ANALYSISOF VIDEO SEQUENCES: TABLE OF CONTENTSAND INDEX CREATION

Joan Llach, Philippe Salembier
Universitat Politécnica de Catalunya, Campus Nord - Modul D5, C/ Gran Capita s/n, 08034 Barcelona, Spain
E-mail: {jllach,philippe}@gps.tsc.upc.es — WWW: http://gps-tsc.upc.es/imatge

ABSTRACT

This paper deals with the representation of video sequences useful
for tasks such as long-term analysis, indexing or browsing. A Table
Of Content and index creation algorithm is presented, as well as
additional tools involved in their creation. The proposed method
does not assume any a priori knowledge about the content or the
structure of the video. It is therefore a generic technique. Some
examples are presented in order to assess the performance of the
algorithm.

1. INTRODUCTION

In the framework of video analysis for indexing application (for ex-
ample application related to MPEG-7), the representation of video
sequences is an important issue. It is not enough to describe the
content of a video but also to develop techniques which are able
to automatically create these descriptions. In this paper, a new tech-
nigue that automatically creates TOCsand indexesiis presented. The
proposed algorithm only relies on visual information, unlike other
techniques which use both video and audio information [3].

The goal of the TOC is to define the structure of the video se-
quence in a hierarchical fashion. The original sequence should be
subdivided in sub-sequences which can also be divided in shorter
sub-sequences, etc. At the end of this division process, the short-
est entity to be described is the micro-segment. The index is also
a hierarchical structure but it does not describe the structure of the
sequence but the occurrences of similar content.

The creation of the TOC and index follows the same strategy.
The first step splits the sequence into shots. The second step divides
each shot into micro-segments which are sub-components of a shot
where the camera activity is homogeneous. These micro-segments
constitute the lowest level of the TOC or index representations. The
third step creates the hierarchical structures by clustering the de-
tected shots.

This paper is structured as follows. Section 2 deals with the shot
detection algorithm. The temporal segmentation of shots is detailed
in section 3, whereas their clustering is explained in section 4. Some
conclusions are driven in section 5.

2. SHOT DETECTION

The first step in the TOC and index creation splits the sequence
into shots. Taking into account that a shot is a set of contiguous
frames without editing effects, the algorithm has to detect the tran-
sitions between consecutive shots. These transitions can be abrupt
or more sophisticated, like dissolves or fades. The shot detection
algorithm consists of two main steps: computation of the mean Dis-
placed Frame Difference mDF D curve and its segmentation into
shots.

This work is supported by Philips Research.

350

T T T T T
Scene cut
Scene cut Filtered
Markers
300 1
Scene cut
250 |- Scene cut 7
200 2,4 = q
s1 ha (sl s5 S6. 7 gf’ 510
[— T =1
7| JL} 7
Dissolve
50 | 1
LA O —
e mw I - I = il I

21000 21100 21200 21300 21400 21500 21600 21700 21800 21900 22000

Figure 2: mDF D for the news2 sequence (frame 21 000 to 22 000,
thin line). The filtered curve (thick line) and the detected markers
(horizontal segments) are also plotted. S1-S10 depict the limits of
the detected shots.

2.1. Computation of themDF D curve

The mDF D curve is obtained using a variation of the Displaced
Frame Difference DFD to take into account luminance and chromi-
nance information. If I, and I, are the image dimensions and w’s
are the weights for Y, U, V components, the mDFD is computed as
follows: mDF D(t) = lely :’U’V Wi Ef“;ly |DF Dy (i, j; t —
1,¢+1)).

In the example shown in Fig. 2 the weights have been set to
{wy,wv,wyv} = {1,3,3}, which are typical values. The high-
est peaks of the curve correspond to the abrupt transitions (frames
21100, 21195, 21 633 and 21 724). On the other side, the oscillation
from frame 21 260 to 21 279 corresponds to a dissolve. The presence
of large moving foreground objects in frames 21 100-21 195 and
21 633-21 724 creates high level oscillations of the mDF D curve.

2.2. Segmentation of themDF D curve

The second block of the shot detection algorithm detects the video
editing effects. Our approach has been to adapt classical spatial seg-
mentation strategies to the case of temporal segmentation. Most of
classical shot detection techniques use threshold-based segmenta-
tion to extract the highest peaks of the mDFD or another type of
mono-dimensional curve. Although a large number of shots can ac-
tually be detected by this approach, this class of algorithms is not ro-
bust and quite sensitive to noise. It is in particular difficult to detect
peaks of small contrast corresponding to fading or special effects.
The solution that we have used is a homogeneity-based approach
relying on morphological tools. The mDFD curve is processed fol-
lowing four steps:

0-306

363-663

=
e

1477-1508

1377-1476

1280-1376 1509-1663

’.7_7 i:i :"-“.-.?{
1835-1863

1864104

1664-1834 1946-2020

Figure 1: Detected shots for drama sequence, using I,,i» = 20 and ¢ = 10. Each image represents the central frame of the shot, the numbers
show its starting and ending frame. Shots are ordered from left to right and from top to bottom.

