

Leveraging Quantum Machine Learning for
Intrusion Detection in Software-Defined Networks

Joan Lo Anguera
José Antonio Lázaro

ORCID: 0000-0002-5592-8434
Javier Ruiz-Hidalgo

ORCID: 0000-0001-6774-685X
Àlex Solé

ORCID: 000-0002-2071-9317
Josep Ramon Casas

ORCID: 0000-0003-4639-6904
Signal Theory and Comm. Dept.

 UPC - Univ. Politècnica de Catalunya
Barcelona, Spain

joan.anguera@upc.edu
jose.antonio.lazaro@upc.edu

Samael Sarmiento
LuxQuanta Technologies S.L.

Barcelona, Spain
ORCID: 0000-0001-6549-8426

Adolfo Lerín
CognitIAs, Spain

Madrid, Spain
ORCID: 0000-0003-2612-9956

Abstract—Quantum machine learning (QML) algorithms
for intrusion detection systems in software-defined networks are
investigated, and their effectiveness is compared with their
classical machine learning methods. The University of Nevada -
Reno intrusion detection dataset (UNR-IDD) is used to evaluate
different QML models, including quantum k-nearest neighbors
(QKNNs), quantum support vector machines (QSVMs),
quantum neural networks (QNNs), and hybrid quantum neural
networks (HQNNs). These models were tested with quantum
simulators to evaluate their potential advantages in processing
complex datasets. The results show that HQNN and QSVM have
higher accuracy than their classical SVM and NN counterparts.
This study shows the potential of leveraging QML to enhance
precision. References to other works that dive into efficiency
and complexity are included.

Keywords— Quantum machine learning (QML), Intrusion
Detection, Cybersecurity, Software-Defined Networks (SDN).

I. INTRODUCTION

Quantum computing [1] and machine learning [2] are
changing modern computing. On the one hand, since qubits
can exist in multiple states simultaneously, quantum
computers can process information in a way that their classical
counterparts cannot. A clear example of this difference is
searching in a large database. While a classical computer
would examine each entry individually, a quantum computer
can use Grover’s algorithm [3] to examine multiple entries
simultaneously, making the searching task considerably
faster. On the other hand, machine learning, which is usually
used to make predictions and decisions based on vast amounts
of data, is reaching the limits of classical computing. To
address this challenge, quantum machine learning (QML) [4]
(QML) has emerged as a promising approach that has the
potential to benefit several industries, including the
telecommunications sector.

As telecommunications networks operate as a shared
medium, ensuring robust security is essential to protect
personal data and maintain user trust. Network security can be
significantly improved by integrating QML with modern
network management models, such as software-defined
networking (SDN) [5]. For example, using quantum-based
intrusion detection systems (IDSs) along with SDN will
ensure that QML-powered IDS can be dynamically
reconfigured based on the location and intensity of an attack
to ensure optimal coverage.

In this paper, we investigate the application of QML to
network intrusion detection systems (NIDSs) in SDN-based
networks and compare the results with classical machine
learning (ML) algorithms using a public database.

A. Software Defined Networking (SDN)

Software-defined networking (SDN) separates the
network control (control plane) from communication and
routing (data plane), marking a shift from monolithic and
static network architectures [5]. This separation allows
independent release cycles for the two planes but requires
standardized interfaces between them.

SDN supports centralized control with full visibility of
network resources, improving management, maintenance, and
automation. Additionally, SDN enables flexible control
architectures, including hierarchical and distributed models.

B. Network Intrusion Detection Systems (NIDSs)

Network intrusion detection systems (NIDSs) are essential
for monitoring and analyzing network traffic to identify
malicious activities or policy violations. These systems are
classified as signature-based, which use predefined attack
patterns, or anomaly-based, which apply machine learning to
detect deviations from normal network behavior.

The University of Nevada - Reno intrusion detection
dataset (UNR-IDD) addresses the limitations of existing
NIDS datasets by focusing on network port statistics, offering
finer analysis and faster intrusion detection. It supports both
binary and multiclass classification of common cyber-attacks
and has demonstrated accuracy comparable to larger datasets
while significantly reducing training times [6].

C. Classical and Quantum ML Models for NIDSs

Machine learning (ML) algorithms are integral to data-
driven research, enabling classification, regression, and
pattern recognition. Common methods include random forests
(RFs), k-nearest neighbors (KNNs), support vector machines
(SVMs), and artificial neural networks (ANNs).

