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ABSTRACT 
We present four functionalities intended to improve the 
ability of image detection and tracking algorithms to 
understand a scene in a multicamera system. The 
redundancy of several available projections of any 3D 
object onto different cameras might ease video analysis 
tasks. When some prior information about the 3D object 
or any of its projections is known, geometric constraints 
can help to restrict search areas in the images under 
analysis. The functionalities presented also tackle the 
problem of selecting the best camera at any time, or 
computing projected areas of 3D objects in images. 

1. INTRODUCTION 
In a ‘multicamera system’, a number of different cameras 
placed in known positions observe the objects in the 
scene from different views. The existing redundancy 
across several projections of the same 3D object onto 
different cameras can be exploited for video analysis 
tasks. The main objective of this paper is to describe 
several functionalities useful for image analysis 
algorithms. The geometric constraints of a multicamera 
system will make it possible to considerably restrict 
search areas for object detection, tracking and analysis, 
by using properly calibrated cameras and if some prior 
information about the 3D object is known, such as the 
position in one image or the approximate 3D position in 
the room. 
    The paper is organized as follows. Section 2 briefly 
describes the scenario for our experiments. Section 3 
deals with the process of mapping 2D image coordinates 
and 3D world coordinates in a multicamera system. The 
main problems arising in such process are pointed out. 
These two sections are necessary to understand section 4, 
which constitutes the central part of this paper, and 
describes the four functionalities presented. Some 
experimental results for each one of the functionalities 
under study are shown in section 5 and, finally, 
conclusions are discussed in section 6. 

2. THE SMART ROOM SCENARIO 
The algorithms and functionalities presented in this paper 
have been tested in the Smart Room at UPC. The size of 

the room is 5,25 m x 4,20 m and it has five fixed cameras 
installed: four cameras are placed on the corners of the 
room; and a fifth camera is placed on the ceiling. With 
this camera layout, most of the points in the room are 
viewed from at least 3 cameras. 
    An absolute coordinate system, adapted to the room 
and common to all the available cameras, has been 
considered in order to carry out the experiments. Once the 
cameras are completely calibrated, all 3D world 
coordinates will be referred to this absolute coordinate 
system. 

3. MAPPING 2D IMAGES AND 3D OBJECTS 
If we intend to benefit from the intrinsic geometric 
constraints of a multicamera system, two important pre-
requisites must be satisfied: 
• Camera calibration: It allows extracting metric 

information from 2D images, by relating pixel 
coordinates with 3D back-projected rays. A planar 
chess board pattern and Zhang's [1] calibration 
algorithm have been used in our case. 

• Projection and reconstruction algorithms: which 
allow to bidirectionally map 2D image coordinates of 
different projections of the same 3D object with its 
3D world coordinates. Some precise and robust 
algorithms have been developed [2]. 

Let us look further into the problem of computing the 3D 
coordinates of a world point given the coordinates of its 
projections onto several cameras. If the involved cameras 
are properly calibrated, the back-projected rays for 
those projections (i.e. the sets of points in the 3D world 
which map to the same point in the image) may be 
computed [3]. At least two cameras are needed in order to 
compute the 3D world point from its projections. If only 
one camera is available, any point along the back-
projected ray would be a potential 3D candidate. On the 
contrary, if two or more projections of the same 3D point 
are known on different cameras, their back-projected rays 
will meet in a single 3D point. In real applications, 
however, those rays will not intersect due to the following 
two main reasons: 
• Calibration errors: Real camera calibration 

parameters will be affected by slight errors due to 



difficulties in the detection of calibration points (in 
the chess board images) or inaccuracies in the lens 
distortion model. These errors can be minimized by 
adding redundancy to the problem. Several 
reconstruction methods are presented and compared 
in [2]. A method for the joint estimation of minimum 
reprojection error with outlier rejection is proposed 
to obtain a more robust and precise estimate when 
more than two cameras are available, even if one of 
them is poorly calibrated.  

• Detection errors: Real world objects (arbitrary 3D 
volumes) can look quite unlike in different views.  
Occlusion with other objects, light intensity changes, 
projection sizes, or the inexistence of characteristic 
points –with punctual features easy to identify across 
images– might be some reasons for this problem.  

Consequently, accurately detecting the different 
projections of the same 3D point across available images 
is not an easy task. The functionalities presented in this 
paper will help us to improve the results of object 
detection, tracking and image analysis procedures, by 
combining the available information in a calibrated 
multicamera system. More concisely, if we had detected 
the projection of the desired object in one camera –the 
one with the view that makes detection easier–, the search 
area in a second camera could be considerably reduced by 
means of the functionalities proposed in section 4. 

4. FUNCTIONALITIES DESCRIPTION 
Four functionalities intended to improve detection 
effectiveness in a multicamera system are presented in 
this section: epipolar lines, best camera selection, sphere 
projection and oriented circle projection. Experimental 
application results are presented in next section. 
    Briefly speaking, epipolar lines allow reducing the 
search area in a second camera to a neighborhood of a 
segment. Additionally, the best camera selection 
functionality could provide the closest camera, or the best 
oriented camera with respect to a given object. And 
finally, sphere and oriented circle projection will allow us 
to relate simple 3D objects with the sizes and shapes of 
their projections on all the available cameras. 

