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Abstract

We present a novel method for upper body pose estima-
tion with online initialization of pose and the anthropomet-
ric profile. Our method is based on a Hierarchical Particle
Filter that defines its likelihood function with a single view
depth map provided by a range sensor. We use Connected
Operators on range data to detect hand and head candi-
dates that are used to enrich the Particle Filter’s proposal
distribution, but also to perform an automated initializa-
tion of the pose and the anthropometric profile estimation.
A GPU based implementation of the likelihood evaluation
vields real-time performance. Experimental validation of
the proposed algorithm and the real-time implementation
are provided, as well as a comparison with the recently re-
leased OpenNI tracker for the Kinect sensor.

1. Introduction

The technological evolution of sensors, such as cameras
or microphones, has paved the way towards the research on
new Human-Computer Interaction (HCI) paradigms based
on human language. Among the possible research lines de-
rived from this evolution, computer vision plays a major
role with areas such as tracking, gesture, activity and ob-
ject recognition. When attempting to interpret human activ-
ity and gestural language, human body tracking becomes a
fundamental task, since it provides a markerless estimation
of limb positions and even the anthropometric profile, i. e.,
limb sizes. In the last few years, the increasing computation
power and especially Graphics Processing Units (GPU), as
well as the eclosion of a wide variety of cameras, have
brought human body tracking to a new level. Consequently,
the applicability of human body tracking has gone beyond
activity understanding. Recent experiments have proved its
value in object recognition tasks [9] and in user authenti-
cation [8]. However, the paramount example of the current
relevance of human body tracking is found in the mass mar-
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Figure 1. a) Human Body Model overlaid on an input image). b)
Data Point Cloud and overlaid pose estimate

ket gaming: Microsoft’s Kinect [15] allows people to use
their body instead of the common controller, thus enhanc-
ing the gaming experience.

Human body tracking is a challenging problem that in-
volves estimating a high-dimensional vector of pose param-
eters using video. Moreover, the pose estimation problem is
strongly linked to the estimation of the anthropometric pro-
file. Retrieving the upper body (torso and arms) deserves
special attention due to its importance for the most common
body language forms. However, although one could expect
to be a simpler problem, occlusions of the lower body and
partial occlusions of the torso make upper body pose and
shape estimation a challenging problem in realistic environ-
ments.

In this paper, we present a novel method for upper body
pose estimation with online initialization of pose and an-
thropometric profile. The main contributions of this paper
are the following:

o Efficient use of geodesic saliency on range data and its
introduction in a Hierarchical Particle Filter through
Inverse Kinematics.

e An unsupervised method for online initialization of
both pose and anthropometric profile (in terms of bone
elongations) that does not require a specific (usually
inconvenient) pose to start tracking.

e An optimized implementation of the likelihood evalu-
ation that allows running our system in real-time.



Related Work Human body tracking is a hot topic within
computer vision, as the survey by Moeslund et. al [19] and
more recent approaches [10, 4, 5] show. In general, all
these approaches differ in the body modeling framework,
the method employed to measure how likely is a pose given
an image or a set of images, and the technique used to find
the optimal pose provided such a metric.

In this paper, however, we would like to emphasize the
particular evolution of single-view approaches, currently
linked to the technological improvements on range sensors:
stereo cameras, Time-Of-Flight (TOF) cameras and Struc-
tured Light cameras. Bernier et al. [5] propose a body part
assembly method based on Belief Propagation that relies on
depth and color cues obtained with stereo cameras. Hauberg
and Pedersen [ 13] also use stereo cameras in their approach,
but they build their method upon a well-defined articulated
body model. They use Particle Filters (PF) and novel spatial
predictive distributions to tackle the pose estimation prob-
lem. A main drawback of stereo cameras is that the qual-
ity and quantity of depth data gets rapidly degraded in ab-
sence of textures and under generic lighting conditions. To
tackle such a sensor problem, authors usually rely on TOF
and Structured Light sensors. In [12, 17], Iterative Clos-
est Point (ICP) algorithms are used to fit the surface of a
model onto captured depth data. However, since ICP is es-
sentially a local optimization method, it usually gets stuck
on local minima. Ganapathi et al. [ 1] employ data from
a TOF camera to discriminatively train a set of body part
detectors. Their approach is based on propagating the be-
lief of body part locations through the kinematic chains of
an articulated model. Siddiqui and Medioni [22] propose
an MCMC-based algorithm that integrates body part detec-
tors in order to perform real-time upper body tracking. In
their work, they also provide a method to estimate the an-
thropometric profile (i.e. bone elongations), but they do not
perform such an estimation online.

