training subsets, in order to have a more relevant set of negative
examples. Another difference with respect to [5] is that we ex-
clusively use the out-of-bag set. This increases the efficiency (we
evaluate less samples) and, together with the tree-wise approach,
allows trees to be more uncorrelated.

4. GESTURE LOCALIZATION

As introduced in [13], and made explicit by Eq. 3, working with
depth data allows detection and classification algorithms to deal
with world coordinates, avoiding problems related to apparent size
due to the projection process in visual cameras. Therefore, analy-
sis, detection and classification of test features is easily made depth-
invariant.

For gesture detection and localization, a set of patches are pro-
vided to the detection forest, which casts a vote whenever a positive
class has more probability than the negative class and other positive
classes. Fig. 1 illustrates the casted votes for a positive class in a
class-specific learning example. To detect a gesture, we first esti-
mate a probability density using the votes within a frame and we
take into account temporal consistency by recursively updating this
distribution with votes aggregated from past time instants. In order
to construct the probability density, we use a Parzen estimator with
Gaussian kernel K:

p(c|l) = Zp(c|lt,xi)K(x—xi) 4)

Note that the resulting density is not a probability measure, since
it does not integrate to 1. In any case, it allows us to evaluate (up
to proportionality) how likely is an image region to be represent-
ing a gesture. In order to account for the time component of the
approximated density, we sequentially update p(c|I;) as follows:

P'(cll) = ap(c[l) + (1 — )p/(c[Li-1) )

This is a simple yet effective method to keep temporal consistency
of the casted votes, as it requires storing a single probability map.
An adaptation rate o = 0.8 works well in practice, as it prevents
several false positives while avoiding a delayed response.

Finally, we compute the pixel location g. of a gesture class ¢ > 0
as the pixel location with maximum probability:

g. = argmax p/(c[1,) ©)

we ensure that such a maximum represents a target gesture by thresh-

olding the probability volume V' computed by locally integrating
the estimated pseudo-probability measure :

V=" p(cL(x) @)

xES

where S is a circular surface element of radius inversely propor-
tional to the depth, and centered at the global maximum, i.e:

S={v | lIv—gel <r(d(g))} ®)
In this way, the localization is depth-invariant.

S. EXPERIMENTAL RESULTS

We conduct experiments on two different setups. Both setups, how-
ever, aim at a gesture-based control of a display, an increasingly
targeted application for commercial audio-visual systems. The first
setup consists of offline recordings. The main objective of the ex-
periments in the first setup is to provide a quantitative performance
of our approach in front of existing training methods. The second
setup is an online demonstrator. For this second setup, we describe
how easily we bring our approach to a real-life application. The
qualitative results on this online setup aim to show the potential of
our approach. Our method has been developed within the frame-
work of European project FascinatE [4] and therefore, some of the
specificities of our experiments aim to respond to the needs of the
project. In spite of that, we believe that our still gesture approach
towards interaction can be integrated in many different setups hav-
ing similar objectives.

5.1 Offline setup

The first setup comprises offline processing on a range data dataset
recorded with Kinect [7]. The target scenario simulates a gesture-
based interface to control a display. The design of this interface
considers some additional gestures such as scrolling or zooming
the displayed content. For that matter, the data recorded in this
setup contains a great variety of negative examples. Our objective
is to detect a subset of events or gestures whose objective is to
trigger different control modes. In this setup, we focus on three still
gestures namely FingerOnMouth, HandOnEar and Tee (see Fig. 3).
Their objective is to trigger events such as pause/play or to control
the volume, and they involve one or two hands and/or the head.
Although it is a small number of gestures, the main challenge is to
correctly detect them in front of a potentially huge set of negative
classes, i.e., distractors such as other gestures or poses that do not
trigger events. Consequently, as we will be assessing precision and
recall as in a detector, three gestures suffice to quantitatively test
our approach.