RFs are ensemble learning methods that build multiple
decision trees and combine their predictions to avoid
overfitting and improve overall performance [7]. In KNNs, a
non-parametric algorithm makes predictions based on the k
nearest training samples in the feature space, and uses
proximity to infer the output [8]. SVMs are supervised
learning models that find the hyperplane that best separates
classes with maximum margin and use kernel functions to
handle non-linear boundaries [9].

This article has been partially financed by the Smart Networks and
Services Joint Undertaking (SNS JU) under the European Union’s Horizon
Europe research and innovation program Grant Agreement No. 101139182,
and Spanish MICIU founded, TRAINER-B (PID2020-118011GB-C22).

Finally, ANNs are computational models inspired by the
architecture of biological neural networks [10]. They consist
of interconnected neurons that learn by adjusting weights
using backpropagation [11].

In recent years, it has become more than obvious that
classical NIDSs will not be sufficient in the short and medium
term to meet the challenges facing computer systems. Here,
QML algorithms are promising. These algorithms use
quantum mechanical principles to overcome the limitations of
classical solutions, both in the identification of intrusion
events and in their classification. In particular, QML
algorithms have the potential to improve NIDSs due to their
ability to process massive data in an efficient way, using
superposition and quantum entanglement principles, with a
clear advantage in terms of efficiency and scalability
compared to classical solutions [12].

On the other hand, recent research [13] has shown that the
use of quantum models to identify distributed denial of service
(DDoS) attacks can achieve success rates above 96%. Other
recent research [14], proposed other alternatives based on
quantum support vector machines (QSVMs) to detect DDoS
attacks in smart microgrids, and in all cases showed better
performance than their classical SVM counterparts.

Just as neural networks are used for classical applications
to identify behavioral patterns, the use of quantum
convolutional neural networks (QCNNs), as well as the use of
variational quantum circuits (VQCs) and hybrid quantum-
classical models, are being considered to improve the
performance of attack identification and detection using
quantum principles [15]. This work is promising in the short
term both for detection and multiclass classification of
intrusion events or attacks.

While it is true that QML based NIDSs are still at an early
stage of research, the studies conducted so far show high
potential for improving cybersecurity in the quantum era.
However, such solutions require more research and parallel
development of quantum hardware [16] to efficiently exploit
the principles on which they are based, especially considering
that threats and attack techniques evolve in parallel [17].

II. EXPLORATORY DATA ANALYSIS OF THE UNR-IDD

The UNR-IDD was developed using Mininet software, a
network function virtualization (NFV) environment to create
an SDN topology consisting of 10 hosts and 12 Open
vSwitches. For feature extraction, a custom implementation of
the open network operating system (ONOS) SDN controller
was used to measure network traffic. IPerf software was used
to generate 10 Mbps TCP and UDP data streams between
randomly chosen source-destination pairs every 5 seconds.

The features were collected using OFPPortStatsRequest
and OFPPortStatsReply messages between the SDN
controller and Open vSwitches, for a total number of 34
features as found in [6]. In particular, the Label distinguishes
between different network attacks: TCP-SYN flood,
Blackhole, Port Scan, Flow table overflow, and Diversion.
The Binary Label indicates whether the labels are Normal or
Attack network traffic.

A. Selection of Features and Number of Samples

A crucial step in preprocessing is to identify possible blank
spots among the data, or highly correlated samples to reduce
the total number of features. Fortunately, this dataset contains
no blank samples and has only a single duplicate that can be
easily resolved. Class labels comprise about 90% of Attack
and 10% Normal for both binary and multiclass scenarios,
leading to a relevant class imbalance that needs to be
considered when benchmarking metrics, especially in the
binary case.

