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Abstract. Given the widespread availability of point cloud data from
consumer depth sensors, 3D segmentation becomes a promising build-
ing block for high level applications such as scene understanding and
interaction analysis. It benefits from the richer information contained in
actual world 3D data compared to apparent (projected) data in 2D im-
ages. This also implies that the classical color segmentation challenges
have recently shifted to RGBD data, whereas new emerging challenges
are added as the depth information is usually noisy, sparse and unor-
ganized. In this paper, we present a novel segmentation approach for
3D point cloud video based on low level features and oriented to the
analysis of object interactions. A hierarchical representation of the input
point cloud is proposed to efficiently segment point clouds at the finer
level, and to temporally establish the correspondence between segments
while dynamically managing the object split and merge at the coarser
level. Experiments illustrate promising results for our approach and its
potential application in object interaction analysis. . . .

Keywords: object segmentation, 3D point clouds, dynamic split and
merge management, object interactions

1 Introduction

Segmentation is an essential task in computer vision. It usually serves as the
foundation for solving higher level problems such as object recognition, inter-
action analysis and scene understanding. Traditionally, segmentation is defined
as a process of grouping homogeneous pixels into multiple segments on a single
image, which is also known as low level segmentation. The obtained segments are
somehow more homogeneous and more perceptually meaningful than raw pixels.
Based on that, the concept of semantic segmentation/labeling is proposed. It
is devoted to segment an image into regions which ideally correspond to mean-
ingful objects in the scene. To achieve this goal, high level knowledge is usually
incorporated into the segmentation process, such as object models [2] exploited in
constrained scenes, accurate object annotations required in the initialization [12,
16] and large databases containing fully annotated data in, for instance, label
transfer approaches such as [9]. These approaches yield outstanding segmenta-
tion results; however, most computer vision applications involve large amounts
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of data with different types of scenes containing several objects, which difficult
the adaptation to generic scenes of those methods based on manual initialization
or predefined/learned object models.
To generalize the methodology from constrained situations, larger attention has
been drawn on investigating the spatial relation between segments and their
temporal correspondences when temporal video (stream) data is available. A
bunch of methods focusing on the spatio-temporal relation between segments
are proposed [4, 15, 3, 5, 6, 1]. These methods mainly focus on tackling two prob-
lems: a higher level representation, which abstracts the raw data from scratch,
and a method to establish the spatio-temporal correspondences. Several methods
employ a generic model to represent the objects in the scene. Husain et al. [6]
maintains a quadratic surface model to generally represent the object segments
in the scene. The model is then updated along the sequence to obtain the final
segmentation result. But it is difficult to handle objects with large displace-
ment in successive frames. Similarly, a Gaussian Mixture Model (GMM) is used
in [8] to represent the objects, while the model is incrementally updated for new
frames in the sequence. However, it establishes the correspondence between the
object model and the point cloud in the new frame by using the Iterative Clos-
est Point (ICP) technique, which may lead to the accumulation of registration
errors in the object model due to the deformation of the objects. More gener-
ally in scene representation, Richtsfeld et al. [13] propose to represent the 3D
point cloud with a graph of surface patches detected in the scene, such as planes
and non-uniform rational B-splines (NURBs). A SVM based learning process is
then employed to decide the relation between surface patches for a sub-sequent
graph cut segmentation. Grundmann et al. [3] use a graph-based model to hierar-
chically construct a consistent video segmentation from over-segmented frames.
Similarly, Hickson et al. [5] extend the method to RGBD stream data. But the
over-segmentation for each frame in these two approaches is still calculated in-
dependently, without the temporal coherence constraint, which may lead to a
temporal inconsistency problem due to changes of corresponding over-segments
in different frames. Abramov et al. [1] perform label transfer in the pixel level
between frames by using optical flow. Then, they minimize the label distribution
energy in the Potts model to generate labels for objects in the scene. This estab-
lishes the temporal correspondences in the pixel level, which makes the approach
highly rely on the performance of optical flow estimation.
Motivated by the problems mentioned above, we propose a segmentation al-
gorithm based on the definition of objects as ”compact point clouds” in the
3D-space plus time domain. However, point clouds corresponding to an object
can break into different compact sub-clouds due to occlusions, or can merge with
compact point clouds corresponding to other objects, producing a single compact
point cloud, when they become spatially close (object interaction). Our system
aims to produce a robust spatio-temporal segmentation of the point clouds by
analyzing their connectivity to define the objects according to the evidence ob-
served up to a given temporal point. Our primary contributions are:
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– We propose a novel tree structure representation for the point cloud of the
scene which allows us to temporally update the similarities between nodes
in the tree

– We propose to approach the temporal correspondences establishment task
by a labelling assignment problem regarding the tree structure.