We record 4 training sequences where a set of gestures and ac-
tions, including the 3 target gesture classes, are performed !. In
each training sequence a single subject performs the gestures with
the same hand (right or left depending on the gesture) while sit-
ting or standing up in front of a display. Additionally, we record
2 challenging test sequences containing 4 subsequences. In each
subsequence an actor enters the scene, i.e., in the first subsequence

!The authors will make the video data and annotations employed
in this paper publicly available



Figure 3: Training examples for the offline experiments. Left:
FingerOnMouth Middle: HandOnEar Right: Tee.
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Figure 4: Performance for each gesture class in the class-
specific scheme. Top: Balanced training. Middle: Boosting of
forests, as proposed in [5]. Bottom: Our boosted training. Tar-
get gestures: FingerOnMouth (solid blue), HandOnEar (dashed
red) and Tee (dotted black).

only one actor performs the actions, while in the 4-th subsequence
4 actors are present in the scene and performing gestures. In the
test sequences, actors perform actions with both the right and left
hand (see Fig. 6). Hence, testing data contains great changes in ap-
pearance and clutter in comparison to the training data. In overall,
we use 11 minutes of range video data for training and 5 minutes of
test data. To the best of our knowledge, there is no similar dataset
in the literature. Existing datasets focusing on American Sign Lan-
guage [16, 9] or one-shot learning [8] do not provide the testbed for
evaluating the robustness of an approach against clutter and distrac-
tors. Also, considering the FascinatE project framework, there is a
explicit need for collecting this data for testing purposes.

Using this data, we test our approach. The employed detection
forests have 15 trees with maximum depth 20, and each tree is
trained with 10000 examples per class. The pixel locations of both
training and testing patches are collected in foreground regions.
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Figure 5: Performance for each gesture class in the multiclass
scheme. Top: Balanced training. Middle: Boosting of forests, as
proposed in [5]. Bottom: Our boosted training. Target gestures:
FingerOnMouth (solid blue), HandOnEar (dashed red) and Tee
(dotted black).

Foreground regions are computed by thresholding the depth with
a single background image. For testing, foreground regions are
densely sampled at 1/16th resolution (1 of every 4 pixels). Note that
such a segmentation is in fact not required by our algorithm, whose
binary tests work on unsegmented data; the foreground/background
segmentation is used to constrain the test regions. In the training
phase, we randomly pick a maximum number of patches per class
out of this dense sampling. In order to detect gestures performed
with the hand that was not in the training set, we simply flip the test
patches horizontally.

We train class-specific and multiclass forests with the balanced
sampling method and the boosted learning method proposed in this
paper. Additionally, we implement a boosted approach based on
[5]. Specifically, we employ 10000 patches per class in order to
train a forest of 5 trees. Then we evaluate this forest with all the
training data, and we collect the 1000 examples per class that were
misclassified with more error. For each one of the next 5 trees,
we randomly sample 9900 patches per class, in order to complete
the training subsets of each decision tree. The process ends when
the whole forest is fully trained. In all cases, we employ squared
patches of size 85x85 pixels, as we concluded, after quantitative
experiments, that this patch size presents an accurate pixel-wise
classification.

To measure the accuracy of our method, we consider a correct lo-
calization if the estimated gesture and the actual gesture belong to
the same class and if the estimated location is within a radius of 10
pixels. We test several thresholds for the pseudo-probability vol-



Figure 6: Examples of successful localization results for the offline experiments. Top row: FingerOnMouth Middle row: HandOnEar

Bottom row: Zee.

Seq. 1 Seq. 2
Class-Specific FingerOnMouth ~ HandOnEar Tee FingerOnMouth ~ HandOnEar Tee
Balanced 0.49 0.31 0.73 0.74 0.46 0.69
Boosted Forests[5] 0.55 0.59 0.97 0.48 0.22 0.46
Our Tree-Wise Boosting 0.81 0.65 0.95 0.94 0.57 0.85
Multiclass FingerOnMouth ~ HandOnEar Tee FingerOnMouth ~ HandOnEar Tee
Balanced 0.70 0.59 0.87 0.87 0.38 0.68
Boosted Forests[5] 0.42 0.62 0.89 0.29 0.17 0.29
Our Tree-Wise Boosting 0.74 0.57 0.94 0.90 0.41 0.63

Figure 7: Area Under the Curve (AUC) for balanced and boosted learning strategies.

ume V' (see Eq. 7) in order to compute the precision and recall per
each individual gesture class in the two sequences.