The total size of the dataset is 37412 samples with 34
features each. The amount of computation time can be very
disadvantageous if the number of features and samples is high,
especially for quantum simulators. A balance must therefore
be found between the minimum number of features, the
number of samples, and the accuracy of the models. For this
purpose, a statistical analysis of the features is performed,
which leads to the removal of: Switch ID, Port Number,
Packets Rx Dropped, Packets Tx Dropped, Packets Rx Errors,
Packets Tx Errors, Delta Packets Rx Dropped, Delta Packets
Tx Dropped, Delta Packets Rx Errors, Delta Packets Tx
Errors, is_valid, Table ID, and Max Size, as they have
standard deviation and percentiles of zero. Next, the
importance scores of the remaining 19 features were
calculated using a RF-based algorithm to further reduce their
dimensionality. All possible combinations of 4 elements
without repetitions are performed for the 10 most important
features. The importance of the features indicates that the
remaining ones provide little additional information. Selecting
four features is based on the dimensionality of quantum state
vectors, which follow powers of 2. To identify the best
combination of features, RFs, KNNs, SVMs, and NNs are
used to calculate accuracies, with an 80-20% train-test split.
The combination that achieves the highest accuracy across
these models is chosen. Then, the dataset size is adjusted from
500 to 30000 samples (in steps of 500), and the accuracies are
recalculated to determine the optimal sample size for the
selected feature combination.

III. APPLICATION OF QML TO THE UNR-IDD NIDS

This section focus on the application of QML algorithms
to the NIDS task using the UNR-IDD, and systematically
explore the quantum implementations of: QKNN-V1, QKNN-
V2, QKNN-V3, QSVM, QNN, and HQNN. For all QML
algorithms except for QKNN-V3, the dataset contained 10000
samples of 4 features corresponding to the best feature
combination obtained in the previously performed exploratory
data analysis. For QKNN-V3, however, the number of
samples was limited to 200 for reasons of computational cost.
Qiskit library [18] was chosen to implement the QML models
except for QSVM, which was programmed using PennyLane
[19] due to its more convenient approach.

A. Quantum k-Nearest Neighbors (QKNNs)

Three QKNN model versions have been implemented:
QKNN-V1, QKNN-V2 and QKNN-V3. QKNN-V1 serves as
a foundational quantum approach for KNNs using controlled-
SWAP gates to compute Euclidean quantum distances.
Amplitude and angle encoding are used to transform classical
data into quantum states. QKNN-V2 introduces an adaptation

of the circuit of [20] that includes additional quantum
operations to improve performance and accuracy. This model
uses angle encoding. Finally, QKNN-V3, an implementation
of the QKNN algorithm presented by [21], incorporates more
resource-intensive quantum circuit designs and encoding
strategies. To calculate Euclidean quantum distances, the
fidelity equation 𝐹 = |⟨𝜓|𝜙⟩|ଶ is used, where 𝜓 and 𝜙 are the
train and test quantum states respectively. Both QKNN-V1
and QKNN-V2 use the sklearn.neighbors library to fit
and train the model with KNeighborsClassifier(),
using quantum inner products as the distance metric, while
QKNN-V3 processes and indexes quantum states with a
quantum circuit and an oracle.

1) QKNN-V1
To compute quantum inner products, the circuit shown in

Fig. 2 of [20] was run for 2048 realizations. A measurement
is performed on the first ancilla qubit when its probability is 0
in the form of 𝑃(0) =

ଵ

ଶ
+

ଵ

ଶ
|⟨𝜓|𝜙⟩|ଶ. For amplitude encoding,

the resulting distance is obtained using 𝐷 = 4𝑍(𝑃(0) − 0.5),
where 𝑍 = |𝑎|ଶ + |𝑏|ଶ. The classic data vectors correspond to
𝑎 = (𝑎ଵ, 𝑎ଶ, ⋯ , 𝑎௡) and 𝑏 = (𝑏ଵ, 𝑏ଶ, ⋯ , 𝑏௡) , which are not
necessarily normalized, and are transformed into the states
|𝜓⟩ =

ଵ

√ଶ
(|0⟩|𝑎⟩ + |1⟩|𝑏⟩) and |𝜙⟩ =

ଵ

√ଶ
(|𝑎||0⟩ − |𝑏||1⟩). For the

case of angle encoding, 2D unitary single-qubit
transformations are applied to the quantum states in the form
of |𝜓⟩ = 𝑈(𝑎ଵ