1. Smplification by temporal filtering. Morphological closing
with a 1D structuring element of length 7,,;,. With this op-
eration, negative peaks the length of which is less than [,
frames are removed. The l,,,;,, parameter defines the duration
of the shortest shot to be detected.

2. Smplification by positive contrast filter. Peaks that have a pos-
itive contrast lower than ¢ parameter are removed.

3. Marker extraction. Each marker corresponds to the kernel of
one shot. So, each marker must cover a portion of the curve
with a high probability to belong to a single shot. Because
contiguous frames that belong to the same shot are quite simi-
lar, the value of the mDFD will be small around those frames.
Thus, to extract the markers a negative contrast filter is used
because it detects the relative minimums of the curve.

4. Watershed. Its purpose is to propagate the markers on the
mDFD curve until all its points are assigned to a marker. The
propagation process is performed by applying a watershed al-
gorithm on the curve using as initial markers those obtained in
the previous step.

Figure 2 shows the filtered curve (both temporal filter and positive
and negative contrast filter), the resulting markers and detected shots
using i, = 10 and ¢ = 10. Even though some over-segmentation
appears around frames 21 150 and 21 700, both the scene cuts and
the dissolve have been correctly detected. The over-segmentation is
not a problem because the next steps of the algorithm eliminate this
effect.

3. TEMPORAL SEGMENTATION OF VIDEO SHOTS
USING CAMERA MOTION PARAMETERS

The goal of the temporal segmentation algorithm is to split each
shot into several micro-segments which present a high level of ho-
mogeneity on the camera motion parameters. The data used to per-
form the segmentation are the camera motion parameters currently
used in MPEG-7 [1]. The algorithm is applied to each shot and
consists of two steps: 1) each shot is over-segmented into several
micro-segments which must present a perfect homogeneity (see sec-
tion 3.1), and 2) a merging process is applied while the homogeneity
level of the set of micro-segments is below a predefined threshold.
In order to segment the shot, it is necessary to define a distance
to compare micro-segments and a parameter which allows the as-
sessment of the quality of a micro-segment or a partition (i.e., set of
micro-segments). In both cases, we use a motion histogram, defined

as follows:

H,[{] = Jl\j—:,i € {PanLeft, ZoomIn, Fix, ...} @)

where s represents the label of the segment inside the shot, the mo-
tion type, L, the length of segment s and V; the number of frames
of segment s with motion type i. Note that each bin of the his-
togram H shows the percentage of frames with a specific type of
motion. > H,[i] may be higher than 1.0, because different motions
can appear concurrently.

3.1. Homogeneity

We assume that a segment is perfectly homogeneous when it
presents a single combination of camera motion parameters along
all its frames. A segment is not homogeneous when it presents im-
portant variations on these parameters. The segment homogeneity
is computed on its histogram (Eq. 1). If a segment is perfectly ho-
mogeneous, the histogram bins are equal to either 1.0 or 0.0. If a
segment is not perfectly homogeneous, the bins can present inter-
mediate values.

To measure the segment homogeneity, we measure how much its
histogram differs from the ideal one. The distance corresponding to
bins with high values is the difference between the bin value and 1.0.
Analogously, for bins with small values, the distance is the bin value
itself. Mathematically, The homogeneity of a segment s is given by:

H(s) = Ze(i), where e(i) = { }Lj(:[a,HS[i]’ :I gﬁ E} i gg
)

where H; is the histogram of the segment s and ¢ indicates the dif-
ferent motion types. The homogeneity of a shot S is equal to the ho-
mogeneity of its segments weighting by the length of each of them.
Note that small values of 7 correspond to high levels of homogene-
ity.

The distance between two segments (s1, s2) is the homogeneity
of the union of the segments d(s1, s2) = H(s1 U s2).

3.2. Temporal segmentation algorithm

This algorithm consists of the following steps:

1. Initial over-segmentation. In this step, the shot is over-
segmented in order to obtain a set of perfectly homogeneous
micro-segments. Mathematically, the following condition
must be fulfilled: H(s) =0,Vs € S.

Motion Type

‘ N —— ‘ U
- T E—— PR
e zi

i 1 _q FIX
[‘ 1 e : : | UNK

L L L L | | |
o0 100 : 200 i 300 400 500
‘ ! ! ! ' Frame
[\ : \] Low detail
[I I I] High detail

Figure 3: Example of temporal segmentation of shot #8 of MPEG-7
nhkvideo sequence. Above: camera motion parameters chronogram;
below: two segmentations.

