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Abstract—Quantum machine learning (QML) algorithms 
for intrusion detection systems in software-defined networks are 
investigated, and their effectiveness is compared with their 
classical machine learning methods. The University of Nevada - 
Reno intrusion detection dataset (UNR-IDD) is used to evaluate 
different QML models, including quantum k-nearest neighbors 
(QKNNs), quantum support vector machines (QSVMs), 
quantum neural networks (QNNs), and hybrid quantum neural 
networks (HQNNs). These models were tested with quantum 
simulators to evaluate their potential advantages in processing 
complex datasets. The results show that HQNN and QSVM have 
higher accuracy than their classical SVM and NN counterparts. 
This study shows the potential of leveraging QML to enhance 
precision. References to other works that dive into efficiency 
and complexity are included. 

Keywords— Quantum machine learning (QML), Intrusion 
Detection, Cybersecurity, Software-Defined Networks (SDN). 

I. INTRODUCTION  

Quantum computing [1] and machine learning [2] are 
changing modern computing. On the one hand, since qubits 
can exist in multiple states simultaneously, quantum 
computers can process information in a way that their classical 
counterparts cannot. A clear example of this difference is 
searching in a large database. While a classical computer 
would examine each entry individually, a quantum computer 
can use Grover’s algorithm [3] to examine multiple entries 
simultaneously, making the searching task considerably 
faster. On the other hand, machine learning, which is usually 
used to make predictions and decisions based on vast amounts 
of data, is reaching the limits of classical computing. To 
address this challenge, quantum machine learning (QML) [4] 
(QML) has emerged as a promising approach that has the 
potential to benefit several industries, including the 
telecommunications sector. 

As telecommunications networks operate as a shared 
medium, ensuring robust security is essential to protect 
personal data and maintain user trust. Network security can be 
significantly improved by integrating QML with modern 
network management models, such as software-defined 
networking (SDN) [5]. For example, using quantum-based 
intrusion detection systems (IDSs) along with SDN will 
ensure that QML-powered IDS can be dynamically 
reconfigured based on the location and intensity of an attack 
to ensure optimal coverage. 

In this paper, we investigate the application of QML to 
network intrusion detection systems (NIDSs) in SDN-based 
networks and compare the results with classical machine 
learning (ML) algorithms using a public database. 

A. Software Defined Networking (SDN) 

Software-defined networking (SDN) separates the 
network control (control plane) from communication and 
routing (data plane), marking a shift from monolithic and 
static network architectures [5]. This separation allows 
independent release cycles for the two planes but requires 
standardized interfaces between them. 

SDN supports centralized control with full visibility of 
network resources, improving management, maintenance, and 
automation. Additionally, SDN enables flexible control 
architectures, including hierarchical and distributed models. 

B. Network Intrusion Detection Systems (NIDSs) 

Network intrusion detection systems (NIDSs) are essential 
for monitoring and analyzing network traffic to identify 
malicious activities or policy violations. These systems are 
classified as signature-based, which use predefined attack 
patterns, or anomaly-based, which apply machine learning to 
detect deviations from normal network behavior. 

The University of Nevada - Reno intrusion detection 
dataset (UNR-IDD) addresses the limitations of existing 
NIDS datasets by focusing on network port statistics, offering 
finer analysis and faster intrusion detection. It supports both 
binary and multiclass classification of common cyber-attacks 
and has demonstrated accuracy comparable to larger datasets 
while significantly reducing training times [6]. 

C. Classical and Quantum ML Models for NIDSs 

Machine learning (ML) algorithms are integral to data-
driven research, enabling classification, regression, and 
pattern recognition. Common methods include random forests 
(RFs), k-nearest neighbors (KNNs), support vector machines 
(SVMs), and artificial neural networks (ANNs). 

RFs are ensemble learning methods that build multiple 
decision trees and combine their predictions to avoid 
overfitting and improve overall performance [7]. In KNNs, a 
non-parametric algorithm makes predictions based on the k 
nearest training samples in the feature space, and uses 
proximity to infer the output [8]. SVMs are supervised 
learning models that find the hyperplane that best separates 
classes with maximum margin and use kernel functions to 
handle non-linear boundaries [9]. 
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Finally, ANNs are computational models inspired by the 
architecture of biological neural networks [10]. They consist 
of interconnected neurons that learn by adjusting weights 
using backpropagation [11].  

