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ABSTRACT

The Visual Hull is defined as the intersection of the visual cones
formed by the back-projection of C 2D silhouettes into the 3D space.
The set of 2D silhouettes is consistent if there exists at least one
volume which exactly explains them.

Shape from Silhouette (SfS) is the general term used to refer to
the techniques employed to obtain a volume from silhouettes, which
are considered to be consistent. In this paper we extend the idea of
SfS to be used with sets of inconsistent silhouettes resulting from
inaccurate calibration and erroneous 2D silhouette extraction tech-
niques. The method presented detects and corrects errors in the sil-
houettes based on the consistency principle, implying an unbiased
treatment of false alarms and misses in 2D.

Index Terms— Shape from Silhouette, SfS, SfIS, Visual Hull,
Inconsistent Hull, Reconstruction, 3D, Computer Vision, Smart Room

1. INTRODUCTION

Shape extraction from a set of silhouettes (binary masks of the ob-
jects in the foreground scene) was firstly introduced by Baugmart[1]
in 1974, though it was not until 1991 when Laurentini[2] defined
the geometric concept of Visual Hull (VH) as the maximal object
silhouette-equivalent to the real object S, i.e., which can be substi-
tuted for S without affecting any silhouette. Since then, Shape from
Silhouette (SfS) has been considered as the method of obtaining the
VH of an object.

The concept of VH is strongly linked to the one of silhouettes’
consistency: A set of silhouettes is consistent if there exists at least
one volume which exactly explains the silhouettes, and the VH is the
maximal volume among the possible ones. Therefore, it follows that
the VH exists if and only if the silhouettes are consistent. However,
consistency hardly ever happens in realistic scenarios due to inaccu-
rate calibration or noisy silhouettes caused by errors during the 2D
detection process: background learning techniques[3], chroma key
techniques, etc. In spite of that, SfS methods have been designed
in the past assuming that the silhouettes are consistent, reconstruct-
ing then only that part of the volume which projects consistently in
all the silhouettes, i.e., the volume where the visual cones intersect,
without further considerations.

We propose a shape reconstruction method based on the silhou-
ette consistency principle. Our system validates the regions in the
silhouettes which are consistent and adjusts the regions which are
not, implying an unbiased treatment of all sorts of 2D errors, i.e.,
misses and false alarms. By contrast, other SfS systems usually treat
differently the 2D errors on the basis of their type. In the following,
we review which are the different types of 2D errors and how they
affect the reconstructed shape.

This material is based upon work partially supported by the IST pro-
gramme of the EU through the IP CHIL and Noe SIMILAR.

2. NOISE PROPAGATION TO THE 3RD DIMENSION

Silhouettes may contain false alarms or misses, corresponding to er-
roneous foreground detections or erroneous background detections,
respectively.

In SfS, a false alarm in a view does not conduce to a false
alarm in 3D unless the erroneous visual cone intersects simultane-
ously with other C − 1 visual cones, where C is the total number of
cameras. If the intersection is produced, then the shape is wrongly
reconstructed, letting a consistent reconstruction with undetectable
2D false alarms. However, the shape is not reconstructed when at
least one of the visual cones does not intersect. Then, there is at
least one 2D false alarm which is detectable as it is inconsistent with
the rest of silhouettes (see Fig. 2(b)).

Contrarily, a miss in 2D ineluctably conduces to a miss in 3D,
meaning that the shape is not reconstructed no matter whether the
shape is consistent or not (see Fig. 2(a)).

In conclusion SfS algorithms tend to penalize 2D misses in front
of 2D false alarms when the silhouettes are inconsistent. The Shape
from an inconsistent set of silhouettes (SfIS) has to be sorted out
based on a different principle; one that takes decisions based on the
probabilities of 2D false alarm and miss; and one which does not
imply that the Shape lies only in the intersection of all the visual
cones.

2.1. Dealing with the noise in related works

In the past, efforts have been put in proposing different algorithms
for palliating the effects of the propagation of the 2-dimensional
noise. There are essentially three sorts of approaches.

The first general approach involves using voxel-based recon-
structions to reduce the probability of voxel miss-classification. In
[4], Cheung et al. propose an algorithm called SPOT which deter-
mines the minimum number of foreground pixels (Zε) which have to
be detected inside the projection of a voxel to consider that the Pro-
jection Test is passed in a certain silhouette. The minimum number
of foreground pixels Zε, over the total Z, is determined after min-
imizing the probability of voxel miss-classification considering that
the silhouettes are consistent. Even though SPOT is an important
step forward, it does not succeed in detecting deterministic errors,
often consisting in large regions missed in a view when foreground
objects have similar colors and texture to their background counter-
parts.

