
REPRESENTING AND RETRIEVING REGIONS USING
BINARY PARTITION TREES

L. Garrido, P. Salembier and J.R. Casas

Signal Theory and Communications Department, Universitat Politècnica de Catalunya

C/ Gran Capità s/n, 08034 Barcelona, Spain, Tel: (+34) 934 011 627, Fax: (+34) 934 016 447

E-Mail: foster, philippe, josepg@gps.tsc.upc.es, URL: http://gps-tsc.upc.es/imatge

ABSTRACT

This paper discusses the interest of Binary Partition Trees for
image and region representation in the context of indexing and
similarity based retrieval. Binary Partition Trees concentrate in
a compact and structured way the set of regions that compose an
image. Since the tree is able to represent images in a multiresolu-
tion way, only simple descriptors need to be attached to the nodes.
Moreover, this representation is used for similarity based region
retrieval.

1. INTRODUCTION

There is currently a strong interest in defining content descriptors
for information retrieval. This interest is motivated by the every
day increasing number of audio visual documents. Automatic or
semiautomatic algorithms are therefore needed to index this huge
amount of information. The development of the MPEG7 [1] is an
example of such a need.

Most of the research work has been done on the extraction of
descriptors from an image [2]. However, in many cases the anal-
ysis of the image is done at a certain resolution scale. That is, the
image is usually first partitioned, and descriptors are then extracted
from this partition. Imposing a certain resolution scale may there-
fore lead to a loss of some regions that compose the images. A
representation of images that allows the analysis at different scales
of resolutions is therefore still a topic to be further developed.

In this paper, the Binary Partition Tree is used to represent and
retrieve regions included in an image. The Binary Partition Tree
is a structured and compact representation of regions that can be
extracted from an image. It was originally proposed to process
and filter images [3]. However, in this work the multiresolution
capabilities of the Binary Partition Tree are discussed. From a
MPEG7 point of view, the Binary Partition Tree can be seen as a
signal-oriented description scheme.

An example of a Binary Partition Tree is shown in Figure 1.
The tree leaves represent the regions of an initial partition. The
remaining nodes represent the regions that are obtained by merg-
ing the two children regions. In this representation, the root node
represents the entire image support. Note that the tree represents a
set of regions at different scales of resolution.

The organization of the paper is as follows. In section 2 the
creation of the Binary Partition Tree and the attachment of descrip-
tors to its nodes is discussed. In section 3 the Binary Partition Tree

This work has been partially supported by France-Telecom/CCETT
under the contract 96ME22 and by the European Comission within the
framework of the ACTS DICEMAN project.

(a)

(b) (c) (d)

Figure 1: Example of Binary Partition Tree. a) Binary partition
tree of Akiyo, b) Original image, c) Initial partition with 60 re-
gions, d) Image where each region of the initial partition has been
filled with the mean color value of the original image.

is used to retrieve regions based on a query-by-example strategy.
Finally, section 4 is devoted to the conclusions.

2. REGION REPRESENTATION

2.1. Creation of the Binary Partition Tree

In Figure 2 an example showing the creation of the Binary Parti-
tion Tree is illustrated. Several approaches can be used to create
this tree. We have used a segmentation that follows a bottom-up
approach. The algorithm first constructs the Region Adjacency
Graph of an initial partition (Figure 2b). The initial partition can
be the partition of flat zones or any other precomputed partition.
Using a region based segmentation such as [4, 5, 6], the Binary
Partition Tree is created by keeping track of the regions that are
merged at each iteration until one region is obtained. That is, for
each pair of neighboring regions a homogeneity measure is as-
sessed. The algorithm then starts merging the pair of neighbors
whose distance is lowest. Suppose, for instance, that the first re-
gions to merge are regions 1 and 5 (see Figure 2).This is indicated
in the Binary Partition Tree with a node labeled 6 whose children
are regions 1 and 5. Regions 1 and 5 then are merged on the RAG,
and the distances between nodes are recomputed. Regions 2 and
3 are then merged, resulting in a region labeled 7. This process is
iterated until one region is obtained.

