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ABSTRACT

Modern machine learning systems are increasingly trained on
large amounts of data embedded in high-dimensional spaces. Often
this is done without analyzing the structure of the dataset. In this
work, we propose a framework to study the geometric structure of
the data. We make use of our recently introduced non-negative ker-
nel (NNK) regression graphs to estimate the point density, intrinsic
dimension, and linearity of the data manifold (curvature). We further
generalize the graph construction and geometric estimation to mul-
tiple scales by iteratively merging neighborhoods in the input data.
Our experiments demonstrate the effectiveness of our proposed ap-
proach over other baselines in estimating the local geometry of the
data manifolds on synthetic and real datasets.

Index Terms— Local neighborhoods, Manifold geometry,
Multi-scale graphs, Intrinsic dimension, Curvature

1. INTRODUCTION

The geometry of a dataset can be summarized using properties such
as point density, curvature, and intrinsic dimensionality (ID). The ID
of a dataset refers to the minimum number of parameters required for
its characterization while maintaining its structure [1]. Approaches
for ID estimation [2] often rely on the construction of similarity-
based graphs such as K-nearest neighbor (KNN) or ε-neighborhood
graphs (ε-graphs). However, the choice of these “neighborhood pa-
rameters” (K/ε) is generally ad hoc, which can severely affect the
estimation of ID and other geometric properties of the data [3, 4, 5].
Furthermore, these similarity-based graph methods define the scale
at which the geometry is estimated through the choice of the same
neighborhood parameters (K/ε). As a consequence, the only way to
analyze the data at different scales is by increasing the number of
neighbors connected to a given query point.

In this paper, we propose new local methods for studying the
geometrical properties of manifolds, using novel metrics we have
developed from local data neighborhoods defined with the non-
negative kernel (NNK) regression graphs [6, 7]. An NNK graph is
built by first selecting an initial neighborhood, e.g., a KNN graph,
and then using optimization to eliminate connections to geometri-
cally redundant neighbors. NNK graphs are more robust to the initial
neighborhood definition (e.g., KNN graphs with different K choices
can lead to the same NNK graph). More importantly, the number of
NNK neighbors is explicitly dependent on the local geometry of the
data and results in a local polytope around any query point.

We propose new metrics derived from NNK graphs to gain in-
sights into three aspects of the geometry of a manifold. First, we
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study local manifold properties directly derived from NNK neigh-
bors. The NNK optimization implies that the number of points se-
lected in a neighborhood and the size of the local polytope depend
on the local geometry of the data. This is in contrast to the measures
obtained from a KNN or ε-graph where the number of neighbors or
the diameter will depend only on the threshold parameters.

Second, we propose local linear subspace estimation through
low-rank approximation of similarity-based graphs via principal
component analysis (PCA) on the features of the points in each
neighborhood. These lower-dimensional projections are associated
with the tangent plane to the manifold’s surface, and their dimension
has been used [8, 9, 10, 11] to estimate ID. For nonlinear manifolds,
the low-rank approximations of similarity-based graphs have been
shown [3, 4, 5] to depend heavily on the definition of the local
neighborhoods, and therefore, on the choice of the threshold param-
eter (K/ε). In the NNK neighborhood optimization, only one point
in each direction will be selected, and, while only locally relevant
directions will be chosen, stronger directions will not be reinforced.
This way, while NNK is more robust to nonlinearities in the data
representation space, KNN projections will be more robust when
there is linearity. This way, the change in KNN projections as a
function of scale can be useful in assessing linearity, while NNK
low-rank approximations will provide more reliable estimates for
the local tangent plane to the manifold.

Finally, we propose a geometric analysis at multiple scales. Dif-
ferent approaches have been proposed to analyze manifolds at mul-
tiple scales. [10, 11] build on the technique of applying PCA locally
by taking a multiscale approach in the KNN graph construction. This
approach, however, relies on choosing an appropriate range of values
for K ≥ ID, where the value is small enough that the manifold is lin-
ear and large enough to mitigate noise in the data. Thus, [10, 11] are
highly sensitive to the density and distribution of points in the mani-
fold. An alternative approach followed by TwoNN [12] is to work on
smaller subsets of the initial dataset, generated by random sampling
of data points. The estimates are then aggregated, under the assump-
tion that the errors that arise from the sampling will average to zero
for a large enough number of subsets. In practice, ID estimates based
on random sampling have high variance on sparse manifolds and do
not account for changes in the local manifold structure.

We propose an alternative approach to dataset sampling in which
the points in the dataset are merged iteratively based on the neighbor-
hood defined at the current scale. This step is repeated until a dataset
of the desired size is obtained. Subsets with different geometrical
properties can be achieved based on the choice of similarity metric
and neighborhood definition. For example, when using a Euclidean
distance-based KNN similarity graph, the closest points in space will
be selected and denser areas will be merged faster. On the contrary,
when using the distance-based similarity but with NNK similarity
graphs we can preserve the geometry of the initial data and maintain



areas of different density in the resulting sampled datasets.
In summary, we propose a framework to study the local geome-

try of data using the properties of NNK graphs. We demonstrate via
experiments: (i) ID estimation using NNK is in line with the state-
of-the-art methods, (ii) linearity of data manifolds using KNN and
NNK graphs, and (iii) the impact of neighborhood choice in merg-
ing examples for scale. Practical applications of some of the metrics
(at one scale) presented here are studied in the context of transfer
performance of pre-trained neural networks in [13].