Localization results in the test sequences” are shown in Figs. 4,
5 and the corresponding Areas Under the Curve (AUCs) are pre-
sented in Fig. 7.

The proposed boosted learning outperforms the balanced learning
in the tested cases. Recall that, as mentioned in section 3, bal-
anced learning outperforms the weighted learning scheme proposed
in [14]. Surprisingly, we obtained poor results with the boosting
scheme inspired by [5]. Despite obtaining a notable accuracy in the
first sequence (and even obtaining the best localization accuracy for
the Tee gesture), it completely fails to localize gestures in the more
challenging sequence 2. These results indicate that using subforests
as base learners is prone to over-fitting when dealing with the huge
unbalance posed by real gesture localization applications.

We specifically observe that our boosted learning method notably
outperforms other approaches for class-specific training. Such im-
provement is due to the fact that the number of negative samples
is greater in the class-specific case (all the other gestures count as
negative). These results indicate that our tree-wise boosted learn-
ing is able to select better training samples when a huge number

%Videos with sample results can be found in :
https://sites.google.com/site/adolfolopezmendezphd/
gesture_localization_project

of them are provided to the method, and thus allows working effi-
ciently with small subsets of the training data.

The individual gesture class performance reveals that the detector
can provide excellent results with gestures like FingerOnMouth or
Tee. In contrast, the HandOnEar gesture is harder to localize due to
variations of pose among subjects. This suggests that such a gesture
requires more positive training samples capturing these variations.
We also see that the horizontal flipping provides an excellent ac-
curacy in detecting gestures that are performed with a hand that is
not in the training set, thus allowing a reduction in the number of
training examples.

The best performance is achieved with class-specific detection forests
in combination with the proposed boosted learning method. Using
this configuration, the average per frame localization accuracy for
all the classes and test sequences is 96.8%.

The presented detection forests have been implemented in C++,
with no optimization efforts, and the offline detection runs at an
average rate of 10 fps with the multiclass scheme in a 2.40GHz
CPU. Provided that we have employed 15 forests, with maximum
depth 20 and dense sampling, this is a satisfactory computational
performance, since one could achieve real-time performance for
the class-specific scheme by using less trees, by pruning the trees
in depth, by using a sparser sampling and/or by using regions of
interest to constrain the test locations.



5.2 Online Setup

We use our gesture localization approach to develop an online, real-
time TV control (see Fig. 8). In this scenario, a user asks for the
control by using a still gesture. Once he or she has the control,
the user can employ additional gestures in order to control the dis-
played content. The same gesture employed for taking the control
can be also used in order to release the control. For this online
demonstrator we require 5 still gestures (see Fig. 9):

e Tee : The same gesture employed in the offline experiments
(see Section 5.1). It is used by users in order to get/release
the control.

e HandOnEar: Serves users to raise the volume. Same ges-
ture employed in the offline experiments (see Section 5.1).

e FingerOnMouth: Users lower the volume with this gesture.
Also employed in the offline experiments (see Section 5.1).

e Cross: Employed in order to mute/activate the audio. This
gesture consists in crossing the index fingers of both hands.

e ParallelHands: This gesture is employed in order to pause
or resume the reproduction/streaming of some video content.
Users put their hands in parallel and approximately in front
of their face in order to perform this gesture.

The diagram in Figure 10 depicts how the online demonstrator
works. As abovementioned, the system starts in idle mode. In
this mode, the audio-visual content is displayed/streamed but users
do not have control over it. In order to control it, users have to
perform gesture Tee in order to switch to command mode. In this
mode, users can use the 5 available gestures to control the audio and
the video streaming/reproduction, or to simply release the control,
allowing any other subject to handle it.

We train class-specific forests for each one of the 5 available ges-
tures. To this end, we record new data where 5 actors perform
these gestures, as well as a number of distractors. These 5 actors
are recorded from 2 different viewpoints (see Fig. 11). In all the
recorded training sequences, actors are standing up.