– A dynamic management of object splits and merges is exploited in our ap-
proach for generating a better segmentation result based on all low-level
features available

– An over-segmentation method based on the compactness of the connection
between neighboring super voxels in the graph is proposed.

The rest of the paper is organized as follow. In section 2 we explain how the
3D point cloud segmentation problem is modeled. Sections 3 and 4, present the
framework of the proposed segmentation approach and show experimental re-
sults, respectively. Finally, section 5 discusses the results and yields conclusions.

2 Problem modeling and definition

In this section, we explain how the 3D point cloud segmentation task is modeled
by the proposed tree structure.

2.1 Tree structure representation of the point cloud

Given a stream of RGBD data, our goal is to segment the foreground point
cloud in each frame into meaningful sub-clouds and associate these sub-clouds
in consecutive frames to maintain the trajectories for them without explicit ob-
ject models or accurate initialization. More precisely, we represent the input
point cloud as a graph G (shown in Fig.1(b)) with a super-voxel approach [10].
Nodes in the graph are homogeneous sub-cloud patches and edges define the
spatial connections among patches. In this manner, the connectivity of a point
cloud is interpreted as the connectivity in the corresponding graph representa-
tion. The set of connected nodes in the graph corresponds to the compact parts
of the input point cloud, which we call blobs (shown in Fig.1(c) and marked
in different colors). Then a tree structure with 4 levels varying from coarse to
fine is exploited to represent the input point cloud at different scales of object-
connectivity. Fig.1(a) shows the constructed tree structure for the point cloud
data in the second row. The root of the tree represents the scene. The second
level of the tree is the object level, in which each node stands for an object pro-
posal. The next level, named component level, is employed to handle potential
splits and merges of point clouds representing these objects. An object is repre-
sented by more than one component if it splits in different blobs in the graph.
Components from different objects can be part of the same blob, because of
the interactions between objects. Splits and merges of components are managed
by maintaining the similarities among object components along time, which pro-
vides a temporally coherent way to obtain object proposals based on point cloud
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Fig. 1. An example of tree structure representation. (a) A tree structure representation
of the input point cloud data. (b) The graph built on the input point cloud. (c) Blobs
in the input point cloud. (d) Components for each object. (e) Objects segmentation
obtained from the tree structure.

connectivity. The final level of the tree is the over-segmentation level. We over-
segment components using normalised cut in their graphs in order to correctly
establish correspondences between trees along time and update its structure,
that is, the temporal coherent assignment of labels to the segmented objects.
Note that three kinds of labels are used in Fig.1(a) to differentiate the nodes in
the tree while showing their relationships, which are object label (color), compo-
nent label (alphabet) and segment label (number). We aligned the color used in
Fig.1(a) with the real point cloud data plots (Fig.1(c) and Fig.1(e)). In Fig.1(e),
we present the object segmentation result obtained in this tree structure, while
Fig.1(d) shows the components of each object from the point cloud view. Fig.1(c)
presents the blobs in the input point cloud which is related to the ellipses marked
with the same color in Fig.1(a).

2.2 Tree structure creation

Taking the point cloud in frame t as input data, we abstract it with super voxels,
using the method proposed in [10]. The graph representation simplifies the input
data by grouping homogeneous points on the point cloud into super voxels while
preserving the boundary information. Then, a graph G is constructed regarding
the spatial connectivity between super voxels. We group the point cloud into
blobs by detecting the connected components in the graph. The tree in the first
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Fig. 2. An example of temporal inconsistency problem. (a) The problem when estab-
lishing the correspondence between components in the previous frame and blobs in the
current frame. (b) Using the segments instead of components solves this problem.

