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Abstract

Connected operators [3, 1, 2] are increasingly used in image processing. They are at-
tractive in applications where the signal has to be simplified without loosing information
about the contours. A large number of simplification criteria such as size, area [6], con-
trast or complexity [3] can be obtained with these operators. In this paper we deal with
a motion-oriented connected operator. This operator eliminates from the original sequence
the components that do not undergo a specific motion (defined as filtering parameter) while
the remaining objects are almost perfectly preserved.

Key Words: Connected Operators, Motion Criterion, Optimization, Viterbi Algorithm, Se-
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1 Introduction

Motion information is a difficult issue in image sequence processing. Most of the time, motion is
extracted from a local estimation that does not take into account the structure of the signal, that
is the various objects in the scene. This is the case for the popular block-matching algorithm.
The objective of this paper is to define a filtering tool taking into account the image structure
and allowing the simplification of the image following a motion criterion.

As will be seen, the motion-oriented operator simplifies while preserving the information of
the contours of the non-simplified objects. This filtering technique can be used for a large set
of applications such as motion estimation, object tracking and motion-oriented multi-resolution
decomposition.

The organization of this paper is as follows: the next section discusses the notion of connected
operators based on a structured representation of the image called “Max-Tree”. Section 3 is
devoted to the definition of the motion criterion and to the non-increasingness of the criterion
which may lead to instabilities in the filtered sequences. Finally, filtering examples are reported
in section 4.

2 Connected Operators

2.1 Binary connected operators

Let X denote a binary image. As defined in [5], a binary connected operator ¥ is an operator
that only removes connected components of X or of its complement X¢. In the sequel, we will
restrict ourselves to the case of anti-extensive operators (VX, ¥(X) C X). In this case, a binary
connected operator is an operator that only removes connected components of X.

The filtering process can be easily explained if a tree representation of the image is used. This
idea is illustrated in figure 1. The original image X is composed of three connected components.
This image can be represented by a tree with four nodes: the root node C{ represents the
set of pixels belonging to the background X¢, and {Cf}1<k<3 represent the three connected
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Figure 1: Binary connected operator

components of the image. In this representation, the filtering process consists in analyzing each
node C} by assessing the value of a particular criterion. Assume, for example, that the criterion
consists in counting the number of pixels belonging to a node (area opening [6]). Then, for
each node, the criterion value is compared to a given threshold A and the node is removed if
the criterion is lower than A. In the example of figure 1, the node C? is removed because its
area is small and its pixels are moved to the background node C{ (the connected component is
removed). As it can be seen, the tree links represent the pixels migration (towards the father)
when a node is removed.

Note that his process leads to a simplification of the image (some connected components are
removed) as well as to a perfect preservation of the remaining components. All anti-extensive
binary connected operators can be described by this process; the only modification is the criterion
that is assessed.

2.2 Gray level connected operators

The extension of connected operators to gray-level images can be done via the notion of flat
zone and the corresponding partition [5]. We present now intuitively this extension by a simple
generalization of the tree representation to the gray-level case. The idea consists in creating
recursively the tree by a study of thresholded versions of the image at all possible gray levels.
An example is presented in figure 2. The original image is composed of seven flat zones identified
by a letter {A, B,C, D, E, F}. The number following each letter defines the gray level value of
the flat zone. In our example, the gray level values range from 0 to 2.

In the first step, the threshold A is fixed to the lowest gray level value, in this case 0. The
image is binarized: all the flat zones at level h = 0, that is region A, are assigned to the root
node of the tree C} = {A}. Furthermore, the flat zones with gray level value strictly higher
than h form two connected components: C{ = {G} and C? = {B,C, D, E,F}. This creates
the first tree (for gray levels [0,1]). Note that this procedure is the same as the one used for
the binary image. In a second step, the threshold is increased by one, h = 1. Each node C,’le
is processed as the original image: consider, for instance, the node C? = {B,C, D, E,F}. All
flat zones belonging to this node with gray level h = 1 remain assigned to this node. However,
the flat zones with gray level strictly higher than h (here {E, C}) create two different connected
components and are moved to two child nodes: C2 = {C} and C3 = {E}. The complete tree
construction is done by iterating this process for all nodes k at level A and for all possible
thresholds A (from 0 to the highest gray level value). The algorithm can be summarized saying
that, at each node C}’f, a “local” background is defined by keeping all flat zones of gray level
value equal to h and that the various connected components formed by the flat zones of gray
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Figure 2: Max-Tree creation

level value higher than h create the child nodes of the tree.