ᇱ , 𝑎ଶ
ᇱ)|0⟩ and |𝜙⟩ = 𝑈(𝑏ଵ

ᇱ , 𝑏ଶ
ᇱ)|0⟩, where 𝑈 is

 𝑈(𝜃, 𝛾) = ቌ
𝑐𝑜𝑠

ఏ

ଶ
−𝑠𝑖𝑛

ఏ

ଶ

𝑒௜ఊ𝑠𝑖𝑛
ఏ

ଶ
𝑒௜ఊ𝑐𝑜𝑠

ఏ

ଶ

ቍ (1)

with 𝑎ଵ
ᇱ =

଻గ

ଶ
(𝑎ଵ + 1) and 𝑎ଶ

ᇱ =
଻గ

ଶ
(𝑎ଶ + 1) (same for 𝑏). The

factor 7𝜋 2⁄ may vary depending on the underlying dataset
characteristics. In this approach the two other features indexed
as 𝑖 = 3, 4 are not considered since in this case the number of
features is 𝑛 = 4. Other techniques such as considering the
mean 𝑎ଵ = 𝑎തଵ,ଶ and 𝑎ଶ = 𝑎തଷ,ସ for both 𝑎 and 𝑏 were tested but
yielded slightly worse results. Finally, the metric distance is
𝐷 = ඥ𝑍 ∙ 𝑃(1), where the probability of the ancilla qubit to be
1 is 𝑃(1) =

ଵ

ଶ
−

ଵ

ଶ
|⟨𝜓|𝜙⟩|ଶ.

2) QKNN-V2
This adaptation extends the previous QKNN-V1 angle

encoding implementation by applying unitary 𝑈 2D rotations
(1) as |𝜓⟩ = ⊗

௜∈௢ௗௗ(௡)
𝑈(𝑎௜

ᇱ, 𝑎௜ାଵ
ᇱ)|0⟩ ⊗ 𝑈(𝑎௡

ᇱ , 𝑎௡
ᇱ) and |𝜙⟩ =

⊗
௜∈௢ௗௗ(௡)

𝑈(𝑏௜
ᇱ, 𝑏௜ାଵ

ᇱ)|0⟩ ⊗ 𝑈(𝑏௡
ᇱ , 𝑏௡

ᇱ) . For this configuration, 𝑛

must be an even number, matching the lengths of 𝑎 and 𝑏.
Here, 𝑜𝑑𝑑(𝑛) means all odd indices from 1 to 𝑛. If feature
vectors have odd dimensions, they can be zero-padded to
make them even. Fig. 1 shows the functional quantum circuit
constructed with Hadamard gates, single-qubit rotations,
controlled-SWAP gates applied to the respective pairs of
indices, and the measurement of the first ancilla qubit when
its probability is 1. Again, the circuit was simulated for 2048
realizations with the final distance metric as 𝐷 = ඥ𝑍 ∙ 𝑃(1),
where 𝑍 = |𝑎|ଶ + |𝑏|ଶ. In addition, the angle factor for 𝑎௜

ᇱ and
𝑏௜

ᇱ was chosen to be 𝜋 2⁄ .

3) QKNN-V3
Finally, QKNN-V3 adaptation was performed based on

the algorithm by [21]. It aims to compute all distances with
respect to their nearest neighbors simultaneously, using the
previously defined fidelity distance 𝐹 . It is implemented
according to the scheme shown in Fig. 4 in [21]. The detailed
quantum circuit requires an oracle 𝒲 capable of generating
these states in superposition. We have implemented an oracle
in the form of 𝒲|0⟩|𝑖⟩ = |𝜙௜⟩|𝑖⟩, where |𝜙௜⟩ are the indexed
train states. The Grover’s algorithm, which is not shown in
cited Fig. 4, is included before the measurements to determine
the nearest neighbors. Finally, the measurement of similarity,
test and train registers is performed to compute the class label
for the test state.

B. Quantum Support Vector Machines (QSVMs)

Next, we present a QSVM implementation that uses a
quantum circuit to perform a kernel function. The PennyLane
library was used to build the quantum circuit shown in Fig. 2,
where a quantum feature map 𝑥 → |𝜙(𝑥)⟩ is represented by a
quantum circuit |𝜙(𝑥)⟩ = 𝑈(𝑥)|0௡⟩ . Each kernel entry
𝐾(𝑥௜ , 𝑥௝) is calculated by running the circuit 𝑈ற൫𝑥௝൯𝑈(𝑥௜) on
the input state |0௡⟩ followed by estimating
|ൻ0௡ห𝑈ற൫𝑥௝൯𝑈(𝑥௜)ห0௡ൿ|ଶ through the frequency of observing the
outcome |0௡⟩ . The quantum circuit 𝑈(𝑥௜) is built by
implementing a slightly modified ZZFeatureMap with 𝑋
and 𝑅𝑍 gates, as described in the Qiskit library [18]. This
process is equivalent to calculating the inner products for each
kernel entry, as represented by the Gram matrix in (2).

