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ABSTRACT

This paper presents a new approach to the problem of simultaneous
tracking of several people in low resolution sequences from multi-
ple calibrated cameras. Spatial redundancy is exploited to gener-
ate a discrete 3D representation of scene. We apply a particle filter.
Interactions among people are modeled though a blocking scheme
thus allowing multiple target tracking. Test over large annotated
databases are performed thus obtaining quantitative results showing
the effectiveness of the proposed algorithm in the indoor scenarios.

Index Terms— Falten paraules

1. INTRODUCTION

The current paper addresses the problem of detecting and tracking a
group of people present in an indoor scenario in the framework of
multiple view geometry. Robust, multi-person tracking systems are
a basic functionality that have been employed in a wide rangle of
applications, including SmartRoom environments, surveillance for
security, health monitoring, as well as providing location and context
features for human-computer interaction.

A number of methods for camera based multi-person 3D track-
ing has been proposed in the literature [1]. A common goal in these
systems is to be robust under occlusion created by moving and fixed
objects present in the scene when estimating the position of a tar-
get. Single camera approaches [2] have been widely employed but
are more vulnerable to occlusions, rotation and scale changes of the
target. In order to circumvent these drawbacks, multi-camera track-
ing techniques [3] exploit spatial redundancy among different views
and provide 3D information as well. Integration of information and
feature extraction coming from multiple cameras has been proposed
in terms of multi-view histograms [4], image correspondences [5] or
voxel reconstructions [6].

Filtering techniques are employed to grant temporal consistency
to tracks. Kalman filter based solutions have been extensively used
to perform tracking of a single object under Gaussian uncertainty
models and linear dynamics [7]. However, these methods do not
perform accurately when facing noisy scenes or rapidly manouver-
ing targets. Particle filtering have been applied to cope with these
situations since it can deal with multi-modal pdf s and is able to re-
cover from lost tracks [8, 9].

We propose a method for 3D tracking of multiple people in
a multi-camera environment. Redundancy among cameras is ex-
ploited to obtain a binary 3D voxel representation of the scene that
is the input of the tracking system. A multi-target tracking scheme
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based on multiple interacting particle filters is introduced. Finally,
efectiveness of the proposed algorithm is shown by means of objec-
tive metrics when applied to the CLEAR06 [10] multi-target tracking
database.

2. SYSTEM OVERVIEW

For a given frame in the video sequence, a set of N images are ob-
tained from the N cameras (see a sample in Fig.1(a)). Each camera
is modeled using a pinhole camera model based on perspective pro-
jection. Accurate calibration information is available. Foreground
regions from input images are obtained using a segmentation al-
gorithm based on Stauffer-Grimson’s background learning and sub-
straction technique [11] as shown in Fig.1(b).

Redundancy among cameras is exploited by means of a Shape-
from-Silhouette technique [6]. This process generates a discrete oc-
cupancy representation of the 3D space (voxels) deciding whether
a voxel is foreground or background by checking the spatial con-
sistency of the N segmented silhouettes. The data obtained with
this 3D reconstruction is corrupted by spurious voxels introduced
due to wrong segmentation, camera calibration inaccuracies, etc. A
connectivity filter is introduced in order to remove these voxels by
checking its connectivity consistency with its spatial neighbors. An
example of the output of the whole 3D processing module is depicted
in Fig.1(b)

The resulting unlabeled 3D scene reconstruction is fed to a tracker
that assigns a particle filter to each target.

Finally, a higher semantical analysis is performed over the re-
sulting tracks. Information about the environment (dimensions of
the room, furniture,etc.) allow discarding tracks that are not likely to
be human people.

3. 3D TRACKING ALGORITHM

Particle Filtering (PF) is an approximation technique for estimation
problems where the variables involved do not hold Gaussianity un-
certainty models and linear dynamics. The current tracking scenario
can be tackled by means of this algorithm to estimate the 3D posi-
tion of a person xt = (x, y, z)t at time t, taking as observation a set
of binary voxels representing the 3D scene, denoted as zt. Multiple
people might be tracked asigning a PF for each target and defining
an interaction model to ensure track coherence.