Note that in this procedure, some nodes may become empty. Empty nodes do not give us
additional information. Therefore, at the end of the tree construction, they are removed. The
final tree is called a Maz-Tree in the sense that it is a structured representation oriented towards
the regional maxima of the image (maxima are simply the leaves of the tree) and towards the
implementation of anti-extensive connected operators. By duality, the Min-Tree can be defined.

The filtering itself is similar to the one used for the binary case. A criterion M(.) is assessed
for each node C,]f. Based on this value, the decision process takes a decision on each node
preserving or removing it. As examples, let us briefly recall some classical criteria used for the
opening by reconstruction, the area opening and the A-mazx operator. We’ll denote by Uﬁ the set
of pixels belonging to C,’f and all its descendant nodes.

e Opening by reconstruction: this filter preserves a node C,’f if the binary erosion of the set
of pixels included in 62 by a structuring element of size A is not the empty set. This
operator has a size-oriented simplification effect: it removes the bright components that
are smaller that the structuring element.

e Gray level area opening [6]: this filter has been used in section 2.1. It is similar to the
previous one except that it preserves the C’,’f if the number of pixels of 62 is larger or equal
to a limit A. It has also a size simplification effect, but the notion of size is different from
the one used in the opening by reconstruction.

e \-maz operator: the criterion here is to preserve the node C,’f if this node has at least
one non-empty descendant node at level h + X or greater (3k', Ih’ > h + X such that
Uﬁj N Uﬁ # (). The simplification effect of this operator is contrast-oriented in the sense
that it eliminates image components with a contrast lower than A\. Note that A — maz is
an operator but not a morphological filter because it is not idempotent.

These filters correspond to increasing operators, i.e. Vo <y = ¥U(z) < ¥(y). In the context
of the Maz-Tree representation, this means that if CF is a child node of C7* (that is Cch C c7)

M(CH) < M(C7"). In this case, all nodes such that M(CF) < X are removed and are moved to

the first ancestor node such that M(C;’f) > A. After the end of the process, the output Maxz-Tree
is transformed into a gray level image by assigning to the pixels of each node C,’f the value h.



3 Motion Connected Operator

The goal of this section if to present the motion criterion. As will be seen, the criterion is non
increasing. This issue will be studied in section 3.2.

3.1 DMotion criterion

Denote by fi(i,7) and image sequence where i and j represent the coordinates of the pixels
and t the time instant. Our objective is to define a connected operator able to eliminate the
image components that do not undergo a given motion. The first step is therefore to define the
motion model giving for example the displacement field at each position {A;(4, 5), A;(i,7)}. The
field can be constant {A;, A;} if one wants to extract all objects following a translation, but in
general the displacement can depend on the spatial position (7, j) to deal with more complex
motion models such as affine or quadratic.

The sequence processing is performed as follows: each frame is transformed intro its correspon-
ding Maz- Tree representation and each node C,’f is analyzed. To check whether or not the com-
ponent associated to a given node is moving in accordance to the motion field {A;(4,5), A; (4, 7)}
a simple solution consists in computing the opposite of the Mean Displaced Frame Difference of
this region with the previous frame. Note that, the opposite of the mean DFD is used so that
the criterion value for a region that has to be preserved is higher than the corresponding value
of the region has to be removed (i.e. in accordance to area opening criterion). More formally,
the criterion can be expressed as [4]:

DEEH == 5 ilid) — fiali= B0j - 8] [area (CF) 1)
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In practice, however, it is not very reliable to state the motion on the basis of only two frames.
The criterion should have a reasonable memory of the past decisions. This idea can be easily
introduced in the criterion by adding a recursive term. Two DFD’s are measured: one between
the current frame f; and the previous frame f;_; and a second one between the current frame
and the previous filtered frame WU(f;_1) (¥ denotes the connected operator).