More recently, Kinect [15], a particular depth sensor
based on structured light technology, has been made avail-
able on the mass market. Together with the sensor, two in-
novative algorithms for human body tracking have stood out
on their own among the state of the art [20, 14].

2. Hierarchical Particle Filter with Geodesic-
Driven Proposals

In order to estimate the human pose, we adopt an
analysis-by-synthesis approach whose central element is a
human body model. This model comprises an articulated
structure representing the underlying skeletal structure of
the human body, and a set of cylindrical shapes with ellip-
tical cross-sections that model the limb shapes (see Fig. 1).
The rendering of the model is necessary for the likelihood
evaluation, as it will be detailed in Section 2.1.

We follow the twists and exponential map formulation

[6] to parameterize human poses as a global translation and
rotation and a set of joint rotations. Global translation and
rotation are associated to a root joint from which siblings
grow to encode the full skeletal structure in the form of a
Kinematic Tree, a directed graph structure that efficiently
represents the hierarchical nature of the human body model.

Pose estimation with such a hierarchical representation
of joints is attained by a Hierarchical Particle Filter (HPF)
[4]. Let x be the vector containing the model parameters:
global translation and rotation and joint rotations. Provided
that at each time instant ¢, a set of observations z; are pro-
duced by the state vector x;, the goal is to recursively esti-
mate the posterior distribution p(x;|z1.;) given the observa-
tions up to time t. The noteworthiness of the HPF resides
in tackling the problem by dividing the state space vector
into hierarchical partitions, thus providing an efficient solu-
tion to the curse of dimensionality in Particle Filters [3] and
a reasonable approach with the employed body representa-
tion.

Let us define a set of L hierarchical partitions or layers,
where the tuplet {Xft o> w@ , } denotes particles and weights in
the [-th layer. In each one of these layers, the filtering step
focuses only on a subset of variables ;. In our method,
we opt for dividing the upper body model into 3 different
partitions: torso + head, left arm and right arm. Therefore,
in the first layer we sample and filter torso particles, in the
second we do the same with left arm particles, using the
torso filtered state, and in the last layer we filter and sam-
ple right arm particles, using the filtered state of the rest
of model variables. This yields a sufficiently low number
of dimensions per partition. In this context, sequential im-
portance sampling is divided into a layered filtering where
the importance weights in each layer | can be formulated as
follows:

, Z1.4|x¢ x! |x?
w;l ~ ( Lt‘it,l)g?( t,l| t,l—l) forl>0 (1)
q(xt,l|xt,lfl7zlit)
) Z1.4| X1 xi o |xt
wé,o ~ P(Z1:4 t,O)p( t,0| t71,L71) forl=0 (2

q(Xi’0|Xi71’L71, Zl:t)

where the numerator contains the product of the likeli-
hood and the prior, and the denominator contains the pro-
posal distribution. Note that we have assumed Markovian
state transitions, resampling in every layer and that the pro-
posal distribution ¢() factorizes such that we can perform
sequential importance sampling within layers.

The common choice for ¢() is the prior distribution
p(x!,|xi_, ), yielding a direct proportionality between the
weights and the likelihood term. Nonetheless, since this
prior is normally modeled by a Gaussian distribution, the
HPF particle propagation step usually becomes blind to
data.
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Figure 2. a) Depth map (depth maps shown in this paper are con-
veniently clipped and scaled for better visualization in grayscale
images). b) Extracted silhouette.