For a given target xt, PF approximates the posterior density
p(xt|z1:t) with a sum of Ns Dirac functions:

p (xt|z1:t) ≈

Ns
X

j=1

wj
t δ(xt − x

j
t), (1)
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Fig. 1. Example of the outputs from the 3D processing module in the SmartRoom scenario. In (a), multiview original and foreground images.
In (b), example of the 3D voxel reconstruction used in this paper.

where wj
t are the weights associated to the particles. For this type

of tracking problem, a Sampling Importance Resampling (SIR) PF
is applied to drive particles across time [8]. Assuming importance
density to be equal to the prior density, weight update is recursively
computed as:

wj
t ∝ wj

t−1p(zt|x
j
t). (2)

SIR PF avoids the particle degeneracy problem by re-sampling
at every time step. In this case, weights are set to wj

t−1 = 1/Ns, ∀i,
therefore

wj
t ∝ p(zt|x

j
t). (3)

Hence, the weights are proportional to the likelyhood function that
will be computed over the incoming volume zt. Re-sampling step
derives the particles depending on the weights of the previous step,
then all the new particles receive a starting weight equal to 1/Ns

which will be updated by the next volume likelyhood function.
Finally, the best state at time t of target m, Xm

t , is derived based
on the discrete approximation of Eq.1. The most common solution
is the Monte Carlo approximation of the expectation as

X
m
t = E [xt|z1:t] ≈

1

Ns

Ns
X

j=1

wj
tx

i
t. (4)

3.1. Likelyhood evaluation

Function p(zt|xt) can be defined as the likelyhood of a particle be-
longing to the volume corresponding to a person. For a given particle
j, its likelyhood may be formulated as

p(zt| x
j
t) =

1

|C(xj
t , q)|

X

p∈C(x
j
t ,q)

d(xj
t ,p), (5)

where C(·) stands for the neighbourhood over a connectivity q do-
main on the 3D orthogonal grid and |C(·)| its cardinality. Function
d(·) measures the distance between a neighbourhood voxel
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Fig. 2. Manca.

This means that the available weight at every frame is 1/Ns
and the weights are proportional to the likelihood. In other words,
weights are basically computed through voxel density analysis. Ide-
ally, volume reconstruction would be completely solid, but in prac-
tice there are holes. Thats why reconstruction is seen as voxel clouds.
For every particle a voxel neighbourhood is evaluated, counting full
and empty voxels. The maximum likelihood is obtained when full
voxels are equal to empty voxels.

3.2. Particle Evaluation

The limit of PF, and specially SIR ones, is the capability of the set
of particles to represent the pdf when the sampling density of the
sate space is low. Scenarios with high number of degrees of freedom
require a large number of particles to perform an efficient estimation
with the consequent increase in terms of computational cost. An
unnecessary computational load could appear with a number of par-
ticles larger than required. In our case, to avoid over-sampling, we
use the minimum unit of the scene to redefine sampling: the voxel.
Once the resampling step has been performed, every particle is as-
signed to a voxel. No motion model has been used. Human motion
is very restricted in smart room environments and the particle set
gets expanded enough in the resampling step to track a target. To
summarize, the basic proposed PF algorithm include the following
steps:

• Particle Redrawing: Every particle is set into a voxel by search-
ing the particles neighbourhood.

• Weight computation: Surrounding voxels are evaluated for
every single particle in order to estimate its weight. Then
weights are normalized to compute particles centroid. In other
words, human positions Xk are the mean of all their associ-
ated particles:

Xk =

Ns
X

i=1

wi
kxi

k (6)

• Resampling: Particles are re-sampled according to their weights.
The higher weight the more replicas will be created. A uni-
form distribution has been proposed to expand the particles.

3.3. Multi-person PF Tracking

Challenges in 3D multi-person tracking with volumetric scene re-
construction are basically twofold. First, finding an interaction model
in order to avoid missmatches and target merging. The second is fil-
tering spurious objects that appear in scene reconstruction. However,



since filtering step belongs to data acquisition we will focus this sec-
tion on interaction model.