In recent years, it has become more than obvious that 
classical NIDSs will not be sufficient in the short and medium 
term to meet the challenges facing computer systems. Here, 
QML algorithms are promising. These algorithms use 
quantum mechanical principles to overcome the limitations of 
classical solutions, both in the identification of intrusion 
events and in their classification. In particular, QML 
algorithms have the potential to improve NIDSs due to their 
ability to process massive data in an efficient way, using 
superposition and quantum entanglement principles, with a 
clear advantage in terms of efficiency and scalability 
compared to classical solutions [12]. 

On the other hand, recent research [13] has shown that the 
use of quantum models to identify distributed denial of service 
(DDoS) attacks can achieve success rates above 96%. Other 
recent research [14], proposed other alternatives based on 
quantum support vector machines (QSVMs) to detect DDoS 
attacks in smart microgrids, and in all cases showed better 
performance than their classical SVM counterparts. 

Just as neural networks are used for classical applications 
to identify behavioral patterns, the use of quantum 
convolutional neural networks (QCNNs), as well as the use of 
variational quantum circuits (VQCs) and hybrid quantum-
classical models, are being considered to improve the 
performance of attack identification and detection using 
quantum principles [15]. This work is promising in the short 
term both for detection and multiclass classification of 
intrusion events or attacks. 

While it is true that QML based NIDSs are still at an early 
stage of research, the studies conducted so far show high 
potential for improving cybersecurity in the quantum era. 
However, such solutions require more research and parallel 
development of quantum hardware [16] to efficiently exploit 
the principles on which they are based, especially considering 
that threats and attack techniques evolve in parallel [17]. 

II. EXPLORATORY DATA ANALYSIS OF THE UNR-IDD 

The UNR-IDD was developed using Mininet software, a 
network function virtualization (NFV) environment to create 
an SDN topology consisting of 10 hosts and 12 Open 
vSwitches. For feature extraction, a custom implementation of 
the open network operating system (ONOS) SDN controller 
was used to measure network traffic. IPerf software was used 
to generate 10 Mbps TCP and UDP data streams between 
randomly chosen source-destination pairs every 5 seconds. 

The features were collected using OFPPortStatsRequest 
and OFPPortStatsReply messages between the SDN 
controller and Open vSwitches, for a total number of 34 
features as found in [6]. In particular, the Label distinguishes 
between different network attacks: TCP-SYN flood, 
Blackhole, Port Scan, Flow table overflow, and Diversion. 
The Binary Label indicates whether the labels are Normal or 
Attack network traffic. 

A. Selection of Features and Number of Samples 

A crucial step in preprocessing is to identify possible blank 
spots among the data, or highly correlated samples to reduce 
the total number of features. Fortunately, this dataset contains 
no blank samples and has only a single duplicate that can be 
easily resolved. Class labels comprise about 90% of Attack 
and 10% Normal for both binary and multiclass scenarios, 
leading to a relevant class imbalance that needs to be 
considered when benchmarking metrics, especially in the 
binary case. 

The total size of the dataset is 37412 samples with 34 
features each. The amount of computation time can be very 
disadvantageous if the number of features and samples is high, 
especially for quantum simulators. A balance must therefore 
be found between the minimum number of features, the 
number of samples, and the accuracy of the models. For this 
purpose, a statistical analysis of the features is performed, 
which leads to the removal of: Switch ID, Port Number, 
Packets Rx Dropped, Packets Tx Dropped, Packets Rx Errors, 
Packets Tx Errors, Delta Packets Rx Dropped, Delta Packets 
Tx Dropped, Delta Packets Rx Errors, Delta Packets Tx 
Errors, is_valid, Table ID, and Max Size, as they have 
standard deviation and percentiles of zero. Next, the 
importance scores of the remaining 19 features were 
calculated using a RF-based algorithm to further reduce their 
dimensionality. All possible combinations of 4 elements 
without repetitions are performed for the 10 most important 
features. The importance of the features indicates that the 
remaining ones provide little additional information. Selecting 
four features is based on the dimensionality of quantum state 
vectors, which follow powers of 2. To identify the best 
combination of features, RFs, KNNs, SVMs, and NNs are 
used to calculate accuracies, with an 80-20% train-test split. 
The combination that achieves the highest accuracy across 
these models is chosen. Then, the dataset size is adjusted from 
500 to 30000 samples (in steps of 500), and the accuracies are 
recalculated to determine the optimal sample size for the 
selected feature combination. 