 𝐺 = ቎
𝜙(𝑥ଵ)்𝜙(𝑥ଵ) … 𝜙(𝑥ଵ)்𝜙(𝑥ெ)

⋮ ⋱ ⋮
𝜙(𝑥ெ)்𝜙(𝑥ଵ) ⋯ 𝜙(𝑥ெ)்𝜙(𝑥ெ)

቏ (2)

Here, 𝑥௜ and 𝑥௝ represent the combinations of either
training or test feature vectors. Initially, the training Gram
matrix is computed, where both 𝑥௜ and 𝑥௝ are training
samples. This is used to minimize the objective function
𝐿(𝛼) = ∑ 𝑦௝𝛼௝ −

ଵ

ଶ
 ெ

௝ୀଵ ∑ 𝛼௝𝐾௝௞𝛼௞
ெ
௝,௞ୀଵ [22] with the

corresponding training labels. Subsequently, a test Gram
matrix is constructed using the inner cross products of 𝑥௜ (test
samples) and 𝑥௝ (training samples) to recover the hyperplane
from the 𝛼 coefficients and predict the test labels. Finally, a
classical SVM is executed using these results to

Fig. 1. QKNN-V2 quantum circuit.

utilize the precomputed quantum kernel. Since the number of
shots in the execution of the quantum circuit was not specified,
PennyLane performed an analytical execution.

C. Quantum Neural Networks (QNNs)

QNNs act as variational quantum algorithms, where classical
data is encoded into quantum states using a feature map 𝒰௫ in
the form of |𝜓௫⟩ = 𝒰௫|0⟩⊗ௌ, within a 𝑆-qubit Hilbert space,
to be later on processed by a quantum variational circuit 𝒢ఏ as
|𝑔ఏ(𝑥)⟩ = 𝒢ఏ|𝜓௫⟩, as Fig. 3 illustrates. The parameters of the
variational circuit (or ansatz), are trained and updated by
minimizing an objective function. During this minimization,
the output of the quantum model 𝑧 = (𝑧ଵ, … , 𝑧ௌ) is derived
from a classical post-processing function applied to a
measurement result 𝑦 = 𝑓(𝑧).

To adjust the number of qubits to the output measurement,
a quantum pooling layer is applied immediately after the
ansatz. This quantum pooling circuit consists of individual
two-qubit pooling circuits, as shown in Fig. 4.

Two combinations of feature maps and ansatzes were
tested using Qiskit library [18]. The first combination paired a
ZZFeatureMap with an EfficientSU2 ansatz (Fig. 5),
and the second used a PauliFeatureMap with a
RealAmplitudes ansatz (Fig. 6), both modified with four
repetitions. Quantum pooling reduced qubits to 1 and 3 for
binary and multiclass scenarios, respectively. The
SamplerQNN instance was used to train the model with the
COBYLA optimizer for 600 iterations. The parameter-shift
rule was used to compute quantum backpropagation, along
with L2 and cross-entropy objective functions for binary and
multiclass cases, respectively.

D. Hybrid Quantum-Classical Neural Networks (HQNNs)

Hybrid Quantum Neural Networks (HQNNs) integrate feature
maps, quantum variational circuits, and classical neuron
layers. The structure employs two combinations of feature
maps, ansatz, and quantum pooling layers. Outputs from the
quantum components are measured and integrated into a
classical feedforward neural network using Qiskit’s
TorchConnector, as shown in Fig. 7.

Fig. 2. Custom version of ZZFeatureMap to compute QSVM quantum kernel function.

Fig. 3. Quantum neural network architecture.

Fig. 4. Quantum pooling circuit.

Fig. 5. EfficientSU2 variational quantum circuit with 4 repetitions.

Fig. 6. RealAmplitudes variational quantum circuit with 4 repetitions.

The classical network consists of two hidden layers with

dropout, batch normalization, and Leaky ReLU activations.
Training involves 50 epochs using Adam optimization for
classical layers and the parameter-shift rule for quantum
layers. For binary and multiclass classification tasks, the
quantum neural network (QNN) uses L2 and cross-entropy
objective functions, while HQNN employs binary and
standard cross-entropy, respectively.