M(CF) = (1 - a)D}~' (CF) + aDf V=) (Th) (2)

where 0 < a < 1. If & = 0, the criterion is memoryless, whereas higher values of & (0 < o < 1)
allow the introduction of an important recursive component in the decision process. In a way
similar to all recursive filtering schemes, the selection of a proper value for @ depends on the
application: if one wants to detect very rapidly any changes in motion, the criterion should be
mainly memoryless (o = 0), whereas if a more reliable decision involving the observation of a
larger number of sequences of frames is necessary, the the system should rely heavily on the
recursive part (0 < a <1).

3.2 Non-increasingness issue

The criterion defined by equation 2 is not increasing. That means that if a region X is included in
a region Y, there is a priori no relation between the two measured criterion. The decision (node
preservation and elimination) presented for the increasing criterion (called “direct” decision)
leads to unstable decisions, that appear as random changes between elimination and preservation
of some objects. In this paper, we formulate the decision as an optimization problem: based on
the “direct” decision tree, our objective is to find an increasing decision rule that minimizes the
cost.
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Figure 3: Optimization problem

For each node C,]f, a binary decision: preserve or remove, has to be taken. Therefore, the first
step consists in assigning to each node C}’f of the Maz-Tree two states, P}’f and Rﬁ, describing the
two possible decisions. Second, a trellis is constructed by creating transitions linking the possible
decisions of one node and of its father. There are four possible transitions between C}’f and it’s
father C7" (see figure 3): RE — R, RE — P, Pr — R} and Py — P;*. Furthermore, a cost
is assigned to each transition. The cost assigned to the transitions ending in the “preserve” state
is the same and should reflect the reliability of the decision for that node. This reliability can be
measured for example by the difference between the decision threshold and the criterion value,
A — M(CT"). For the transition RE — R, the situation is similar and the value M(CJ") — A
can be assigned as transition cost. This is however not the case for the transition P,’f — R}
these transitions should be avoided because we want to obtain an increasing decision rule.

The problem of finding the path that minimizes the total cost (the cost of a path is defined
as the sum of the costs of its transitions) can be very efficiently solved by the Viterbi algorithm.
This algorithm has to be extended in order to deal with trees with various branches: figure 3
shows us the particular case for two branches but the procedure is general and can deal with
an arbitrary number of branches. Let us analyze the case of the state P}’f : there is not one
but two optimum paths ending at this state. Note that they are independent from each other.
Therefore, we’ll apply the Viterbi algorithm for each set of transitions (here identified with solid
and dotted lines) and consider their union as the “optimum path” ending in P,’f. The cost is
equal to the sum of the costs of the two paths.

4 Examples and conclusions

The first filtering example is shown in figure 4. Our goal is to apply the motion connected
operator in order to remove all moving objects. Therefore, the motion model is defined by
(As,Aj) = (0,0). The application of the motion connected operator ¥(f) described in section
3 removes all bright moving objects (figure 4b). The application of the dual operator U*(f) =
—W(—f) removes all dark moving objects. The result of the composition of the two operator
is illustrated in figure 4c. The residue presented in figure 4d show what has been removed by
the operator: as it can be seen, the operator has very precisely extracted the ballerina and the
(moving) details of the two speakers.

The example illustrated in figure 5 shows a decomposition of the original image into three
sequences: objects with a translation of (A;, A;) = (2,0) (figure 5b), still objects (A;, Aj) =
(0,0) (figure 5¢) and the remaining objects (figure 5d). This is a decomposition of the original
sequence in the sense that the sum of the tree sequences restores the original sequence.

Motion connected operator can be potentially be used for a large set of applications. It
opens the door in particular to different ways of handling motion information. Indeed, generally,
motion information is measured without knowing anything about the image structure. Connected



MPEG4 MPEG4

WORLD (‘1 // WORLD ;:“' WORLD \':;"‘i' W
a) Original image b) Motion operator c¢) Dual operator d) Residue

v(f) (2 (f)) f=v(e(f))

Figure 4: Extraction of the moving objects using the motion oriented connected operator.
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Figure 5: Motion-oriented sequence decomposition (a = b + ¢ + d)

operators take a different viewpoint by making decisions taking into account the structure of the
signal. By using motion connected operators, we can “inverse” the classical approach to motion,
and for example, analyze simplified sequences where objects are following a known motion.
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