III. APPLICATION OF QML TO THE UNR-IDD NIDS 

This section focus on the application of QML algorithms 
to the NIDS task using the UNR-IDD, and systematically 
explore the quantum implementations of: QKNN-V1, QKNN-
V2, QKNN-V3, QSVM, QNN, and HQNN. For all QML 
algorithms except for QKNN-V3, the dataset contained 10000 
samples of 4 features corresponding to the best feature 
combination obtained in the previously performed exploratory 
data analysis. For QKNN-V3, however, the number of 
samples was limited to 200 for reasons of computational cost. 
Qiskit library [18] was chosen to implement the QML models 
except for QSVM, which was programmed using PennyLane 
[19] due to its more convenient approach. 

A. Quantum k-Nearest Neighbors (QKNNs) 

Three QKNN model versions have been implemented: 
QKNN-V1, QKNN-V2 and QKNN-V3. QKNN-V1 serves as 
a foundational quantum approach for KNNs using controlled-
SWAP gates to compute Euclidean quantum distances. 
Amplitude and angle encoding are used to transform classical 
data into quantum states. QKNN-V2 introduces an adaptation 



of the circuit of [20] that includes additional quantum 
operations to improve performance and accuracy. This model 
uses angle encoding. Finally, QKNN-V3, an implementation 
of the QKNN algorithm presented by [21], incorporates more 
resource-intensive quantum circuit designs and encoding 
strategies. To calculate Euclidean quantum distances, the 
fidelity equation 𝐹 = |⟨𝜓|𝜙⟩|ଶ is used, where 𝜓 and 𝜙 are the 
train and test quantum states respectively. Both QKNN-V1 
and QKNN-V2 use the sklearn.neighbors library to fit 
and train the model with KNeighborsClassifier(), 
using quantum inner products as the distance metric, while 
QKNN-V3 processes and indexes quantum states with a 
quantum circuit and an oracle. 

1) QKNN-V1 
To compute quantum inner products, the circuit shown in 

Fig. 2 of [20] was run for 2048 realizations. A measurement 
is performed on the first ancilla qubit when its probability is 0 
in the form of 𝑃(0) =

ଵ

ଶ
+

ଵ

ଶ
|⟨𝜓|𝜙⟩|ଶ. For amplitude encoding, 

the resulting distance is obtained using 𝐷 = 4𝑍(𝑃(0) − 0.5), 
where 𝑍 = |𝑎|ଶ + |𝑏|ଶ. The classic data vectors correspond to 
𝑎 = (𝑎ଵ, 𝑎ଶ, ⋯ , 𝑎௡)  and 𝑏 = (𝑏ଵ, 𝑏ଶ, ⋯ , 𝑏௡) , which are not 
necessarily normalized, and are transformed into the states 
|𝜓⟩ =

ଵ

√ଶ
(|0⟩|𝑎⟩ + |1⟩|𝑏⟩) and |𝜙⟩ =

ଵ

√ଶ
(|𝑎||0⟩ − |𝑏||1⟩). For the 

case of angle encoding, 2D unitary single-qubit 
transformations are applied to the quantum states in the form 
of |𝜓⟩ = 𝑈(𝑎ଵ

ᇱ , 𝑎ଶ
ᇱ )|0⟩ and |𝜙⟩ = 𝑈(𝑏ଵ

ᇱ , 𝑏ଶ
ᇱ )|0⟩, where 𝑈 is 

 𝑈(𝜃, 𝛾) = ቌ
𝑐𝑜𝑠

ఏ

ଶ
−𝑠𝑖𝑛

ఏ

ଶ

𝑒௜ఊ𝑠𝑖𝑛
ఏ

ଶ
𝑒௜ఊ𝑐𝑜𝑠

ఏ

ଶ

ቍ (1)

with 𝑎ଵ
ᇱ =

଻గ

ଶ
(𝑎ଵ + 1) and 𝑎ଶ

ᇱ =
଻గ

ଶ
(𝑎ଶ + 1) (same for 𝑏). The 

factor 7𝜋 2⁄  may vary depending on the underlying dataset 
characteristics. In this approach the two other features indexed 
as 𝑖 = 3, 4 are not considered since in this case the number of 
features is 𝑛 = 4. Other techniques such as considering the 
mean 𝑎ଵ = 𝑎തଵ,ଶ and 𝑎ଶ = 𝑎തଷ,ସ for both 𝑎 and 𝑏 were tested but 
yielded slightly worse results. Finally, the metric distance is 
𝐷 = ඥ𝑍 ∙ 𝑃(1), where the probability of the ancilla qubit to be 
1 is 𝑃(1) =

ଵ

ଶ
−

ଵ

ଶ
|⟨𝜓|𝜙⟩|ଶ. 