The Binary Partition Tree should be created in such a way that
the most meaningful regions are represented in its nodes. The ho-

1 2

34

5

(a) (b)

6

1 5

4

8

2 3

7

9

(c)

Figure 2: Example of Binary Partition Tree creation. a) Initial
Partition, b) Region Adjacency Graph of (a), and (c) Resulting
Binary Partition Tree.

mogeneity criterion used in the example of Figure 1 is based on
color similarity. It should be noticed, however, that the homogene-
ity criterion is not always restricted to the latter one. For example,
if the image for which we create the Binary Partition Tree belongs
to a sequence of images, motion information can also be used to
generate the tree: in a first stage, regions are merged using a color
homogeneity criterion, whereas a motion homogeneity criterion is
used to merge regions in the second stage [7, 8]. Furthermore, ad-
ditional high-level information of previous processing or detection
algorithms can also be used to generate the tree in a more robust
way. For instance, a mask of an object included in the image can
be used to force that the object itself is represented with a node
in the tree. Typical examples of such algorithms are face, skin or
character recognition.

For similarity based retrieval purposes, region descriptors should
be attached to the nodes of the Binary Partition Tree. Since the
Binary Partition Tree allows to represent a region in a multires-
olution way, only simple descriptors have to be attached to each
node since a region can be represented using the descriptors as-
sociated to its node, or it can be represented using the descriptors
of the descending nodes. Two types of descriptors are attached
to the representation: color descriptors, which deal with the inner
structure of the region, and geometry descriptors, which deal with
parameters such as position, size, rotation and shape of the region.

2.2. Example of region descriptors

The simplest region color descriptor is a constant value, for exam-
ple the mean YUV value of the associated region in the original
image. Although this color descriptor attached to each node may
seem insufficient to represent its texture or even its visual appear-
ance in a correct way, it is in fact good enough for our purposes
since we have to take into account that the Binary Partition Tree
gives us information of how each region is composed. This allows
to analyze a region at different scales of resolution. A region can
be browsed using only the color descriptor attached to the associ-
ated node. This could give us a poor approximation of the region
we are dealing with. However, by using the descriptors of the de-
scendant leaf nodes, the region can be reconstructed with much
more colors and detail. Note also that there is a correlation be-
tween the color model for a node and its children. In most cases it
is possible to compute the color model for a node by knowing the

color model associated to its children. For instance, if the model
used to represent the color is the mean value of each color com-
ponent, the model for a certain node can be computed simply by
averaging the models of its children. This property can be used for
coding the tree in an efficient way.

Geometry descriptors involve position, size, rotation, and shape
features. The goal is to obtain a set of shape descriptors that are
invariant to the region position, size and rotation. Descriptors of
position, size and rotation can be extracted using moment analysis
[9]. This technique analyzes the statistical properties of a popula-
tion of vectors. Consider the population of vectors x = [x1; x2]

T ,
where T stands for vector transposition, and x1; x2 are the coordi-
nates of the pixels that belong to a region R. The mean vector is
defined as mx = Efxg, and the covariance matrix of the popula-
tion of vectors asCx = Ef(x�mx)(x�mx)

T g (whose size is
2� 2). Since Cx is real and symmetric, finding the two orthonor-
mal eigenvalues is always possible. Let ei and �i, i = 1; 2 be the
eigenvectors and corresponding eigenvalues of Cx. The next step
is to construct the matrixA, whose rows are formed by the eigen-
vectors ofCx, ordered so that the first row ofA is the eigenvector
corresponding to the largest eigenvalue. A is a transformation ma-
trix that maps x into vectors denoted by y by the transformation
y = A(x �mx). The population of vectors y corresponds to
the rotation and position invariant representation of the region R.
Within this framework, mx corresponds to the position descriptor,
whereas A is a rotation matrix. It is therefore easy to extract the
angle � that generates the matrix. Size invariance is accomplished
by normalizing y = [y1; y2]

T by
p
�1 + �2 , which is equiva-

lent to normalize by the mean squared energy of the population of
vectors of y.

Since we are dealing with descriptors extracted from a set of
region moments, the set of moments associated to a region ob-
tained by merging two children regions R = R1 [R2 can be
obtained by combining appropriately the set of moments of R1

and R2. Therefore, we only need to compute the moments for the
leaves of the Binary Partition Tree, whereas the moments of the
rest of nodes can be computed in a recursive way. Furthermore,
using this property of recursivity, efficient compression techniques
for image description may be devised.