In our method, we exploit geodesic saliency on range
data to obtain cues about the location of head and hands;
these cues are introduced in the prior distribution, thus re-
ducing the blindness of the filter. This approach is detailed
in Section 2.2.

Finally, in the last layer, we compute the pose esti-
mate. The usual choice for this estimate is the mean of
the weighted samples. Nevertheless, the proposed modi-
fications on the propagation step might yield increasingly
multimodal distributions, hence we opt for providing the
final pose as the particle with maximum weight (MAP esti-
mate) to avoid drifts in the mean.

2.1. Likelihood Definition

In order to estimate the upper body pose, our method re-
lies on a single range sensor providing a depth map D; at
each time instant ¢ (see Fig. 2a). Using learnt depth back-
ground models, we perform foreground subtraction by sim-
ple thresholding. Assuming that only one human is to be
tracked, a largest component filtering procedure is applied
to remove spurious blobs. This procedure yields a mask
for the actual depth data representing the human (see Fig.
2b). To effectively compare these data with the state space
hypothesis represented by particles x%, we render the cylin-
drical shapes with elliptical cross-sections attached to the
model bones on an image of the same resolution as the in-
put depth map.

As no real likelihood is available, we define the likeli-
hood term as a monotonic decreasing mapping of a sum of
cost functions:

e~ (rea(Dexi )+ Aze (Daxi )+ Ascy(xi,))

3)

p(Zt|Xi,l) ~

where ¢4 denotes the cost function computed from depth
data, cy is the cost function computed with foreground sil-
houettes, ¢, is a cost term that takes into account physical
constraints such as interpenetration of limbs or wrong arm
configurations, and \; are multipliers reflecting the impor-
tance of each cost term in the final likelihood evaluation.

Figure 3. Examples of 2D Bounding Boxes for both right and left
arms (overlaid on the input depth data). Only foreground depth
pixels enclosed in the respective bounding boxes are used to eval-
uate the likelihood of each arm particles.

Cost cq4 is the mean of pixel-wise squared differences be-
tween data and the model, thresholded by a maximum dis-
tance d2,,, (each missed depth pixel adds d?,,,, to the cost).
Cost ¢y is a pixel-wise XOR between data and model sil-
houettes. Model silhouettes and depth values are efficiently
obtained by means of the OpenGL depth buffer [21].

HPF likelihood functions in each partition should be
properly peaked around the same region of the posterior
restricted to those state variables in the partition of inter-
est. To achieve such a property, we adopt a variant of the
strategy proposed in [18]. Using the pixel positions of the
joints in the previous frame, we define 2D bounding boxes
of fixed size enclosing them all (see Fig. 3). In this way,
we restrict the likelihood evaluation to a local region of the
depth map that is likely to provide the most meaningful in-
formation for that partition. The reason for choosing a fixed
size bounding box is the straightforward application on the
implementation of this method in a GPU.

GPU implementation. Based on existing GPU imple-
mentations for PF algorithms aiming at articulated track-
ing [7], we propose an implementation for HPF-based hu-
man body tracking with range data. Specifically, we opt for
implementing the likelihood evaluation using OpenCL [23]
with OpenGL interoperability. The reason for such a com-
bination is to take advantage of a general purpose program-
ming language as OpenCL and the rendering capabilities of
OpenGL.

We start at the first layer or partition of the HPF with
the torso particles. In this layer, we compute a squared 2D
bounding box of approximately 1/4 of the image resolution
(due to GPU implementation reasons the sizes must be pow-
ers of 2), centered at the projection of the estimated body
model centroid in the previous frame. For each particle, we
render the model directly to a depth texture and then we
use Quad primitives to map the pixels enclosed by the 2D
bounding box to a bigger RGBA texture that we call the mo-
saic texture. The objective of this latter texture is to gather
all the particle ziles that must be evaluated in one layer (see
Fig. 4). After mapping a particle onto its corresponding
tile on the mosaic texture, we load the bounding box offset



onto GPU global memory. We repeat this procedure until
the mosaic texture is filled, yielding the maximum number
of particles per layer.