2) QKNN-V2 
This adaptation extends the previous QKNN-V1 angle 

encoding implementation by applying unitary 𝑈 2D rotations 
(1) as |𝜓⟩ = ⊗

௜∈௢ௗௗ(௡)
𝑈(𝑎௜

ᇱ, 𝑎௜ାଵ
ᇱ )|0⟩ ⊗ 𝑈(𝑎௡

ᇱ , 𝑎௡
ᇱ )  and |𝜙⟩ =

⊗
௜∈௢ௗௗ(௡)

𝑈(𝑏௜
ᇱ, 𝑏௜ାଵ

ᇱ )|0⟩ ⊗ 𝑈(𝑏௡
ᇱ , 𝑏௡

ᇱ ) . For this configuration, 𝑛 

must be an even number, matching the lengths of 𝑎 and 𝑏. 
Here, 𝑜𝑑𝑑(𝑛) means all odd indices from 1 to 𝑛. If feature 
vectors have odd dimensions, they can be zero-padded to 
make them even. Fig. 1 shows the functional quantum circuit 
constructed with Hadamard gates, single-qubit rotations, 
controlled-SWAP gates applied to the respective pairs of 
indices, and the measurement of the first ancilla qubit when 
its probability is 1. Again, the circuit was simulated for 2048 
realizations with the final distance metric as 𝐷 = ඥ𝑍 ∙ 𝑃(1), 
where 𝑍 = |𝑎|ଶ + |𝑏|ଶ. In addition, the angle factor for 𝑎௜

ᇱ and 
𝑏௜

ᇱ was chosen to be 𝜋 2⁄ . 

 

3) QKNN-V3 
Finally, QKNN-V3 adaptation was performed based on 

the algorithm by [21]. It aims to compute all distances with 
respect to their nearest neighbors simultaneously, using the 
previously defined fidelity distance 𝐹 . It is implemented 
according to the scheme shown in Fig. 4 in [21]. The detailed 
quantum circuit requires an oracle 𝒲 capable of generating 
these states in superposition. We have implemented an oracle 
in the form of 𝒲|0⟩|𝑖⟩ = |𝜙௜⟩|𝑖⟩, where |𝜙௜⟩ are the indexed 
train states. The Grover’s algorithm, which is not shown in 
cited Fig. 4, is included before the measurements to determine 
the nearest neighbors. Finally, the measurement of similarity, 
test and train registers is performed to compute the class label 
for the test state. 

B. Quantum Support Vector Machines (QSVMs) 

Next, we present a QSVM implementation that uses a 
quantum circuit to perform a kernel function. The PennyLane 
library was used to build the quantum circuit shown in Fig. 2, 
where a quantum feature map 𝑥 → |𝜙(𝑥)⟩ is represented by a 
quantum circuit |𝜙(𝑥)⟩ = 𝑈(𝑥)|0௡⟩ . Each kernel entry 
𝐾(𝑥௜ , 𝑥௝) is calculated by running the circuit 𝑈ற൫𝑥௝൯𝑈(𝑥௜) on 
the input state |0௡⟩  followed by estimating 
|ൻ0௡ห𝑈ற൫𝑥௝൯𝑈(𝑥௜)ห0௡ൿ|ଶ through the frequency of observing the 
outcome |0௡⟩ . The quantum circuit 𝑈(𝑥௜)  is built by 
implementing a slightly modified ZZFeatureMap with 𝑋 
and 𝑅𝑍  gates, as described in the Qiskit library [18]. This 
process is equivalent to calculating the inner products for each 
kernel entry, as represented by the Gram matrix in (2). 