The external boundary of the region can be coded using tech-
niques like chain code, spline approximations, wavelet [10] or
Fourier descriptors [11]. In our work we have used Fourier de-
scriptors to code the contour. The external contour of region R is
sampled at equally spaced samples in a clock-wise manner. The
position, rotation and size transformation is then applied to the
contour. Only some low frequency Fourier descriptors are used to
represent the resulting contour. These shape descriptors are invari-
ant to size, rotation and position.

In Figure 3 an example of region representation using the Bi-
nary Partition Tree is shown. Note that since lossy Fourier descrip-
tors are used, holes may appear in the reconstructed representation.

3. REGION RETRIEVAL

In this section, our purpose is to show how the Binary Partition
Tree representation can be used for region retrieval. That is, we
want to find the set of regions of a database that best matches a
query in color information and/or shape. The Binary Partition Tree
is well suited for this purpose, since it allows to do the query at
different levels of resolution.

(a) (b)

Figure 3: Example of region representation, (a) Original region (b)
Reconstruction using the descriptors attached to the leaves of the
associated Binary Partition Tree.

3.1. Supported queries

Several types of queries are supported by the Binary Partition Tree.
They are listed below:

� Query type I: The simplest way to search for the candidate
regions that matches the query is to compare the descriptors
of the nodes in the database with those associated to the
whole region of support of the query. The query is based
only on the descriptors corresponding to the whole region,
without taking into account the internal color information
and structure of the region. Fast searching can be done if
the set of nodes of the Binary Partition Trees that belong to
the database are indexed in an efficient way. However, this
is out of the scope of this paper. The present technique has
the advantage of being fast but its results may not be very
reliable since it depends on the discriminating capability of
the descriptor of one node.

� Query type II: Another type of query supported by the tree
is based on measuring the visual similarity between regions.
Two regions, candidate and query, have the same visual
similarity if their contents in color are the same. Instead
of using the descriptors of one node, descriptors attached
to a set of descendant nodes of a candidate node are used
to perform the matching. Note that the maximum possible
resolution is reached when the descriptors attached to the
leaves of a subtree are used. This type of search is computa-
tionally much more expensive than the first one. Therefore
an intensive search over all nodes using this matching is not
appropriate.

� Query type III: The third type of query supported by the tree
deals with the structural similarity between regions. In this
case the algorithm should search for regions that match the
query having the same sub-components but without taking
into account possible differences in color. This search tech-
nique is similar to the previous one. However, color and
geometry descriptors are used in a different way to perform
the matching.

3.2. Query strategy

The user has to provide the search engine with the example of the
region (mask and pixels values) to search for. The search through
the database is performed by first constructing the Binary Partition
Tree of the query. The root node of the Binary Partition Tree of
the query represents the region support. The algorithm should then
look for the set of regions in the database whose content is similar
to that of the query.

If the purpose is to have a rough idea of some possible candi-
dates, the first type of search technique can be used (Query type I).
The algorithm only has to look for the nodes in the database whose
descriptors are similar to those of the root node of the query region
tree.

Reliability is obtained by using a search technique based on
internal color regions or structure (Query type II and III, respec-
tively). Since performing this search technique through the whole
database is computationally expensive and slow, the search is di-
vided into two stages. In the first stage, a preselection of the nodes
is computed using the first search technique (Query type I). This
first search selects some candidates in the database that may match
the query. In the second stage, each of these candidates is further
analyzed and matched with the query with more reliability. In this
case, the descriptors attached to the nodes of the subtree of the
candidate regions are used. Both visual (Query type II) and struc-
tural (Query type III) similarity are measured, and the user is able
to select which weight should be given to each of them.

In this second stage, the matching between the query and the
candidate is not done, as expected, using the tree structure. Instead,
the matching is performed using a pixel-based representation of
the region that is extracted from the tree. This choice has been
made because the structure of the Binary Partition Tree is not a
reliable information. This is due to the fact that all the merging
steps necessary to go from an initial partition to a partition with one
region are represented within the Binary Partition Tree. Therefore,
some merging steps are more reliable than others. For instance,
three regions that are very similar in gray level may merge in any
order depending on the similarity measure used to merge them and
the level of noise included in each region. Different tree structures
can therefore be obtained, even if the final resulting region is the
same.