IV. CLASSICAL MODEL RESULTS

Fig. 8 illustrates the accuracy results for classical models
based on four-element feature combinations using the entire
dataset. The accuracy decreases as the combinations progress
to the right, reflecting the descending order of feature
importance. The optimal feature combination was derived
from the multiclass scenario, which involved higher
complexity. The selected features are: Port Alive Duration
(S), Packets Matched, Packets Looked Up, and Active Flow
Entries. These four features, were then used to train the QML
algorithms on a subset of 10000 samples with the previous
proportions of 80% and 20% for train and test respectively.
Fig. 9 shows the respective accuracies of the features.

TABLE I. CLASSIC MODEL COMPARISON FOR 10000 SAMPLES (80% TRAIN
AND 20% TEST).

Classical
Models

Classification Type Accuracy 𝑭𝟏തതതത score

RF
Binary 100% 100%

Multiclass 87.35% 87.71%

KNN
Binary 100% 100%

Multiclass 81.45% 89.35%

SVM
Binary 100% 100%

Multiclass 69.65% 67.73%

NN
Binary 99.50% 98.64%

Multiclass 77.10% 73.25%

Mean 𝐹1 score (𝐹1) is included to account for the
significant class imbalance. For this, the dataset was shuffled
between runs to avoid training bias. The similarity between
accuracies and 𝐹1തതതത suggests that the models achieve a good
balance between precision and recall. No validation set was
needed because models generalized well, saving additional
hyperparameter tuning computation. Notably, the multiclass
scenario presented greater classification challenges.

Fig. 9. Binary and multiclass classical accuracies for the best feature

combination over the number of samples.

Fig. 10. Binary and multiclass quantum neural network training loss graphs.

Fig. 11. Binary and multiclass hybrid quantum-classical neural network

training graphs (PauliFeatureMap and RealAmplitudes combinations).

Fig. 7. Hybrid quantum-classical neural network scheme.

Fig. 8. Binary and multiclass classical accuracies as a function of
four-element feature combinations.

V. QUANTUM MODEL RESULTS

Fig. 10 shows the evolution of QNN loss over training
iterations. The combination of ZZFeatureMap and
EfficientSU2 shows greater difficulty in reducing the loss
compared to the PauliFeatureMap and RealAmplitudes
combination for the binary case. Conversely, the opposite
trend is observed for the multiclass task. Fig. 11 depicts the
HQNN train and test accuracies. The first binary classification
graph corresponds to the circuit combination of
PauliFeatureMap and RealAmplitudes, whereas the multiclass
graph contains the ZZFeatureMap and EfficientSU2
combination. The results align with the loss trends in Fig. 10.

An overview of all QML results can be found in Table II.
In binary classification, several models achieve 100%
accuracy: QKNN-V1, QKNN-V2, QSVM and HQNN. For
the multiclass scenario, the best accuracy was achieved by
HQNN with 78.24%, followed by QSVM with 72.40%, both
overtaking classical ML results. It’s noticeable that other
models such as QKNN-V1 have limitations with only 46.80%
and 19.80% for angle and amplitude encoding respectively.
A further study focusing on computation time would require
access to quantum computers. In this work, we have been
using quantum simulators from IBM and PennyLane running
on classical computers, which makes a comparison of
computation time not fair and not representative. This paper
doesn’t include further research on the optimization of the
QML algorithms, although other authors have shown
significant efficiency improvements [23].

TABLE II. QUANTUM MODEL COMPARISON FOR 10000 SAMPLES (80%
TRAIN AND 20% TEST), EXCEPT 200 SAMPLES FOR QKNN-V3.

Classical Models Classification Type Accuracy

QKNN-V1 (Ang.)
Binary 100%

Multiclass 46.80%

QKNN-V1 (Amp.)
Binary 90.05%

Multiclass 19.80%

QKNN-V2
Binary 100%

Multiclass 56.90%

QKNN-V3a

Binary 85%
Multiclass 55%

QSVM
Binary 100%

Multiclass 72.40%

QNN
Binary 98.90%

Multiclass 63.55%

HQNN
Binary 100%

Multiclass 78.24%

VI. CONCLUSIONS

This work shows that QML algorithms can improve the
results of classical ML. For example, the accuracy achieved
with HQNN reaches 78.24%, surpassing the 77.10%
achieved with classical NN. The accuracy of QSVM reaches
72.40% ahead of the 69.65% achieved by classical SVM,
showing higher accuracies of HQNN and QSVM than their
classical SVM and NN counterparts, suggesting the potential
of QML to enhance precision in cybersecurity.