We efficiently share the mosaic texture with OpenCL
through its interoperability mechanisms, and we compute
the pixel-wise depth and XOR costs in Equation 3. The
OpenCL implementation uses different threads to perform
these two costs, so that pixels are processed in parallel.
Specifically, each thread looks for the corresponding pixel
in the input depth map using its position in the mosaic tex-
ture and the offset previously loaded onto global memory.
In this way, we compute both depth and XOR costs with
one single read of the texture. The results of both costs and
the evaluated pixels are stored in global memory (see Fig.
4). After obtaining the pixel-wise differences, we perform
a modified 2D sum-reduction on OpenCL. This version of
the well-known sum-reduction is constrained to provide the
cost of every particle instead of the sum of all the pixel val-
ues.

The described method is repeated in the remaining arm
layers.
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Figure 4. GPU computation of likelihoods. Top Row: Result of
the pixel-wise sum of squared differences between depth maps on
the mosaic textures for the 3 layers involved in the hierarchical
evaluation of the likelihood (torso, right arm and left arm). These
distance maps are stored in global memory to compute the final
particle cost. Bottom Row: Right arm depth cost tiles in detail and
input depth data with overlaid final estimation.

2.2. Geodesic-Driven Proposals

Our choice for the HPF proposal distribution is to draw
samples from the prior. The simplest form of prior is a
Gaussian N (XfL 11> 2y, ). However, this strategy presents
a main drawback: particles are drawn blindly with respect
to data. Our objective is to introduce cues extracted from
range data to build an appropriate data-driven proposal dis-
tribution that may reduce the blindness of the particle set.
We achieve this goal by estimating the locations of relevant
upper body end-effectors: head and hands.

In order to detect the upper-body end-effectors we em-
ploy a filtering strategy based on [2]. The key idea is to
retrieve a set of salient geodesic extrema of the depth map
on a per frame basis. This method starts by defining a
graph G = (V, E) where the vertices V are the depth pix-
els and edges F are defined using 8-connectivity neighbor-
hoods constrained by a maximum distance d;,.: if a neigh-
bor pixel represents a point that is farther away than dgp,
in 3D world coordinates, the edge between both vertices is
discarded. We then need to define a source point in order
to obtain an approximate geodesic map on the human body
surface. We choose the closest pixel to the center of mass of
the masked depth information as source point. In fact, we
find more convenient to lower the center of mass in order to
obtain better geodesic extrema detection. Finally, we filter
the geodesic map using a Component Tree and the strategies
proposed in [2] to obtain the 3 most prominent geodesic ex-
trema, that are likely to accurately represent head and hands
location.

These geodesic extrema constitute a set of candidates for
hands and head locations at each time instant ¢t. Provided
that the head location is, to a great extent, a result of rigid
motion of the torso, we only consider geodesic extrema in
the propagation of arm particles.

In order to efficiently incorporate these cues, obtained
from range data processing, we model the prior distribu-
tion using Inverse Kinematics (IK), thus following the ideas
of the work by Hauberg and Pedersen [13]. The main dif-
ference here is that in each frame we have a maximum of
three end-effector candidates, but we do not know if they are
head, left hand, right hand or simply a detection error. Thus,
instead of modeling the spatial distribution of end-effectors,
we efficiently incorporate a few, spatially sparse detections
g: as modes of a new prior distribution p(x} |g, %}, ;).
Since we want to keep a direct proportionality between
weights and likelihood, we draw samples from the modi-
fied prior distribution (see Equation 1), thus alleviating the
inefficiency related to the blindness of the proposal distri-
bution. Let F' be the forward kinematics operator [13] such
that I (xi ;) gives the end-effector location associated to [-
th layer (in our case right or left hand). We formulate the
distribution of an arm pose given the m-th location as:

log p(x ,lgelm], x; ;1) =
1

- i(gt[m] - F(xi’l))Egl(gt[m] - F(X;l))

A )
= Sl = xial? @)

N
+ Z logU,,, b,1(x[n]) + C

n=1

The first term models the error between an extremity de-



tection and the end-effector position in the model obtained
by forward kinematics. The second term is a smoothing
constraint. The last terms are the kinematic constraints, for-
mulated as in [13], and a constant.