The second general approach[5, 6], requires the intersection of
at least C−P visual cones to allow a reconstruction, where P is the
number of acceptable misses among the set C of cameras. Although
single misses do not block the reconstruction in this approach, the
resulting shape is larger than the real Visual Hull either if the silhou-
ettes are consistent or not.

The last general approach uses multi camera information in terms
of consistency constraints, providing tools for detecting determinis-
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Fig. 1. The first row of images correspond to synthetic silhouettes
where some errors have been intentionally introduced: In (o2), the
bottom part of the silhouette has been deliberately removed and, in
(o3), a false alarm has been incorporated. The second row of images
shows the projection of the VH reconstructed using SfS from the sil-
houettes above. Note that the 2D false alarm does not propagate to
3D, while a single miss propagates to 3D preventing a proper recon-
struction of the VH. Finally, in the bottom row, the IS are shown.

tic errors. In [7, 8] the epipolar tangency constraint (testing corre-
spondences of the frontier points) is used as a necessary condition
for shape consistency. However, the authors discard using the area
of each silhouette that lies outside the visual hull for being slow and
not suitable for pose estimation [7].

Our approach is placed in the later context. We propose a fast
technique for estimating that part of the volume which projects in-
consistently and propose a criteria for classifying it either as part
of the shape or not by minimizing the probability of voxel miss-
classification. Although our approach is voxel-based, we propose a
general framework where any Projection Test can be used.

3. SHAPE FROM INCONSISTENT SILHOUETTE (SFIS)

Inconsistencies in the regions of the silhouettes can be detected by
reconstructing the VH using SfS methods and projecting it back to
examine how the projections match with the generative silhouettes.
Then the shape can be reconstructed using a different criterion when
there are parts of the volume (Inconsistent Hull:IH) which project to
inconsistent regions in the silhouettes (Inconsistent Silhouettes:IS).
Following, we formalize the concept of IH and IS and propose a
procedure for estimating it.

3.1. Inconsistent Hull (IH)

The geometric concept of IH is introduced as the volume where there
does not exist a shape which could possibly explain the observed
silhouettes. Alternatively, the IH can be defined as the union of all
the inconsistent cones, formed by the back-projection of the IS into
the 3D scene. The IS are the resulting silhouettes after subtracting

the original silhouettes with the projection of the visual hull (see
Fig. 1 for an example using the Kung-Fu Girl dataset1). Thus, when
the set of silhouettes is consistent then all the IS are empty, and the
IH is also empty. However, when a single inconsistency appears in
at least one silhouette then the IH will not be empty either.

From the two equivalent definitions above, it follows that the IH
is disjoint of the VH (V H ∩ IH = ∅). This can be observed in
Figs. 2 and 3, where different situations have been depicted:

In Fig. 2(a), camera C misses the foreground object 1. The
miss-detection entails an inconsistent set of silhouettes. However,
the projections of object 2 are consistent, and therefore object 2 will
be correctly reconstructed by standard SfS algorithms. Further in-
spection of the figure indicates that the IH in this case corresponds
to the union of the visual cones camA→obj1 and camB→obj1 .
Moreover, the figure suggests that the more inconsistent cones inter-
sect, the higher the chances of having missed an object in a certain
camera. In Fig. 2(b), there have been 2 false region detections in
camera B (α, β). The first one (α) does not intersect simultane-
ously with the rest of C-1 cones and therefore it does not produce
any 3D errors. The other false alarm (β) leads to a false 3D object
detection (marked in black) for intersecting simultaneously with C-
1 visual cones. Furthermore, cone β is consistent, making the error
undetectable with the consistency principle.
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Fig. 2. In (a), object 2 is correctly detected in all the cameras, but ob-
ject 1 is missed in camera C. The union of the cones camB→obj1
and camA→obj1 forms the IH. In (b) there have been two false
region detections in camera B (α, β). The first one (α) forms an in-
consistent cone, while the second one (β) forms a consistent one for
intersecting with other C-1 visual cones.

Fig. 3 shows a slightly modified scenario. In this case, there
is another object (object 3), which has been deliberately placed in
the same visual cone of camB→obj1 . Thus, object 3 prevents the
inconsistent cone camB→obj1 when camera C misses object 1.
The figure indicates that the number of inconsistent cone intersec-
tions is not a sufficient condition for deciding whether there have
been misses in some silhouettes or not. Furthermore, the figure also
suggests that the number of occlusions (consistent -not due to false
alarms- foreground projections) in the IH should be considered in
any IH classification scheme.