frame is created by simply taking the detected blobs as the objects, as no prior
information about the objects is provided. Accordingly, we create one component
for each object and over-segment each component into segments. Apart from the
first frame, the tree is built in a bottom-up way, starting at the component level.
First, a correspondence is made between the connected components of the graph
(blobs) in the current frame and the segments at the over-segmentation level
of the tree structure in the previous frame. This over-segmentation level is em-
ployed to avoid temporal inconsistency problem. Fig.2(a) shows an example of
it, where the component B of the blue object in frame t− 1 splits into two blobs
in frame t. In this case, no correct association is found between components and
blobs. The problem may be tackled by over-segmenting the component B of the
blue object into segments B1 and B2 (shown in Fig.2(b)) and associating the
segments in frame t− 1 with blobs in frame t. Establishing the correspondence
between the blob labels and the segments is a problem of assigning Mb blob
labels to Ms segments. This is a nonlinear integer programming problem which
is solved using a Genetic Algorithm to minimize an energy function which is
composed of three terms: one for representing the appearance changes Ea, one
for the displacements Ed and the other one Eo for the penalty when objects
move out of the scene.
A further segmentation is needed when segments that correspond to different
objects in the previous frame are assigned to the same blob. A restricted graph
cut method is employed to segment the graph of the blob by minimizing a seg-
mentation energy function, in which we consider the degree that a graph cut
fits the current data while being coherent with the minimum cut in the previous
frame. Once the current segmentation is done, the components and objects in
the current tree are created initially from it regarding the previous tree struc-
ture.
To dynamically manage object splits and merges along time, we maintain simi-
larities between nodes at the component and object level respectively and update
the tree based on it. The component similarities are measured among compo-
nents which belong to the same object while the object similarities are measured
among objects. These similarities are computed considering spatial distance and
apprearance difference, which reveal the likelihood of object splits and merges.
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We accumulate them along time by averaging the current similarity and the pre-
vious accumulated similarity regarding the established correspondences. Then
object splits and merges are confirmed by thresholding the accumulated similar-
ities. Finally, an over-segmentation is performed at the component level to gen-
erate segments for correctly establishing the correspondence to the next frame.
Specifically, a normalized cut is performed in the graph representing the com-
ponent iteratively until the cut cost is larger than a threshold.

3 Graph based dynamic 3D point cloud segmentation

In this section, we present the frame work of the proposed approach including
data acquisition and initialization, temporal correspondences establishment and
segmentation, the proposed dynamic management of object splits and merges
mechanism and the over-segmentation method.

3.1 Data acquisition and initialization

We can transform the per-pixel distances provided in an RGBD image into a
3D point cloud CI ⊆ R3 using camera parameters. We focus on the interest
area of the foreground cloud Cfg ⊆ R3 in 3D space. Taking the foreground
point cloud at frame t as input data, a graph representation is constructed
f (Cfg)→ G (v, e) via a graph building method f , where v is the set of vertices
or nodes and e the edges of the graph. The super voxel method introduced in [10]
is employed as the graph building method f in our approach. It aggregates
points on the point cloud into homogeneous sub-cloud patches (super voxels)
with respect to the point proximity and appearance similarity while preserving
the boundary information. Then a graph G is built for the super voxels regarding
their adjacency. The connectivity of Cfg is interpreted as the connectivity on G.
Our system is initialized by building the tree structure for the first frame. Nodes
in the tree are denoted as N i

level, where we specify which level the node belongs
to and its node number in this level. Each node is described by its related point
cloud and graph N i

level ∼
(
Cilevel, G

i
level

)
, where Cilevel ⊆ Cfg and Gilevel ⊆

G. A node for the tree root is created as N1
sc ∼ (Cfg, G). As mentioned in

Section 2.2, we base the construction of the tree for the first frame only on
the connectivity of the input point cloud. Thus, we extract blobs from Cfg by
detecting connected components on graph G. Each blob is treated as one object
proposal while accordingly we create one object node N i

o in the tree. For each
object node, one component node N i

c is created. Components are over-segmented
intoMs segments via an over segmentation methodOSeg(N i

c)→
{
N1
s · · ·NMs

s

}
.