 𝐺 = ቎
𝜙(𝑥ଵ)்𝜙(𝑥ଵ) … 𝜙(𝑥ଵ)்𝜙(𝑥ெ)

⋮ ⋱ ⋮
𝜙(𝑥ெ)்𝜙(𝑥ଵ) ⋯ 𝜙(𝑥ெ)்𝜙(𝑥ெ)

቏ (2) 

Here, 𝑥௜ and 𝑥௝ represent the combinations of either 
training or test feature vectors. Initially, the training Gram 
matrix is computed, where both 𝑥௜ and 𝑥௝ are training 
samples. This is used to minimize the objective function 
𝐿( 𝛼) = ∑ 𝑦௝𝛼௝ −

ଵ

ଶ
 ெ

௝ୀଵ ∑ 𝛼௝𝐾௝௞𝛼௞
ெ
௝,௞ୀଵ  [22] with the 

corresponding training labels. Subsequently, a test Gram 
matrix is constructed using the inner cross products of 𝑥௜ (test 
samples) and 𝑥௝ (training samples) to recover the hyperplane 
from the 𝛼 coefficients and predict the test labels. Finally, a 
classical SVM is executed using these results to  

 
Fig. 1. QKNN-V2 quantum circuit. 



 

utilize the precomputed quantum kernel. Since the number of 
shots in the execution of the quantum circuit was not specified, 
PennyLane performed an analytical execution. 

C. Quantum Neural Networks (QNNs) 

QNNs act as variational quantum algorithms, where classical 
data is encoded into quantum states using a feature map 𝒰௫ in 
the form of |𝜓௫⟩ = 𝒰௫|0⟩⊗ௌ, within a 𝑆-qubit Hilbert space, 
to be later on processed by a quantum variational circuit 𝒢ఏ as 
|𝑔ఏ(𝑥)⟩ = 𝒢ఏ|𝜓௫⟩, as Fig. 3 illustrates. The parameters of the 
variational circuit (or ansatz), are trained and updated by 
minimizing an objective function. During this minimization, 
the output of the quantum model 𝑧 = (𝑧ଵ, … , 𝑧ௌ) is derived 
from a classical post-processing function applied to a 
measurement result 𝑦 = 𝑓(𝑧).  

 

To adjust the number of qubits to the output measurement, 
a quantum pooling layer is applied immediately after the 
ansatz. This quantum pooling circuit consists of individual 
two-qubit pooling circuits, as shown in Fig. 4.  

Two combinations of feature maps and ansatzes were 
tested using Qiskit library [18]. The first combination paired a 
ZZFeatureMap with an EfficientSU2 ansatz (Fig. 5), 
and the second used a PauliFeatureMap with a 
RealAmplitudes ansatz (Fig. 6), both modified with four 
repetitions. Quantum pooling reduced qubits to 1 and 3 for 
binary and multiclass scenarios, respectively. The 
SamplerQNN instance was used to train the model with the 
COBYLA optimizer for 600 iterations. The parameter-shift 
rule was used to compute quantum backpropagation, along 
with L2 and cross-entropy objective functions for binary and 
multiclass cases, respectively. 

 

D. Hybrid Quantum-Classical Neural Networks (HQNNs) 

Hybrid Quantum Neural Networks (HQNNs) integrate feature 
maps, quantum variational circuits, and classical neuron 
layers. The structure employs two combinations of feature 
maps, ansatz, and quantum pooling layers. Outputs from the 
quantum components are measured and integrated into a 
classical feedforward neural network using Qiskit’s 
TorchConnector, as shown in Fig. 7. 

 

 

 
Fig. 2. Custom version of ZZFeatureMap to compute QSVM quantum kernel function. 

 

Fig. 3. Quantum neural network architecture. 

 

Fig. 4. Quantum pooling circuit. 

 

Fig. 5. EfficientSU2 variational quantum circuit with 4 repetitions. 

 

Fig. 6. RealAmplitudes variational quantum circuit with 4 repetitions. 



 
The classical network consists of two hidden layers with 

dropout, batch normalization, and Leaky ReLU activations. 
Training involves 50 epochs using Adam optimization for 
classical layers and the parameter-shift rule for quantum 
layers. For binary and multiclass classification tasks, the 
quantum neural network (QNN) uses L2 and cross-entropy 
objective functions, while HQNN employs binary and 
standard cross-entropy, respectively.  

IV. CLASSICAL MODEL RESULTS 

Fig. 8 illustrates the accuracy results for classical models 
based on four-element feature combinations using the entire 
dataset. The accuracy decreases as the combinations progress 
to the right, reflecting the descending order of feature 
importance. The optimal feature combination was derived 
from the multiclass scenario, which involved higher 
complexity. The selected features are: Port Alive Duration 
(S), Packets Matched, Packets Looked Up, and Active Flow 
Entries. These four features, were then used to train the QML 
algorithms on a subset of 10000 samples with the previous 
proportions of 80% and 20% for train and test respectively. 
Fig. 9 shows the respective accuracies of the features. 