REFERENCES
[1] S. K. Sood and Pooja, "Quantum Computing Review: A Decade of

Research," in IEEE Transactions on Engineering Management, vol. 71,
pp. 6662-6676, 2024, doi: 10.1109/TEM.2023.3284689.

[2] D. Patil, et al. "Machine learning and deep learning: Methods,
techniques, applications, challenges, and future research
opportunities," Trustworthy Artificial Intelligence in Industry and
Society, pp 28-81, 2024

[3] P. J. Szablowski, “Understanding mathematics of Grover’s algorithm,”
Quantum Information Processing, 20(5), 191, 2021.

[4] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S.
Lloyd, “Quantum machine learning,” Nature 549, 195–202, 2017,
https://doi.org/10.1038/nature23474.

[5] W. Xia, Y. Wen, C. H. Foh, D. Niyato and H. Xie, "A Survey on
Software-Defined Networking," in IEEE Communications Surveys &
Tutorials, vol. 17, no. 1, pp. 27-51, Firstquarter 2015, doi:
10.1109/COMST.2014.2330903.

[6] Das, T., Hamdan, O. A., Shukla, R. M., Sengupta, S. and Arslan, E.,
"UNR-IDD: Intrusion Detection Dataset using Network Port
Statistics," 2023. IEEE 20th Consumer Communications &
Networking Conference (CCNC), Las Vegas, NV, USA, 2023, pp.
497-500, doi: 10.1109/CCNC51644.2023.10059640.

[7] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

[8] Hand, D., Mannila, H., & Smyth, P. (2001). Principles of Data Mining.
MIT Press.

[9] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine
Learning, 20(3), 273–297.

[10] Rosenblatt, F. (1958). The perceptron: A probabilistic model for
information storage and organization in the brain. Psychological
Review, 65(6), 386–408.

[11] Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning
representations by back-prop. errors. Nature, 323(6088), 533–536.

[12] Abreu, D., Rothenberg, C. E., & Abelém, A. (2024, June). QML-IDS:
Quantum Machine Learning Intrusion Detection System. In 2024 IEEE
Symposium on Computers and Communications (ISCC) (pp. 1-6).

[13] Payares, E. D., and Martínez-Santos, J. C., 2021. Quantum machine
learning for intrusion detection of distributed denial of service attacks:
a comparative overview. Quantum Computing, Communication, and
Simulation, 11699, 35-43.

[14] Said, D. (2023). Quantum Computing and Machine Learning for
Cybersecurity: Distributed Denial of Service (DDoS) Attack Detection
on Smart Micro-Grid. Energies, 16(8), 3572.
https://doi.org/10.3390/en16083572

[15] Kim, T. H., and Madhavi, S. 2024. Quantum intrusion detection system
using outlier analysis. Scientific Reports, 14(1), 27114. doi

[16] Cerezo, M., Verdon, G., Huang H.Y., Cincio, L., Coles, P.J.,
Challenges and opportunities in quantum machine learning. Nature
Computation Science, 2, 567-576 (2022).

[17] Faker, O., and Cagiltay, N. E. 2023. Quantum Machine Learning in
Intrusion Detection Systems: A Systematic Mapping Study. In
International conference on WorldS4 (pp. 99-113). Singapore:
Springer Nature Singapore.

[18] Qiskit. 2024. IBM Quantum Documentation.
https://docs.quantum.ibm.com/. Accessed: 2024-22-11.

[19] PennyLane. 2024. Quantum Programming Software.
https://pennylane.ai/. Accessed: 2024-22-11.

[20] Diadamo, S., O’Meara, C., Cortiana, G., & Bernab'e-Moreno, J.
(2021). Practical Quantum K-Means Clustering: Performance Analysis
and Applications in Energy Grid Classification. IEEE Transactions on
Quantum Engineering, 3, 1-16.

[21] Basheer, A., Afham, A., & Goyal, S. K. (2020). Quantum k-nearest
neighbor algorithm. arXiv:2003.09187.

[22] Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support
vector machine for big data classification. Physical review letters,
113(13), 130503.

[23] T. T. An, S. L. Cotton, J. Zhang, Y. Ding, and T. Q. Duong, “LoRa
Radio Frequency Fingerprinting Using a Hybrid Quantum-Classical
Neural Network,” in Proc. of IEEE Vehicular Technology Conference
(VTC2024-Fall), Washington DC, Oct. 2024.