2. Fusion order. In this step, the distance between all neighbor-
ing segments (temporally connected) is computed. The closest
pair of segments is then selected for possible merging in the
next step.

3. Fusion criterion. To decide if the selected pair of segments
are going to be merged, we compute the homogeneity of the
shot assuming than the minimum distance segments have al-
ready been merged and then the following criterion is applied:
merge, if H(S) < ©y; do not merge, if H(S) > O4.

Note that the fusion criterion is global: the decision depends on
the homogeneity of the resulting partition and not —exclusively—
on the homogeneity of the resulting segment. If the merging is done,
a new iteration starts at the second step of the algorithm. The merg-
ing process ends when there is no pair of neighboring segments that
can be merged. The algorithm allows different levels of detail (see
Fig. 3).

4. SHOT CLUSTERING

The shot clustering process is divided into two parts: shot merging
and tree structuring. In the first step, pairs of shots are grouped
together creating a binary tree. In the second step, the binary tree
is restructured in order to reflect the similarity present in the video
sequence.

4.1. Shot merging

The shot merging algorithm yields a binary tree which represents
the merging order of the initial shots (see section 2). In this tree, the
leaves represent the initial shots, the top node represents the whole
sequence and the intermediate nodes represent sequences that are
created by the merging of several shots. The merging criterion is
defined by a distance between shots, merging first the closest shots.
In order to compute the distance between shots it is necessary to
define a shot model that provides the features to be compared, and
to set the neighborhood links between them, which indicate what
merging can be done. The TOC and index creation only differ in
the neighborhood links. The former sets a link between each pair of
temporally connected shots, the latter between all pair of shots.

The process ends when all the initial shots have been merged into
a single node or when the minimum distance between all couples
of linked nodes is greater than the specified threshold [5]. In the
latter case, not a single tree but a set of binary trees —a forest— is
obtained.

4.1.1. Shot and sequence model

The shot model must allow us to compare the content of several
shots to decide what shots must be merged and which is their merg-
ing order. In still images, luminance and chrominance are the main
features of the image [2]. In a video sequence, due to the temporal
evolution, motion is an important source of information [2, 4]. So,
average images, histograms of luminance/chrominance information
(YUV components) and motion information (z and y components
of motion vectors) are used to model the shots.

4.1.2. Merging distance

In order to compute the distance between a pair of nodes, three dif-
ferent cases must be considered depending on the type of nodes. At
the beginning of the merging process, the nodes represent a single
shot: the average of the Euclidean distance between the different
components of the model is used. In the following steps of the pro-
cess, the distance must be computed between nodes that may repre-
sent more than a single shot: the minimum and maximum distance
between all pair of shots (one from each node) is used.

4.1.3. Merging algorithm

The merging algorithm consists of three preliminary steps and the
merging process itself. In the first step, nodes are modeled according
to the model previously described. In the second step, neighborhood
links between shots are set and in the third step the distance between
linked shots is computed.

Since the whole algorithm must be able to create both the TOC
and the index of a video sequence, the criterion used to set the neigh-
borhood links differs depending on the main objective. In the TOC
creation process, neighborhood links are set according to temporal
connectivity. On the other hand, all pair of shots will be linked and
therefore may be merged in the index creation process.

Once the algorithm has been initialized, the merging process
starts performing the following steps:

1. Get minimum distance link. Both the minimum and the maxi-
mum distance is computed for every pair of linked nodes. Be-
fore to check the minimum distance, the maximum distance is
checked. If maximum distance is higher than the maximum
distance threshold d,..., then the link is discarded. Other-
wise, the link is taken into account. Once all links have been
scanned, the minimum distance link is obtained.

2. Check distance criterion. In order to decide if the nodes
pointed by the minimum distance link must be merged, the
minimum distance is compared to the minimum distance
threshold d,i». If the minimum distance is higher than the
threshold, the process ends. Otherwise, pointed nodes are
merged and the process goes on.

3. Updatelinks. Links are updated to take into account the merg-
ing that has been done.

4. Update distances. The distance of those links which point to
the new node is recomputed.

5. Check top node. If all initial shots have been merged into a
single node, the process ends. Otherwise, a new iteration be-
gins.

The merging process may yield a single tree or a forest depending
on the degree of similarity of the initial shots. An example of binary
tree for TOC creation is shown in Fig. 4. Inside the leaf nodes of

this tree, we have indicated its label, and between brackets [...] the
starting and ending frame number of the shot. Inside the remain-
ing nodes, we have indicated its label, between parenthesis (...) the
fusion order and between brackets the minimum and maximum dis-
tance between its two siblings.