The Joint Particle Filter is the optimal solution to PF multi-target
tracking, but its computational load increases dramatically with the
state space dimension. In a joint PF every particle estimates the lo-
cation of all targets in the scene. The proposed solution is to use
an Split PF per person., which requires less computational computa-
tions. The initial assumption is that we have M independent track-
ers, being M the number of humans in the room, but in fact they are
not fully independent because each PF can consider other targets to
track. In order to achieve the most independently set of trackers, we
consider a blocking method to model interactions. Many blocking
proposals can be found in 2D tracking related works [12, 9]. Block-
ing methods penalize particles that overlap zones with other targets.
In other words, we also consider blocking information to compute
the final weights:
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where M is the number of trackers, m the index of the evalu-
ated tracker, X the estimated state and β(·) is the blocking function.
To penalize particles we define exclusion zones. Considering that
people in the room are always sitting or standing up, they never lay
down, the easiest way to define a region to model the human body
is by using an ellipsoid with fixed X-axis and Y-axis. Z-axis is a
function of the estimated centroid height. Fixed axis wont propagate
estimation errors thus blocking becomes more robust. Any particle
from the tracker A into the ellipsoid of a tracker B will be penalized
by , with 0¡1, which can be defined as a constant or as a function of
the distance between the particle and the A PF estimated centroid.
This technique is very interesting in our scenario because when two
people are very near, their volumes merge and become indistinguish-
able for their respective trackers.

4. RESULTS

In order to evaluate the performance of the proposed algorithm, we
collected a set of multi-view scenes in an indoor scenario involving
up to 6 people, for a total of approximately 25 min. The analysis
sequences were recorded with 5 fully calibrated and synchronized
wide angle lense cameras in the SmartRoom at UPC with a resolu-
tion of 720x576 pixels at 25 fps (see a sample in Fig.1). The test
environment is a 5m by 4m room with occluding elements such as
tables and chair. Groundtruth data was labelled manually allowing a
quantitative measure of tracker’s performance.

Metrics proposed by [13] for multi-person tracking evaluation
have been adopted. These metrics, being used in international evalu-
ation contests [10] and adopted by several research projects such as
the European CHIL [14] or the U.S. Vace [15] allow objective and
fair comparisons. Two employed metrics are: the Multiple Object
Tracking Precision (MOTP), which shows tracker’s ability to es-
timate precise object positions, and the Multiple Object Tracking
Accuracy (MOTA), which expresses its performance at estimating
the number of objects, and at keeping consistent trajectories. MOTP
scores the average metric error when estimating multiple targets 3D
centroid, while MOTA evaluates the percentage of frames where tar-
gets have been missed, wrongly detected or mismatched.

Two parameters drive the performance of the algorithm: the
voxel size and the number of particles. Experiments carried out ex-
plored the influence of these two variables on the MOTP and MOTA

Fig. 3. MOTP and MOTA scores for various voxels sizes and number
of particles.

Num.Particles MOTP m fp mme MOTA
50 222 27.7% 14.7% 47.5% 9.9%
100 206 64.9% 14.4% 8.5% 65.0%
150 193 74.9% 15.1% 6.7% 74.9%
300 187 81.4% 24.2% 9.7% 81.4%
600 185 81.1% 9.4% 18.1% 81.2%
1000 188 79.8% 9.9% 16.0% 80.0%

Table 1. Quantitative results for a tracking experiment in the better
case with voxel size of 2 cm3.

scores as depicted in Fig.3. This plot shows how scenes recon-
structed with a large voxel size do not capture well all spatial details
and may miss some small objects thus decreasing performance of the
tracking system. Furthermore, the larger the number of particles the
more accurate the performance of the algorithm; however, no sub-
stancial improvement is acchieved for more than 300 particles due
to the restriction imposed that every particle occupies the size of one
voxel. Quantitative results for are shown in Table 1.

5. CONCLUSION AND FUTURE WORK

This paper presented a multi-person tracking system in a multiple
camera views environment. Redudant information among cameras
is exploited to generate a 3D reconstruction of the scene described
by voxels.
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