In order to estimate the IH, we need to determine the unions of
the inconsistent cones, similarly as SfS methods determine the inter-
sections of the visual cones. We develop the concept of Shape from
Inconsistent Silhouette using a voxel-based approach. The detailed
process for the IH voxelization is shown in Algorithm 1.

In the voxel-based approach, the role of the inconsistent sil-
houettes (difference between silhouettes and VH projection) is re-

1The Kung-Fu Girl dataset is provided by the Graphics Optics Vision
group of Max-Planck-Institut fur Informatik
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Fig. 3. In (a), objects 1, 2 and 3 are correctly detected in cameras A,
B and C. In (b), object 1 is not reconstructed. The IH is smaller that
its counterpart in Fig. 2 due to the occlusion of object 1.

placed by the difference between the Projection Test of the silhou-
ettes: PTc(voxel, S(c)) and the Projection Test of the VH projec-
tion: PTc(voxel, V Hproj(c)). Note that the Projection Test can
be any function designed to determine whether a voxel has been de-
tected in a silhouette or not. For instance, a Projection Test may
require all pixels where the voxel projects to be foreground, or just
some of them[4]. In addition, any Projection Test will have an asso-
ciated probability of miss P (Miss2D) and false alarm P (FA2D).

Algorithm 1 Voxelization of the IH
Require: Silhouettes: S(c), Proj. Test: PTc(voxel, Silhouette)

1: for all voxel do
2: V H(voxel)← true
3: for all c do
4: if PTc(voxel, S(c)) is false then
5: V H(voxel)← false
6: Project the V H to all the camera views: V Hproj(c)
7: for all voxel do
8: IH(voxel)← false
9: for all c so that PTc(voxel, S(c)) is true do

10: if PTc(voxel, S(c))6=PTc(voxel, V Hproj(c)) then
11: IH(voxel)← true

3.2. Unbiased Hull (UH)

The IH contains all the volumetric points which cannot explain the
silhouettes where they project. In terms of consistency, these points
are candidates of not having been classified as Shape by error, while
all the points in the VH are error-free. We define the Unbiased Hull
(UH) as the subset of the IH which is better explained as Shape for
minimizing the probability of voxel miss-classification.

The classification of the voxels in the IH has to be optimal based
on all the characteristics we can gather from them: First off, each
voxel in the IH has an associated number of inconsistencies (I),
which corresponds to the number of inconsistent cone intersections
in the voxel. A voxel can also be characterized by the number of
consistent foreground projections (O), corresponding to the number
of views where the voxel has been occluded. Finally, it can also be
associated with the number of views where it projects to background
(B). For instance, voxels corresponding to object 1 in Fig. 3(b), have
I = 1, for being in the inconsistent cone camA→obj1 ;O = 1, for
intersecting with the consistent occluding cone: camB→obj3 ; and
B = 1, for being in the inexistent cone camC→obj1 .

From a practical point of view, I corresponds to the number of
views where PTc(voxel, S(c)) = true 6= PTc(voxel, V Hproj(c)),

O corresponds to the number of views where PTc(voxel, S(c)) =
true = PTc(voxel, V Hproj(c)), and B to the number of views
where PTc(voxel, S(c)) = false, being voxel ∈ IH . Note that
I, O and B are such that C = I +O + B, with C cameras.

Some further considerations regarding I, O and B can be de-
rived: Interestingly, the number of inconsistent projections (I) in a
voxel are due to either having had false alarms in I silhouettes or
due to having had misses in B silhouettes, where B = C − I − O.
As I rises, the probability of having C−I−O simultaneous misses
increases. Contrarily, as I rises, the probability of having I simul-
taneous false alarms decreases. Based on this reasoning, there must
exist an optimal threshold bT such that if I ≥ bT , then the voxel is
better explained as Shape (with C−I−O misses) than Background
(with I false alarms):

I ≥ bT ⇒ decide Shape
I < bT ⇒ decide Background

(1)

In order to find the optimal T , first we have to express which is the
probability of voxel miss-classification P (Err3D) so that bT is that
one which minimizes it:bT = argmin

T
P (Err3D) (2)

A voxel may be miss-classified if it is wrongly classified as Shape
(false alarm) or if it is wrongly classified as Background (miss). The
total classification error is then:

P (Err3D) = PBP (FA3D) + PSP (M3D), (3)

where PB and PS are the priors that a voxel forms part of the Back-
ground or Shape, respectively2, and P (FA3D) and P (M3D) corre-
spond to the probabilities of false alarm and miss in a voxel.