3.2 Correspondences establishment and segmentation

Apart from the first frame, we create the current tree structure with respect
to the tree in the previous frame Tr′. Similarly, a graph G is obtained for the
current point cloud and blobs are detected on G. Then, the tree building process
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is started by establishing the correspondences between the current data and Tr′.
Associating a set of labels to another set of labels is treated as an assignment
task, in which we optimize different assignment proposals with respect to an
energy function. Since the problem scale increases exponentially with the number
of labels, it is critical to limit the number of the labels. Therefore, we propose to
assign the blob labels in the current frame to the segments in the previous tree
Tr′. The blobs represent the few compact sub-clouds of the input point cloud.
Assigning blob labels to segments reduces the problem scale while it respects
the spatial disconnection between the compact sub-clouds, which may coincide
with the object boundaries. The problem now becomes a task of assigning Mb

blob labels in the current frame to Ms
′ segments in the previous frame. To cope

with the situation when objects go out of the scene, we employ a virtual blob
Bout which stands for the space out of the interest area and does not represent
any point cloud. Then, the assignment energy function is defined as:

Eass(A) = Ea + Ed + Eo (1)

Where A is an assignment proposal which maps a segment label in the previous
frame ls

′ to a blob label lb in the current frame, A
(
ls
′)→ lb. Ea stands for the

summation of the energy of the appearance difference between the set of the
point clouds Cjs

′
related to the segment N j

s
′

and the point cloud Cib related the

blob Bi, where the segment label ljs
′

is associated to the blob label lib regarding
the assignment A. The appearance difference is measured by comparing the
number of points NoP (·) on the point cloud.

Ea(A) =

Mb∑
i=1

∣∣∣∣∣∣∣NoP
(
Cib
)
−

∑
A(ljs

′)==lib

NoP
(
Cjs
′
)∣∣∣∣∣∣∣ (2)

Ed is the summation of the energy of the displacement which is calculated by
measuring the Hausdorff distance disth (·) between the point cloud Cjs

′
and the

point cloud Cib, where A
(
ljs
′
)

== lib.

Ed(A) =

Mb∑
i=1

∑
A(ljs

′)==lib

disth

(
Cjs
′
, Cib

)
(3)

Eo is the summation of the distance between the point cloud of the segment N j
s
′
,

which is associated with blob Bout, to the closest boundary bdi. The boundaries
are predefined planes which are also used in the data acquisition step in Sec.3.1.
The distance is calculated as the Euclidean distance (diste (·)) from the centroid
of the point cloud of the segment to the closest boundary plane.

Eo(A) =
∑

A(ljs
′)==lout

b

min
bdi∈Boundary

(
diste

(
Cjs
′
, bdi

))
(4)
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Optimizing this energy function is a nonlinear integer programming problem.
We employed the Genetic Algorithm to solve it.
After the best assignment A∗ is obtained, the blobs in the current frame are as-
sociated with segments in the previous frame. A further segmentation is needed
when segments that correspond to different objects in the previous frame (ac-
cording to the privous tree Tr

′) are assigned to the same blob. Given a blob
Bi ∼

(
Cib, G

i
b

)
and the M unique object labels related to the associated segment

labels
{
ljs | A∗

(
ljs
)

== lib
}

, our goal is to segment the graph Gib into M parts. To
this end, we employ the restricted graph cut approach proposed in [17] to seek for
the minimal cut on graph Gib, which further segments this blob considering both
spatial/feature homogeneity and the temporal consistency. The minimal cut is
obtained by minimizing a segmentation energy function with the way introduced
in [7]. The energy function for graph cut is usually defined as the summation of
the data energy and the smoothness energy (E (L) = Edata +Esmooth), where L
stands for the label proposal for the graph. The data energy is an unary energy
term representing the degree that the label proposal fits the current data. The
smoothness energy is a pair-wise energy which manages the label smoothness
between nodes in the graph. The method proposed in [17] introduces a novel
smoothness energy term considering the label smoothness regarding not only
the current data but also the minimal cut obtained in the previous frame.
The further segmentation performed on the blob with segment labels related to
multiple object labels yields the object partitions for this blob while establish-
ing their correspondences to the objects in the previous tree. As mentioned in
Section 2.1, an object is represented by more than one component if it splits in
different blobs, in the current or previous frames. Thus, for each object partition
in the blobs, we create one component for the related object. Accordingly, the
correspondences between the current components and the components in the
previous tree are made. Note that there is no correspondence established for
the newly generated components in the current tree. In this step, the first three
levels of the current tree structure are initially built regarding the established
correspondences to the previous tree at each of the three levels.