To model the distribution conditioned by g; we use a
mixture model, where the closer the extremity detection is
from the previous end-effector position, the higher the im-
portance within the mixture:

}Xél 1)

th‘gt d—
Z  fllgelm] = F(xg,_1)11?)

where f is some increasing function (in practice we use
an exponential or an adequate inverse of the Heaviside func-
tion in order to simply threshold the distance). Note that the
mixture weights should be properly normalized.

Finally, we use another mixture model to construct the
prior (and thus the proposal distribution):

&)

h(Xi,z\gt’ X;z 1

p(xi,l‘gtaxi,l—l) £ O‘N(xi,l—lv 2y) (6)
+(1 = a)h(xy e, X¢ 1)

Efficient sampling of this distribution is achieved thanks
to the form of the new modes expressed by Equation 4. Note
that, minimizing Equation 4 is equivalent to finding an IK
solution and, consequently, a sample with high probabil-
ity. This is the reason why we adopt this mixture model
formulation of the distribution of arm poses given a salient
geodesic extrema location. To solve the IK problem we em-
ploy the swing twist formulation [16]. Then, we generate
additional samples by random rotations around the swivel
axis. This is an efficient way to easily get a number of sam-
ples in the typical set of the modes of the distribution in
Equation 5, because all of them are solutions to the uncon-
strained IK problem. Furthermore, in this way we generate
particles with highly correlated variations between shoulder
rotations, which are difficult to generate by simply propa-
gating the corresponding Euler angles.

Finally, we sample from the prior distribution in Equa-
tion 6 in a specific manner. We select between Gaussian
diffusion in the angle space or IK sampling in a determinis-
tic manner as a function of an initial . If the chosen sample
is drawn from Equation 5 and, as a result, gets a very low
probability, the sample is rejected and we jump to Gaussian
diffusion. In this way, a changes dynamically while we
avoid that some erroneous detections or assignments misdi-
rect the samples.

In the end, we obtain an approximated method to
map a set of salient geodesic extrema from range data
into modes of the HPF prior distributions in arm layers.
These geodesic-driven proposals confer our method a hy-
brid bottom-up and top-down nature.

left arm

right arm .\

source

a b
Figure 5. Extrema identification during pose initialization: a)
Example of the fork pattern produced by geodesic paths in the
neighborhood of the source point. b) The fork pattern is matched
by checking that the cosinus of the angles between paths are in a
given interval; then we can identify the three key end-effectors

3. Online Initialization

Automated initialization of a body tracker and, specifi-
cally, a particle filter-based markerless motion capture sys-
tem is a challenging problem but also a desired feature for
such a technology, as the online usability of the algorithm
gets boosted. We propose using the geodesic extrema detec-
tion (see Section 2.2) and the swing twist IK method [16]
under some assumptions to initialize the pose as well as to
provide an estimate of the anthropometric profile of the user
in terms of bone elongations.

Pose Initialization The assumptions for pose initializa-
tion are that the human may stand approximately with his
or her back in vertical position, staring in front of the cam-
era, and that right and left hands will be visible to the range
sensor. Under such assumptions, whenever three reliable
geodesic extrema are detected, we classify them as head,
right arm or left arm by tracking the geodesic path that leads
to the corresponding geodesic extrema. If the geodesic map
has been properly computed, the direction of the paths lead-
ing to end-effectors remains similar in the neighborhood of
the source point: left hand to the north-east and right hand to
the north-west (considering a non-mirrored image) and head
is reached through the middle path, usually to the north (see
Fig. 5). Then, we can label the 3 end-effectors depending
on the extent to which the geodesic path directions match
the fork pattern (see Fig. 5). To match such a pattern, we
compute the slope of each path in the neighborhood of the
source point. We then check that the relative slope between
each pair of paths is within a given interval. To measure
the relative slope, we check that the cosinus of the differ-
ence angles between each pair of paths is within the interval
[0.5,0.9].