In this online demonstrator, we do not rely on any kind of back-
ground learning. In order to approximately segment the scene into
relevant and non-relevant pixels (for the sake of efficiency) we sim-
ply threshold the depth using two values znear and zfar. Specif-
ically, we set znear = 0.8m and znear = 3.5m. In addition, to
further increase the efficiency of our real-time demonstrator, we
employ a head tracking algorithm [15] in order to track a user after
he or she gets the control (i.e., in the command mode, see Fig. 10).
The estimated head position is used in order to compute a bounding
box that restricts the forest evaluation to a reduced number of pix-
els. In this way, we can run up to 5 class-specific detection forests
in real-time without GPU implementation of our algorithms.

Note that the viewpoint of the Kinect sensor in the online demon-
strator differs from the training data (see Figs. 8 and 11). Fur-
thermore, in our demonstration, people are sitting most of the time,
hence the lower body pose or even the torso inclination differ from
the training data.

A video showing the performance of this demonstrator can be found
in http://vimeo.com/43476448.

Figure 8: Online demonstrator. Left: Setup; the demonstrator
runs in a single laptop (placed next to the TV). Right: Detail
of the displayed content and the user feedback. Icons on the
left and right margins of the screen are not used for our still
gesture demonstrator. The icon on the bottom center (above
the bar) is used to give feedback about still gesture commands
(the icon shows that the user is lowering the volume). The bar
on the bottom shows the 5 available still gestures.

Figure 9: Still gestures employed in the online demonstrator.
From left to right: Tee, HandOnEar, FingerOnMouth, Cross
and ParallelHands.

During our online tests with the presented demonstration, we ob-
serve that the system responds accurately and fast. This high per-
formance is especially remarkable for gestures Tee, ParallelHands
and Cross, despite FingerOnMouth and HandOnEar show also a
high detection accuracy. In tests with novice users, we observe
that these gestures are easy to perform, and thanks to the almost
inexisting number of false positives, the application allows to ef-
ficiently learn to use them for controling the audio-visual content.
Furthermore, we did not observed signs of fatigue, as most of the
time users can be in a relaxed position. However, a more thorough
usability study has to be undergone in order to assess our first ob-
servations on learning curves and fatigue.

Our online system presented some minor fail cases. We observed
some sporadic confusion between Cross and Tee just after taking
the control (entering the Command Mode). Specifically, some users
tilted their Tee gesture right after entering the Command Mode, and
due to this change in the inclination of the gesture, a mute event
was triggered. This was not critical, since the action can be easily
undone by performing an additional Cross gesture. Furthermore,
by setting an appropriate timeout after entering in the Command
Mode, this problem would be solved. We also observed some de-
lay for some HandOnEar performances. However, all the users
succeeded in raising the volume by using this gesture.

Our online system has been installed in several rooms with differ-
ent screens and beamers, and in particular, it has been successfully
tested and reviewed for the FascinatE project. During these project
tests, new users were able to quickly learn the proposed gestures
and to successfully control displayed audio-visual content.

We deployed the whole online demonstrator in an Intel i7 2.20Ghz
laptop, with 8GB RAM. Despite the available cores, we are able
to run 4 class-specific still gesture localizations on a single core
in real-time, with no optimization efforts. Provided that random
forests are highly parallelizable, a GPU implementation might yield
super real-time performance.
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Figure 10: Operation diagram of the online demonstrator.
Rounded nodes denote operation modes, while squared nodes
denote events.

Figure 11: Viewpoints employed during the training towards
the online demonstrator

6. CONCLUSIONS

We have presented a novel approach towards gesture localization
for interactive displays. We propose a boosted learning frame-
work for random forests, aiming at accurately localizing gesture
and object classes in highly unbalanced problems, where positive
classes barely appear in natural images, thus requiring a special
attention with false positives. We have also proposed a depth-
invariant method to robustly transform the votes casted by the forests
into pixel locations. Our experiments, aiming at real gesture-based
applications, show the effectiveness of our method and the robust-
ness against clutter and moving objects. We have presented a real-
time demo that has been successfully tested and reviewed for the
european project FascinatE.

Provided that we obtained encouraging results on real scenarios,
future work involves undergoing a thorough user study. The user
study aims to find a set of easy-to-learn still gestures providing ex-
cellent detection accuracy and interactivity. We have to constrain
this set to have a reduced number of gestures, such that users can
easily remember the gesture-based controls.
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