3.3 Dynamic management of merge and split

Given the current tree obtained in the last step, an object proposal is implicit
at the object level. This object proposal for the current input data is temporally
coherent with the object proposal in the previous frame. However, it may not
be a correct object proposal, since no accurate initialization is guaranteed at the
beginning of this process in our approach. That is to say, this object proposal
needs to be further analyzed, in order to cope with the errors in the previous
information. In this case, we exploit the established correspondences and analyze
the behaviors of related nodes in trees along time. More specifically, we compute
the similarities among the components corresponding to the same object, which
forms a similarity matrix for each object in the tree. The object similarities are
computed among objects in the tree producing an object similarity matrix. In
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Fig. 3. Example of dynamic management of split (a) and merge (b)

our approach, the similarity between node N i and N j is defined as the Euclidean
distance between their related point clouds in Eq.(5).

Sim
(
N i, N j

)
=

{
0 diste

(
Ci, Cj

)
> ψ

1− diste(Ci,Cj)
ψ otherwise

(5)

Note that here the Euclidean distance between two point clouds is calculated as
the distance between the closest point pair from them. ψ is a normalizing factor.
Afterwards, the similarities are accumulated along time by averaging them with
the corresponding accumulated similarity in the previous frame, in order to dy-
namically manage the merges and splits of objects in the scene on the fly. The
accumulated similarity reveals the likelihood of object splits and merges regard-
ing the evidence observed up to the current frame. Thus, the decisions for split
and merge are made by thresholding the accumulated similarity regarding two
thresholds, Thsplit and Thmerge. Fig.3 shows an example how the object merge
and split are dynamically managed. Specifically, a split for an object node is
confirmed when a set of its child component nodes have all the accumulated
similarities smaller than Thsplit with respect to the rest of the child component
nodes. Then a new object node is created as the parent node of the split com-
ponent nodes. In Fig.3(a), the red component node splits from its parent object
node and a new object node marked in blue is created as its new parent. A merge
between object nodes is confirmed when they are physically connected while the
accumulated similarities between them are larger than Thmerge. In Fig.3(b), a
merge is confirmed between the blue object node and the green object node
which is physically connected with each other. The nodes are merged to the one
with the larger number of the points on the related point cloud (the green node).
Their child component nodes are all connected to the green object node in the
tree. Then the blue object node is removed from the tree.

3.4 Over segmentation

The first three levels in the current tree structure are built and updated in the
last two steps. In this section, we introduce an over segmentation process in
order to build the forth level of the tree. In the over-segmentation level, we
generate segments for each component in the current tree. This is treated as
the preparation for establishing the correspondence between segments in the
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current tree to the blobs detected in the next frame. The more segments are
generated in the current frame, the better they will respect the topology of the
input point cloud in the next frame, which avoids the temporal inconsistency
problem. However, the number of the segments will affect the problem scale of
the assignment task in the correspondence establishment and segmentation pro-
cess in the next frame. Therefore, instead of using a technique such as super
voxel [10] which finely over-segments the point cloud, we propose a relatively
coarser over-segmentation method to tackle this problem. Pratically, in the re-
lated graph Gic (v, e) of a component node N i

c , we define the touching points for
connected nodes in Gic. The touching points TP ij from the node vi to the node vj

is computed as the number of the points in vi which have the closest Euclidean
distance lower than a threshold Thtp to vj . The touching points TP ji from vj

to vi is defined in the same manner. The number of touching points reveals the
compactness CC between connected nodes in the graph, which is defined as:

CC
(
vi, vj

)
=
NoP

(
TP ij

)
NoP (vi)

+
NoP

(
TP ji

)
NoP (vj)

(6)

where NoP (·) stands for the number of the points in a graph node. We believe
that any split of the point cloud will gradually lead the decrease in the number
of touching points at the splitting position on the graph. Then the edges in the
graph are weighted by CC and a normalized cut approach [14] is performed
on the graph iteratively, which yields one segment node in each iteration until
the cut cost is larger than a threshold Thmc. In this manner, the component is
iteratively over-segmented into segments at the positions which are less compact
in the graph, which may coincide with the splits in the next frame.