The second reason for not using the Binary Partition Tree struc-
ture is related to the MPEG7 approach. MPEG7 does not want to
standardize the indexing algorithm nor the search engine. Dur-
ing the search process, it is very unlikely to exactly know how the
trees stored in the database have been created. In a large number
of cases, the Binary Partition Tree of the query and the candidate
may be created using different criteria.

3.3. Distances between regions

For Query type I, as stated before, the search is performed directly
on the Binary Partition Tree. The algorithm only searches for the
set of nodes in the database whose shape descriptors best match the
ones of the root node of the Binary Partition Tree associated to the
query. Similarity is measured simply by computing, for instance,
the mean squared error between them. Other information, such as
position, size, orientation and over-whole color can also be used if
required.

In order to perform a Query of type II or III, a normalized re-
construction of the candidate and the query over an image must be
performed, since we will not use the tree structure for this purpose.
That is, the leaves of the subtree associated to the candidate node
and the leaves of the query are restored on an image with respect
to a predetermined size, rotation and position of the over-whole re-
gion. These parameters are fixed a priori so that the reconstructed
regions fit well in an image of about 150 � 150 pixels. For both
candidate and query, we obtain the associated partition and YUV
color image. The reconstructed query (resp. candidate) color im-
age is denoted with Q (resp. C) and its associated partition with
Qp (resp. Cp).

The corresponding partitions are defined as Qp = [i Qi with
i = 1; : : : Nq and Cp = [j Cj with j = 1; : : : Nc. Nq and
Nc are, respectively, the number of regions of the partition of the
query and the candidate.

The color values YUV of the pixels q and c inside each recon-
structed image are defined by Q(q) = (Yq; Uq ; Vq), q 2 Q and
C(c) = (Yc; Uc; Vc), c 2 C.

3.3.1. Visual similarity

An overall measure of “visual similarity” is the root mean squared
error (RMSE) computed between the color components of the pix-
els of the query and the candidate regions over the overlapping
area. Different weights on the color components may be selected
depending on the search strategy.

Vdist = RMSE (Q(x); C(x)) ; x 2 C \Q (1)

3.3.2. Structural similarity

The measure of structural similarity is somewhat more complex. It
should allow to search for regions having similar subcomponents
but different colors. For that purpose, two measures are assessed.
First, the regions Qi of the query are filled with a given (constant)
color model in order to get the optimal reconstruction of the can-
didate. The RMSE (EC) between the candidate and the latter re-
construction is then measured. This gives us an idea of how well
the partition of the query “explains” the colors of the candidate.
Inversely, the regions Ci are filled with a given (constant) color
model in order to get the optimal reconstruction of the query. The
RMSE (EQ) between this reconstruction and the query gives us
an idea of how well the partition of the candidate “explains” the
colors of the query partition.

The maximum of both errors in taken as the measure of struc-
tural distance

Sdist = max (EC ; EQ)

The worst case has to be taken into account since, for instance,
if the query partition is finer than the candidate partition, the asso-
ciated error EC = 0, whereas EQ 6= 0.

3.3.3. Match parameter

The validity of Vdist and Sdist is restricted to the overlapping area
of Q and C. This is taken into account by means of a confidence
parameter k defined as follows

k =
2 � area (C \Q)

area (C) + area (Q)

3.3.4. Matching distance

For visual similarity (resp. structural similarity), a match param-
eter Vmatch (resp. Smatch) is defined from Vdist (resp. Sdist)
normalized to fit into the range [0; 1] and then weighted by the
confidence measure k defined above.

Vmatch = k �
�
1 � Vdist

Vnorm

�
and Smatch = k �

�
1� Sdist

Snorm

�

The final value used to rank the candidates for the best math is
computed as

match = � � Smatch + (1� �) � Vmatch

where � 2 [0; 1] sets the balance between visual similarity (� !
0) and structural similarity (�! 1).

3.4. Examples

In order to test the proposed algorithm, a database of Binary Parti-
tion Trees has been constructed. Several MPEG4 test images have
been processed. Some of them contain human shapes, like the im-
ages belonging to the Akiyo, Claire, Weather and News sequences.
Randomly selected images are also introduced in order to enlarge
the database. In the sequel, the query is a human body (Akiyo in
Figure 3b).