2. NON-NEGATIVE KERNEL (NNK) REGRESSION
GRAPHS

A positive definite kernel k(xi,xj) corresponds to a transformation
of points in Rd to points in a Hilbert space H, such that similarities
can be interpreted as dot products in this transformed space (gen-
erally referred to as Kernel Trick). This way, k(xi,xj) = ϕT

i ϕj ,
where ϕ : Rd → H and ϕi represents the transformed observation
xi. A popular kernel based on the distance between points that has
this property is the Gaussian kernel,

k(xi,xj) = exp

(
−||xi − xj ||2

2σ2

)
, (1)

where σ corresponds to the bandwidth parameter of the kernel.
A KNN (or ε-graph) can be constructed by choosing the K

largest inner products ϕT
i ϕj (or those above a threshold ε). There-

fore, these approaches are analogous to a sparse approximation of ϕi

using a thresholding approach.
In contrast, an NNK [7] graph corresponds to an improved strat-

egy for representation using basis pursuit. Starting from an initial
KNN or ε-neighborhood S, the NNK neighborhood at each node is
obtained by solving

θS = min
θ:θ≥0

∥ϕi −ΦSθ∥2
2 , (2)

where θS corresponds to the weights of neighbors (ΦS ) used to ap-
proximate ϕi. Using the Kernel Trick, the objective in (2) can be
rewritten as:

θS = argmin
θ:θ≥0

1

2
θTKS;Sθ −KT

S;iθ, (3)

where Ki;j = k (xi,xj). Thus, the i-th row of the graph adjacency
matrix W is given by W i;S = θS and W i;Sc = 0.

NNK performs a selection similar to the orthogonal step in or-
thogonal matching pursuits [14] which makes NNK robust to the
choice of sparsity parameters in the initialization (i.e., K in KNN).
Additionally, the resulting graph has a geometric interpretation
where each edge in an NNK graph corresponds to a hyperplane with
normal in the edge direction, points beyond which are not connected
(edge weight zero) [6, 7].

NNK has been shown to perform well in several machine learn-
ing tasks [15], image representation [16], and generalization estima-
tion in neural networks [17]. Furthermore, NNK has also been used
to understand convolutional neural networks (CNN) channel redun-
dancy [18] and to propose an early stopping criterion for them [19].
Graph properties (not necessarily based on NNK graphs) have been
also proposed for the understanding and interpretation of deep neu-
ral network performance [20], latent space geometry [21, 22] and
to improve model robustness [23]. The specific contribution of this
work is to explore the effectiveness of NNK graphs in providing in-
sights into the local geometry of the data, which can be useful in

understanding the properties and structure of the whole dataset. The
metrics we propose are not limited to analyzing features in deep neu-
ral networks and can be on any dataset embedded in some space.

Fig. 1: Our proposed approach to the geometric analysis of data
using multi-scale NNK graphs. We assume observed data belongs
to a manifold embedded in a higher dimensional space. Properties
derived from NNK graphs allow us to capture the local geometry of
the data. Changes in the properties of NNK graphs at multiple scales
reflect changes in the manifold geometry.

3. MULTI-SCALE ANALYSIS OF NNK GRAPHS

3.1. Local NNK neighborhood data

For the Gaussian kernel, the local geometry of the NNK graph for
a given node is a convex polytope around the node. Given a suffi-
ciently large number of initial neighbors, the local connectivity of an
NNK graph will be a function of the local dimension of the manifold,
as depicted in Fig. 1. We can derive a set of geometrical properties
from an NNK graph, and by comparing these properties at different
points in a manifold we can gain insight into its geometry.

The number of neighbors in an NNK graph can be insightful, but
it can vary locally based on (i) the distribution of the points sampled
from a manifold and (ii) the location of the points relative to the
geometry of the manifold (e.g., on the edges vs. the middle of the
manifold). We can obtain information on the local geometry of the
manifold by analyzing other properties of an NNK graph.
The diameter of an NNK polytope is defined as the maximum dis-
tance between points in the NNK neighborhood around datapoint k:

dk = max
i;j∈Sk

∥xi − xj∥, (4)

where xi and xj are the features of nodes i and j in the NNK neigh-
borhood of k, Sk. Given that NNK will select the nearest point along
each direction in space, we can assess the local point density of a
manifold using the diameter dk of polytopes around different points.

3.2. Linear subspace estimation from an NNK graph

An existing approach to ID estimation consists of performing a local
parametrization by finding the local tangent plane in the NNK/ε-
graph neighborhood of a point and aggregating the estimated ID for
each data neighborhood analyzed [8, 9, 10, 11]. Given an appro-
priate neighborhood, PCA returns the local linear tangent space to