4 Experiments

4.1 Segmentation result evaluation

To evaluate our approach from the 3D point cloud segmentation perspective,
we select 4 sequences with 3D point cloud ground truth labeling in the human
manipulation data set [11]. Each of them contains 200 frames. These 4 sequences
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Fig. 4. (a)-(d) present the segmentation results for sequence 1-4, shown as percentage
of error points (vertical axis) per frame (horizontal). Red: GDS, Blue: GS.
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vary from single attachment to multi-attachments, low motion to higher motion,
double attached objects to multiple attached objects. The task of this experiment
is to segment objects from the scene. The evaluation metrics is 3D segmentation
accuracy (3D ACCU) proposed in [18] which computes the fraction of a ground
truth segment that is correctly classified in our approach. Since the super voxel
based graph representation method organises the input point cloud with voxels
in 3D producing a down sampled point cloud, while the ground truth is labeled
in the original cloud, we find K nearest neighbors for a point on the down sam-
pled point cloud from the ground truth labeling and use majority voted label
among K nearest neighbors as the ground truth labeling for this point.
Fig.4 shows the segmentation results of these 4 sequences. In each sub-figure, we
plot the percentage of segmentation error against the frame number. We com-
pare the segmentation performance of our graph based dynamic segmentation
approach (GDS) with the graph based segmentation method (GS) proposed in
[17] which provides a temporally coherent segmentation for RGBD stream data.
The red lines in Fig.4 stand for the result of GDS while the blue lines stand
for the result of GS. As mentioned in Section 3.2, GS is also integrated in our
approach producing temporally coherent segmentation for blobs with more than
one unique object labels. Thus, the comparison between them shows the im-
portance of introducing the dynamic management of object split and merge
mechanism. Particularly, GDS outperforms GS in all the 4 sequences shown in
Fig.4, which proves that the dynamic management mechanism contributes in the
low level to the better segmentation of actual objects in the scene. GDS achieves
an overall foreground 3D point cloud segmentation 3.92% mean segmentation
error. In Fig.4(c), we observe a dramatic increase (from 2.5% to 15%) in the
segmentation error for GDS (red line). This is caused by the error in dynamic
management of object merge and split. Fig.5(d)-5(f) show 3 key frames in this
process, where objects are marked in different colors. The left arm of the human
body in blue is confirmed to split from the torso in frame 81 due to the persis-
tent self-occlusion. The self-occlusion breaks the human body into two compact
point clouds (the left arm and the rest), which gradually decreases the accu-
mulated similarity till the split is confirmed in frame 81. However, these two
point clouds reattach to each other in frame 103, which continuously increases
the accumulated similarity between them, till they are confirmed to merge in
frame 136. Fig.5(j)-5(l) in the second row present another example, in which our
system is incorrectly initialized in frame 1 (part of the torso marked in red is
treated as one object because of the spatial disconnection caused by occlusion).
They reattach to each other in frame 8 and get merged in frame 14 due to the
dynamic management mechanism. These two examples illustrate the robustness
of our system regarding the errors in previous frames while showing that our
approach does not rely on an accurate initialization.
For comparison, we employ 3 more sequences proposed in [6] and perform our
approach against the Adaptive Surface Models based 3D Segmentation method
(ASMS) in [6]. ASMS maintains a quadratic surface model to generally represent
the object segments in the scene. The model is updated along the sequence by
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Fig. 5. Examples of dynamic management of merge and split. (a)-(c) present the
color images of frame 81,103 and 136 in sequence 4, (d)-(f) show the segmentation

results in these frames. (g)-(i) present the color images of frame 1,8 and 14 in
sequence 2, (j)-(l) show the segmentation results in these frames.

finding and growing the overlapping area to obtain the final segmentation result.
To adapt our approach to the scenes in these 3 sequences, we remove the back-
ground point cloud by using a plane fitting technique to extract foreground point
clouds as input data. Fig. 6 shows a quantitative comparison between GDS and
ASMS in these 3 sequences. Sequence 1 contains a scenario of a human hand
rolling a green ball forward and then backward with the fingers. Sequence 2
involves a robot arm grasping a paper roll and moving it to a new position.
Sequence 3 describes a scenario in which the human hand enters and leaves
the scene, displacing the objects rapidly. The comparison results show that the
proposed GDS approach outperforms ASMS in all the 3 sequences. Specifically,
Fig.6(c) shows an example of the drawback in ASMS. The spikes in the blue
curve are caused by rapid object movement, which leaves little or no overlap of
corresponding segments for ASMS. However, our method has the robustness to
rapid movements, since the correspondences establishment problem is treated as
the optimization of an assignment energy.
Apart from the sequences used in the quantitative evaluation experiments, we
employ 5 more sequences without ground truth labeling, recorded by ourselves
with scenes displaying interactions in human manipulation scenes. Fig.7 shows
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Fig. 6. Quantitative result of GDS (in red) and the ASMS (in blue) for the 3
sequences provided in [6]. From left to right, sequence 1-3.
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(a) (b)