The Query type I selects some candidates nodes among all
the nodes of the Binary Partition Trees included in the database.
The selection is based only on Fourier descriptor similarity. No
restriction to position, orientation nor color is done.

The first 40 results of a Query type I are introduced into the
second stage. Figure 4 shows us the results for a visual similarity
query. The first 6 results correspond to Akiyo, and the next results
are regions belonging to the shoulder of Akiyo.

An example of Query type III is shown in Figure 5. As in the
previous case, the 40 first candidates of the Query type I are taken
in order to be analyzed in the second stage. As can be seen, the
proposed similarity criterion orders the regions according to their
internal structure, without taking into account their visually differ-
ent contents. As a result, regions from Claire and News, which are
similar to Akiyo in structure, have been retrieved.

4. CONCLUSIONS

In this paper, we have discussed the interest of Binary Partition
Trees to represent regions or images at different scales of reso-
lution. It allows to represent in a compact and structured way the
different regions an image is made of. Taking into account the mul-
tiresolution capabilities of the Binary Partition Tree, only simple
descriptors have to be attached to each node. Moreover, recursive
computable descriptors allow devising efficient compression tech-
niques. A particular application dealing with region retrieval has
also be presented.

5. REFERENCES

[1] MPEG. MPEG-7: Requirements document. Technical Re-
port ISO/IEC JTC1/SC29/WG11/w2461, MPEG, Atlantic
City (NJ), USA, October 1998.

[2] Y. Rui, T.S. Huang, and S.-F. Chang. Image retrieval: Past,
Present and Future. Journal of Visual Communication and
Image Representation, 1998.

[3] P. Salembier and L. Garrido. Binary Partition Tree as an
efficient representation for filtering, segmentation and infor-
mation retrieval. In International Conference on Image Pro-
cessing (ICIP), Chicago (IL), USA, October 1998.

[4] J. Crespo, R.W. Shafer, J. Serra, C. Gratin, and F. Meyer. A
flat zone approach: a general low-level region merging seg-
mentation method. EURASIP Signal Processing, 62(1):37–
60, October 1997.

[5] L. Garrido, P. Salembier, and D. Garcı́a. Extensive operators
in partition lattices for image sequence analysis. EURASIP
Signal Processing, 66(2):157–180, April 1998.

[6] B. Marcotegui. Segmentation algorithm by multicriteria re-
gion merging. In Mathematical Morphology and Its Appli-
cations to Image Processing, pages 313–320, Atlanta (GA),
USA, May 1996. Kluwer Academic Publishers.

Akiyo News (woman) Akiyo
(frame# 0) (frame# 100) (frame# 100)

Akiyo Weather Weather
(frame# 200) (frame# 0) (frame# 100)

Region of Akiyo Region of Akiyo Region of Akiyo
(frame# 200) (frame# 0) (frame# 100)

Figure 4: Example of Query type II processing. Ordered from left
to right and from top to bottom, the first nine results of the query
are shown.

[7] P.E. Eren, Y. Altunbasak, and A.M. Tekalp. Region-based
affine motion segmentation using color information. In IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), volume 4, pages 3005–3008, Munich,
Germany, April 1997.

[8] L. Garrido and P. Salembier. Region based analysis of video
sequences with a general merging algoritm. In European Sig-
nal Processing Conference (EUSIPCO), pages 1693–1696,
Rhodes, Greece, September 1998.

[9] R.C. Gonzalez and R.E. Woods. Digital Image Processing.
Addison-Wesley, 1992.

[10] G.C.H. Chuang and C.C. Kuo. Wavelet descriptor of pla-
nar curves: theory and applications. IEEE Transactions on
Image Processing, 5(1):56–70, January 1996.

[11] P.J. van Otterloo. A Contour-Oriented Approach to Shape
Analysis. Prentice-Hall, 1991.

Akiyo News (woman) Weather
(frame# 0) (frame# 100) (frame# 0)

Akiyo Weather Akiyo
(frame# 100) (frame# 100) (frame# 200)

Claire News (man) Claire
(frame# 0) (frame# 0) (frame# 100)

Figure 5: Example of Query type III processing. Ordered from left
to right and from top to bottom, the first nine results of the query
are shown.