If the geodesic path analysis yields a location for head,
right and left hands (namely gp) then a pose configuration
is computed as follows:

1. Translate the model to match the head

2. Compute arm poses by means of IK
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Figure 6. Shoulder breadth estimation: Derivatives of the silhou-
ette width along the vertical axis of the depth image are used to lo-
cate the approximate shoulder positions during initialization. Plot-
ted curves, starting at the head top location, show the first promi-
nent local maxima of the derivative for 3 different users. Shoulder
pixels are located in the neighborhood of this first prominent local
maxima of the derivative.

3. Measure the probability of each computed pose with
the following expression

log p(x0|go,2z0) £

B %(go — F(x0))=. (g — F(x0)) )

N
+ Y logla, b,)(x[n]) + C
n=1
— (Nica(Do,x0) + Ay (Do, Xo) + Azcp(x0))

4. If p(x%0|8o, 20) > th, where th is some threshold, ac-
cept the initial pose.

In comparison to Equation 4, here the first term measures
the probability of the three end-effector locations. The last
term incorporates a similar expression to the likelihood de-
fined in Equation 3; in this case we dropped the subindex
l, meaning that this expression is calculated for the three
partitions. In practice, we average the costs of all the three
partitions to obtain the initial probability.

Anthropometric Initialization For anthropometric esti-
mation we assume the same for back inclination and also
that, at some point, the target’s upper arms will be approxi-
mately pointing towards the floor. When this situation hap-
pens, we trigger two measurements.

The first one is devoted to estimating the shoulder
breadth. This measurement consists in analyzing the deriva-
tive of the summation of foreground pixels in each image
row. Under the assumptions above, shoulders are found in
rows closer to the first prominent local maximum of this
derivative (see Fig. 6). Using this information, we extract
several points from the leftmost and rightmost pixels of the
rows around this maximum to compute an approximation of
the shoulder breadth.

The second measurement concerns the arm length and is
computed through the analysis of the geodesic path lengths.

Figure 7. Points with high curvature along the projected geodesic
path are marked with a red-cross. a) Correct detections below both
shoulders b) Spurious detections near wrists. These detections are
automatically rejected due to the proximity to the end-effectors.

In order to remove parts of the path located in the torso,
we use second derivatives to analyze the curvature of the
projection of the geodesic path on the image (see Fig. 7).
Points with high curvature located between 25% and 50%
of the path length (in real world units and starting from the
source point) usually fall right below the shoulder joint, al-
lowing us to use the resting path length as arm length mea-
surement. If the arm length obtained by this method is
within an interval of possible human arm lengths, the mea-
surement is collected as valid. The total arm length is split
into upper and forearm based on anthropometric studies [1].

In both cases, we perform anthropometric measurements
during a short period of time. We perform outlier rejection
by analyzing the variance of the collected measurements
to finally provide the bone elongations needed to approx-
imately fit the upper body model to the user.

The proposed method for estimating the anthropometric
profile of the user barely relies on the model and the esti-
mated pose. As a consequence, the robustness of the an-
thropometric estimates increases, because it is not affected
by pose estimation errors.

4. Experimental Results

To validate our algorithm, we have conducted several ex-
periments with range data recorded with a Kinect (640x480
pixels, 30fps). We consider two different scenarios where
upper body motion is involved: desktop (Fig. 8) and work-
place (Fig. 9). In desktop, users are sitting down in front of
a table, while in workplace are standing up.

Desktop sequences involve 5 users performing several
actions such as motion of one arm, picking a phone, or
drawing some figure with both hands. These sequences
comprise almost 4 minutes of data. Workplace sequences
contain approximately 1 minute and a half of challenging
motions performed by 2 subjects.

We pick several subsequences from this data and we
manually annotate pixels belonging to joint positions. We
perform these annotations in 1 of every 10 frames, obtaining
around 470 annotated frames and more than 4700 frames to
evaluate.