(c) (d)

Fig. 7. Qualitative results of the proposed method: (a)-(b) from human manipulation
dataset in [11], (c) from data recorded by ourselves and (d) from data in [6].

some qualitative results of our approach from 4 sequences. For each sequence, we
uniformly sample 4 frames and show the segmentation result from our approach.
More visual results are available on https://imatge.upc.edu/web/node/1806.

4.2 Interaction detection

Our approach is also capable to obtain the interactions between objects, which is
implicit in the tree structure. As mentioned in Section 1, an interaction between
objects is defined as a state when they become spatially close. In our method,
an interaction is detected when a blob is related to more than one unique object
label. An example of an object interaction is shown in Fig.8(a), where an inter-
action between a human body and a box is detected and marked as the black
line connecting them. Based on this definition, we manually label the object in-
teraction occurring in the 4 sequences used in the first experiment and calculate
the times of interactions between objects in the scene detected by the proposed
method. Fig.8(c) shows the interaction detection result in each sequence, where
the top of each bar shows the number of interactions in the ground truth, the
red line stands for the true positive detections in our approach and the blue line
stands for the false positive detections. Our approach detected 742 truth positive
interactions over 980 labeled interactions in the ground truth. We notice that
the number of false positive detections in sequence 3 is relatively high. This is
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Fig. 8. (a) An example of object interaction. (b) An example of false positive
detections (c) Interaction detection evaluation for 4 sequences from [11]
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mainly caused by the errors in dynamic management of object split and merge
process. Fig.8(b) shows the segmented point cloud in a frame of sequence 3,
where an interaction is detected between the arm in blue and the juice box in
green. However, the arm and the torso are not correctly merged as one object
in this frame, which makes the detected interaction a false detection.

4.3 Computational cost analysis

In our approach, there are two main parts where the computational power is
spent: the optimization for the multi-labels assignment for temporal correspon-
dences establishment and the graph cut technique used in either the further seg-
mentation or the over-segmentation process. The main problem of approaching
the temporal correspondences association by a multi-labels assignment problem
is the computation complexity. The problem scale increases exponentially when
the number of labels grows. However, the number of the labels is controlled in
our approach by finding a suitable over-segmentation level so that we can achieve
the assignment task in a small problem scale while not leading to the temporal
inconsistency problem. In the experiments, generally 20 segments and 5 blobs
are involved in the assignment task in each frame. The graph cut technique used
in our approach has the reported computation complexity O

(
v2 · sqrt (e)

)
where

v stands for the number of vertices and e the number of edges on the graph.

5 Conclusion

In this paper, we have introduced a graph based dynamic 3D point cloud seg-
mentation method, which works at low level with a tree structure representation
for segmenting generic objects in RGBD steam data. We have evaluated the per-
formance of the proposed approach with a human manipulation data set and also
compared it with the method proposed in [6]. Our approach achieves an overall
3.92% 3D point cloud segmentation error while outperforming in the comparison
experiment. Our contribution can be summarized in 3 points:

– firstly, we proposed a novel over-segmentation method based on the com-
pactness of the connection between neighboring super voxels on the graph

– then a novel tree structure representation for the scene is proposed, which
allows to temporally update the similarities between nodes in the tree

– the temporal correspondences establishment task is approached by a la-
belling assignment problem that takes into account the appearance and
displacement of the components. Based on the tree structure, a dynamic
management of object splits and merges mechanism is proposed

Our approach generates a better segmentation result based on all low-level fea-
tures available. This guarantees it to be generic, as no explicit or learnt model
of the objects or the scene are introduced in the proposed method.
Acknowledgement: This work has been developed in the framework of the
project TEC2013-43935-R, financed by the Spanish Ministerio de Economa y
Competitividad and the European Regional Development Fund (ERDF).
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