4.2. Treestructuring

The purpose of this algorithm is to restructure the binary tree into an
arbitrary tree that should reflect more clearly the video structure. To
this end, nodes that have been created by the binary merging process
but that do not convey any relevant information should be removed.
The criterion used to decide if a node must appear in the final tree
is based on the variation of the similarity degree (distance) between
the shots included in the node:

e |f the analyzed node is the root node (or one of the root nodes,
if various binary trees have been obtained after the merging
algorithm), then the node should be preserved in the final tree.

¢ |f the analyzed node is a leaf node (i.e., it corresponds to a
initial shot), then it also remains in the final tree.

e Otherwise, the node will be kept in the final tree if
|dmin (analyzed node) — dpin(parentnode)] < © and
|dimae (analyzed node) — donq. (parent node)| < ©.

As shown in Fig. 5, the tree resulting from the restructuring step
represents more clearly the structure of the video sequence. Nodes
in the first level of the hierarchy (28,12,13,21) represents the four
scenes of the sequence, while nodes in the third —or occasionally
fourth— represent the initial shots.

5. CONCLUSIONS

In this paper, techniques for TOC and index creation and video shot
detection and micro-segment segmentation have been presented.
The shot detection algorithm is able to cope with abrupt transitions
as well as smooth ones even though it over-segments those portions
of the video sequence with a high level of motion. In order to solve
this drawback, a confidence mask will be added to the motion vec-
tors to discard those parts of the image which can not be properly
estimated when computing the mDFD.

The ability of the micro-segment segmentation algorithm to com-
pute partitions at different level of detail allows to adjust the gran-
ularity of the resulting TOC or index to take into account different
applications. Moreover, the algorithm is quite robust in front of mis-
takes in the camera parameters.

Finally, the TOC and index creation algorithm provides an uni-
fied method to compute both structures. Moreover, new pieces of
information can easily be introduced in the merging process. For
example, although the algorithm has been developed to deal with
generic sequences, in the case of knowing before hand some char-
acteristics of the sequence, this a priori information can be taken
into account to improve the performance of the algorithm in specific
scenarios.

6. REFERENCES

[1] R. Jasinschi, A. She, T. Naveen, A. Tabatabai, S. Jeannin and
B. Mory, “Motion Descriptors for Content Based Video Repre-
sentation”, to be published in Image Communications. Special
Issue on MPEG-7 proposals, 1999.

31 (15)
[2.24-3.66]

30 (14)
[2.28-3.85]

21 (5)
[1.67-1.86]

29 (13)

3 70
[2.68-361) | [[1664-1834]

16
‘[o 47-0.47) ‘ ‘[194672020] ‘

28 (12)

2) 15
[149-2.85] | |[1509-1663] [1835-1863] | |[1864-1945]

25 (9)
[151-2.88)

[153-2.10]

24(8)
[0.73-1.93]
19 (3)

23(7) 7 10
[0.62-1.85] | |[1092-1145] [1.47-147) | |[1377-1476]

18 (2) B 9
[0.64-064] [1146-1279) | |[1280-1376)

22 (6)
[171-1.71)

3 7
[363-663] | | [664-706]

5 B
[707-801] | | [802-1091]

Figure 4: Binary tree created by the shot merging algorithm. The
initial shots are shown in Fig. 1. The top node represents the whole
sequence; the leaf nodes represent the initial shots.

T
[0-306]
B
307-362]
—
363-663]
22(6) L]
[1.71-171)
7
5
707-801]
18 (2) L 1
[0.64-0.64] 5
28 (12) 7
[1.49-2.85) § | [1092-1145]
B
[1146-1279)
g
[1280-1376]
0
[1377-1476]
1T
[1477-1508]

12
[1509-1663)
13
[1664-1834)

31 (15)
[2.24-3.66]

1
[1835-1863]
15
[1864-1945]

7
[0.47-0.47)

16
[1946-2020]

Figure 5: Tree yielded by the tree structuring algorithm.

(2]
(3]

(4]

(5]

R. Mohan, “Video Sequence Matching”, in ICASSP' 98, vol. 6,
pp. 3697-3700, June 1998.

C. Saraceno and R. Leonardi, “Indexing Audio-Video
Databases through a joint audio and video processing”, to be
published in International Journal of Imaging Systems and
Technology.

H. S. Sawhney and S. Ayer, “Compact Representations of
Videos Through Dominant and Multiple Motion Estimation”,
in PAMI, vol. 18, no. 8, pp. 814-830, 1996.

M. M. Yeung and B.-L. Yeo, “Time-constrained Clustering
for Segmentation of Video into Story Units”, in ICPR 96,
pp. 375-380, 1996.