Tile Size Device 64x3  256x3  1024x3
64x64 NVIDIA Quadro FX 3700 11.2 33 0.9
64x64 NVIDIA GeForce GTX 295 13.2 4.5 1.3

128x128 NVIDIA Quadro FX 3700 3.1 1.6 0.5

128x128  NVIDIA GeForce GTX 295 39 22 0.8

256x256 NVIDIA Quadro FX 3700 0.8 0.1 -

256x256  NVIDIA GeForce GTX 295 1.0 0.2 0.1

Table 1. Computational performance of the complete system (in
frames per second) as a function of the number of particles (x3
layers) and the size of the tiles for different hardware platforms.
The size of the tiles is proportional to the image resolution (e.g.
a 64x64 tile is for 160x120 depth maps). Mosaic textures of
8192x8192 are not supported by the NVIDIA Quadro FX 3700.
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Figure 10. Success rate comparative between PrimeSense tracker

and our method. Errors have been computed in 640x480 images.

In the first experiment, we evaluate the computational
performance of the implemented system in two different
hardware platforms: both CPUs are Intel 2.80GHz, 4GB
RAM, but different GPUs are installed (see Table 1). Al-
though we have only optimized the likelihood computation,
the system runs online in a laptop with an ATI Mobility
Radeon HD5800; to reach the online performance, we use a
total of 192 particles and 160x120 depth maps (the original
data at 1/16 resolution). With this configuration, we obtain
a satisfactory performance for several upper body actions.

In the second experiment, we run our system offline with
the recorded sequences in order to compare our results with
the recently released PrimeSense body tracker for Kinect,
which is accessible thanks to the OpenNI middleware [14].
This tracker requires a specific initial pose (hands up) called
the calibration pose. In order to perform a comparison be-
tween both methods, all the annotated sequences have been
recorded with this calibration pose. Nonetheless, since our
method incorporates automated initialization of pose and
anthropometrics, we can successfully launch our tracker
without requiring such a specific pose. In these experi-
ments, we use 256 particles in each hierarchical layer and
depth maps of 160x120 pixels, yielding close to real-time
performance.

Using the available annotations, we measure the accu-
racy/precision of both systems by means of a success rate:
given a distance in pixels, we count the percentage of joints

Figure 11. Right hand error (pixels) for the PrimeSense tracker and
our method in a sequence where PrimeSense tracker has several
misses. Errors have been computed in 640x480 images.

that have been tracked with an error below this distance.
In the annotated sequences, hands are visible all the time,
hence both algorithms should be able to provide estimates
for the upper body joints. Since PrimeSense tracker may
not provide joint locations that considers unreliable, we
consider these cases as misses. The results, measured in
640x480 frames, are shown in Fig. 10. Our system shows a
remarkable precision, although being less accurate than the
PrimeSense tracker, that relies on accurate part detectors.
However, we have observed that, while for a long track-
ing period and fast motions, the PrimeSense tracker out-
performs our method, there are some cases, with limb self-
occlusions, in which our method has a better performance.
Specifically, when shoulders are occluded or a hand is par-
tially occluded, the PrimeSense tracker can fail (see Fig.
11). These cases are more frequent in the desktop scenario,
showing that the upper body tracking task is a difficult prob-
lem due to important occlusions of the lower body. In our
method, the use of a body model and hierarchical layers
helps in overcoming these cases. In overall, the PrimeSense
method presents a mean tracking error of 20.74 pixels (ex-
cluding misses) while ours has an error of 28.95 pixels. The
mean initialization error of our method is 33.31 pixels.

5. Conclusions and Future Work

In this work, we have proposed an upper body track-
ing approach with online and unsupervised initialization of
both pose and anthropometrics. The system uses Geodesic-
Driven proposals within the HPF formalism in order to im-
prove the tracking performance. As we have shown, these
geodesic cues are also useful during the initialization of the
tracker. In addition, we have proposed a GPU implemen-
tation of the likelihood evaluation that yields real-time per-
formance. Experiments with annotated data have shown the
efficiency of the proposed system.

Future work involves improvement of the human silhou-
ette extraction, research on additional body part detection
methods for range data and a full optimization of the whole



Figure 9. Tracking results in workplace upper-body sequences recorded with Kinect. 256 particles per layer are used.

system to further improve the computational performance.
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