 

TABLE I. CLASSIC MODEL COMPARISON FOR 10000 SAMPLES (80% TRAIN 
AND 20% TEST). 

Classical 
Models 

Classification Type Accuracy 𝑭𝟏തതതത score 

RF 
Binary 100% 100% 

Multiclass 87.35% 87.71% 

KNN 
Binary 100% 100% 

Multiclass 81.45% 89.35% 

SVM 
Binary 100% 100% 

Multiclass 69.65% 67.73% 

NN 
Binary 99.50% 98.64% 

Multiclass 77.10% 73.25% 

 

Mean 𝐹1  score (𝐹1)  is included to account for the 
significant class imbalance. For this, the dataset was shuffled 
between runs to avoid training bias. The similarity between 
accuracies and 𝐹1തതതത suggests that the models achieve a good 
balance between precision and recall.  No validation set was 
needed because models generalized well, saving additional 
hyperparameter tuning computation. Notably, the multiclass 
scenario presented greater classification challenges. 

 
Fig. 9. Binary and multiclass classical accuracies for the best feature 

combination over the number of samples. 

 
Fig. 10. Binary and multiclass quantum neural network training loss graphs. 

 
Fig. 11. Binary and multiclass hybrid quantum-classical neural network 

training graphs (PauliFeatureMap and RealAmplitudes combinations). 

 

 

Fig. 7. Hybrid quantum-classical neural network scheme. 

 

Fig. 8. Binary and multiclass classical accuracies as a function of 
four-element feature combinations. 



V. QUANTUM MODEL RESULTS 

Fig. 10 shows the evolution of QNN loss over training 
iterations. The combination of ZZFeatureMap and 
EfficientSU2 shows greater difficulty in reducing the loss 
compared to the PauliFeatureMap and RealAmplitudes 
combination for the binary case. Conversely, the opposite 
trend is observed for the multiclass task. Fig. 11 depicts the 
HQNN train and test accuracies. The first binary classification 
graph corresponds to the circuit combination of 
PauliFeatureMap and RealAmplitudes, whereas the multiclass 
graph contains the ZZFeatureMap and EfficientSU2 
combination. The results align with the loss trends in Fig. 10.  

An overview of all QML results can be found in Table II. 
In binary classification, several models achieve 100% 
accuracy: QKNN-V1, QKNN-V2, QSVM and HQNN. For 
the multiclass scenario, the best accuracy was achieved by 
HQNN with 78.24%, followed by QSVM with 72.40%, both 
overtaking classical ML results. It’s noticeable that other 
models such as QKNN-V1 have limitations with only 46.80% 
and 19.80% for angle and amplitude encoding respectively. 
A further study focusing on computation time would require 
access to quantum computers. In this work, we have been 
using quantum simulators from IBM and PennyLane running 
on classical computers, which makes a comparison of 
computation time not fair and not representative. This paper 
doesn’t include further research on the optimization of the 
QML algorithms, although other authors have shown 
significant efficiency improvements [23]. 

TABLE II. QUANTUM MODEL COMPARISON FOR 10000 SAMPLES (80% 
TRAIN AND 20% TEST), EXCEPT 200 SAMPLES FOR QKNN-V3.  

Classical Models Classification Type Accuracy 

QKNN-V1 (Ang.) 
Binary 100% 

Multiclass 46.80% 

QKNN-V1 (Amp.) 
Binary 90.05% 

Multiclass 19.80% 

QKNN-V2 
Binary 100% 

Multiclass 56.90% 

QKNN-V3a
 

Binary 85% 
Multiclass 55% 

QSVM 
Binary 100% 

Multiclass 72.40% 

QNN 
Binary 98.90% 

Multiclass 63.55% 

HQNN 
Binary 100% 

Multiclass 78.24% 

VI. CONCLUSIONS 

This work shows that QML algorithms can improve the 
results of classical ML. For example, the accuracy achieved 
with HQNN reaches 78.24%, surpassing the 77.10% 
achieved with classical NN. The accuracy of QSVM reaches 
72.40% ahead of the 69.65% achieved by classical SVM, 
showing higher accuracies of HQNN and QSVM than their 
classical SVM and NN counterparts, suggesting the potential 
of QML to enhance precision in cybersecurity. 
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