Let’s first examine the probability of false alarm P (FA3D):

P (FA3D) =

C−O−1X
i=max(T,1)

 
C

i

!
P (FA2D)i(1−P (FA2D))C−i, (4)

corresponding to the summation of all the possible cases of false
alarm in a voxel, between the limits explained next.

A false alarm in a voxel happens when a voxel is classified as
part of the Shape, while in fact it forms part of the Background. As
the voxel forms part of the Background, then all the inconsistencies
in the voxel (I) correspond to false alarms of the Projection Test.
Therefore, false alarms in the voxels are produced when the number
of inconsistencies equals or surpasses the decision threshold T .

It has to be noted that the absolute minimum number of 2D false
alarms which is possible in a Background voxel of the IH is 1, as 0
false alarms would correspond to a consistent voxel in the IH, which
is an impossible situation. Thence, the lower limit is: max(T, 1).

Analogously, the number of inconsistencies can be up to C −
O − 1. In terms of consistency, even though occlusions (O) corre-
spond to foreground projections, they cannot be considered as pos-
sible false alarms for having been validated by consistent voxels of
the VH. Also note that the maximum number of false alarms cannot
be C−O, as this would correspond to a consistent foreground voxel
in the IH, which is another impossible situation.

Thus, the resulting equation is the binomial of P (FA2D) going
from max(T, 1) to C −O − 1, where P (FA2D) is the probability
that the Projection Test is wrongly passed in a certain silhouette.

2Priors PS and PB = 1− PS can be simply obtained by computing the
detected voxel / total voxel occupancy ratio, for instance.



The opposite miss-classification case is having a miss in a voxel.
This is the case when a voxel is classified as part of the Background,
while in fact it forms part of the Shape. A voxel is wrongly clas-
sified as Background if I < T , which is equivalent to say that
B ≥ C −O − T + 1. Then, the probability of miss P (M3D) in
the IH, can be expressed in a similar manner as with false alarms:

P (M3D) =

C−O−1X
i=max(C−O−T+1,1)

 
C

i

!
P (M2D)i(1− P (M2D))C−i, (5)

where P (M2D) corresponds to the probability that the Projection
Test has not been passed by error.

Once that the probability of voxel miss-classification has been
expressed, bT can be easily obtained by doing an exhaustive search
of the minimum P (Err3D) over all possible T ∈ [0, C]. Let us fi-
nally mention that bT can be obtained in O(log(C)) under certain
convexity conditions. Details will be discussed in a future publica-
tion.

4. RESULTS

The theoretical benefits of SfIS, shown in Fig. 4, have been con-
firmed, using both synthetic and real data (collected in the smart
room of the UPC). The system has been evaluated using 4 to 25 cam-
eras, proving not to be sensitive with smooth variations of PFA(2D)
and PM (2D). An aspect of interest of SfIS is that it behaves as tradi-
tional SfS when PFA(2D) is high or PM (2D) is low. In these cases,bT = C, forcing the system to always decide Background.
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Fig. 4. The ratio PSfIS(Err3D)
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, and bT for different values of

PFA(2D) and PM (2D), with 6 cameras, PB = 0.9 and O = 0.
PSfS(Err3D) is equivalent to PSfIS(Err3D), with T = C.

In Fig. 5, a real world scenario (with some additional false alarms
in (o1) and (o4)) is shown. In this case the foreground segmentation
has been done using [3]. In (o2), the silhouette’s left arm has not
been detected due to the similar color to its background counterpart.
The second row of images shows the projection of the VH. Note that
the miss-detection in (o2) has been propagated to the rest of silhou-
ettes. The bottom row shows the projection of the V H ∪ UH in
white and gray, respectively. The projection of the arm is recovered,
even in (p2), while remaining unaffected to the artificial false alarms.

5. CONCLUSION

In this paper we have presented a novel scheme for effective Shape
from Silhouette using sets of inconsistent silhouettes. The scheme
exploits the consistency principle, and performs an error detection
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Fig. 5. Silhouettes, projection of the VH and projection of the
V H ∪ UH , in first, second and third row, respectively. The vox-
els’ size has been chosen so that the projection of any voxel in the
Shape is comprised within a pixel in all the silhouettes. Therefore,
PFA(2D) and PM (2D) concur with the probabilities of FA and
Miss of the background learning technique. In this case we have
used PFA(2D) = PM (2D) = 0.1, and PB has been selected based
on the percentage of voxel occupancy in the VH.

and correction procedure to recover the most probable consistent sil-
houettes. Experiments have demonstrated favorable results on var-
ious synthetic and real-world scenarios. Some of the future works
include giving feedback to the background learning techniques to
make more trustworthy background models.
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