4.1. Epipolar lines 
Let us imagine that the image coordinates of the 
projection of a given object on one camera -say camera 1- 
are known in advance, but the projection of the same 
object is unknown for camera 2.  From a geometric point 
of view the epipolar line is defined as the projection onto 
camera 2 of the back-projected ray in camera 1.  
    Epipolar lines in a multicamera environment allow to 
reduce the search area from the entire image to just a 
neighbourhood of the epipolar line [2].  Furthermore, if 

we combine epipolar information with ground truth 
information in a known stable environment (such as the 
Smart Room described in section 2), we can reduce the 
search area even more. For example, if the object that we 
are looking for is a human head, the likelihood of being 
between 1 and 2 meters above the floor is high. This 
additional height restriction on the 3D back-projected ray 
can be translated into an additional restriction on the 
epipolar line. Thus, instead of searching along the whole 
epipolar line on camera 2, we can restrict the search area 
to only a neighbourhood of a segment of the epipolar line, 
as it has been done in [4] in a different context. Epipolar 
line equations can be directly computed from calibration 
parameters of the implied cameras [3]. 

4.2. Best camera selection 
Some of the most basic functionalities in a multicamera 
system are perhaps those related to the selection of the 
best camera for a given image analysis task. We should 
select the closest camera to get the highest possible size 
and resolution of the object under analysis, or the best 
oriented camera if frontality is critical (as it uses to be in 
face recognition tasks). If the 3D object position is known 
and the cameras are correctly calibrated, camera selection 
can be performed according to different criteria: 
• Closest camera selection: From all available cameras 

that can see a given 3D point, we choose the one 
whose center of projection (COP) is closest to the 
desired 3D world position ('closeness' measured by 
3D Euclidean distance). This functionality is useful 
to analyze small objects, for example. Furthermore, 
distance relationships between 3D objects and 
cameras are also useful to disambiguate occlusions. 

• Most centered camera selection: Among all the 
available cameras that can see a given 3D point, we 
choose the one for which the projection of the 3D 
world object is closest to the center of the image (2D 
euclidean distance). This is helpful when significant 
radial distortion affects the periphery of the images. 

• Best oriented camera selection: From all available 
cameras that can see a given 3D point, we choose the 
one which is better aligned with an oriented object. 
We define an oriented object by a world point and an 
orientation vector. The best camera is considered to 
be the one that can see the object and minimizes the 
dot product between the orientation vector and 
camera's projection ray director vector. This 
functionality deals with objects' orientation and may 
be useful in face identification or gesture recognition 
applications, where frontal views are required. 



4.3. Sphere projection 
Being able to project 3D spheres onto 2D images allows 
relating volumes in space with projected areas in images. 
While we can probably know beforehand the approximate 
size of the object we are looking for, the same object can 
be imaged as a larger or smaller spot, depending on its 
relative position with respect to the camera.  
    We may think of different applications as, for example, 
‘How many pixels occupies the projection of a human 
head, depending on its position in the room?’ Or ‘How 
large will be the uncertainty area (in pixels) of a moving 
object in a certain camera, if we have an upper bound of 
its velocity?’ We can simply transform that upper bound 
in velocity into an upper bound in distance (radius from 
the last known position, in the previous frame) by means 
of the known time between frames. Thus, by projecting a 
sphere with that given center and radius, we would be 
able to restrict the search area to the projection, which 
allows us to characterize the relationship between volume 
and image area adapted to every camera, depending on 
the relative position between the object and the camera. 
    Given a 3D point (center of the sphere) and a radius, 
the equation of the projected sphere (an ellipse in general) 
can be computed by means of the camera calibration 
parameters [3]. From its equations, a number of simple 
geometric computations yield major semiaxis of the 
ellipse [5]. Thus, the ellipse can be efficiently drawn [2]. 

4.4. Oriented circle projection 
While the projection of spheres outlined in previous 
section can give an idea of how 3D real volumes and 
image areas relate, it could be desirable to add a notion of 
orientation in some cases. For example, let us consider 
that we would like to know how large the projection of a 
human face is in a given camera, assuming that we know 
the 3D position of that face and its orientation. Roughly 
speaking, we are now obviously interested in knowing the 
area of a “face” (oriented circle) in the image, and not the 
area of a “head” (sphere).  
In order to completely describe an oriented circle in 3D 
space, the following 6 parameters have been used: 
• 3 parameters for the 3D coordinates of the center. 
• 3 parameters for the orientation vector, perpendicular 

to the plane containing the circle. The modulus of 
this vector is equal to the radius of the circle. 

Given those six parameters, the projection of the circle 
can be efficiently drawn on the camera projection by 
means of the camera calibration parameters [2].  
 

5. EXPERIMENTAL RESULTS 
The functionalities described in this paper have been 
implemented and tested in the Smart Room scenario 
mentioned in section 2. Some of these tests will be briefly 
presented here, and they intend to prove the potential 
usefulness of these functionalities when combined with 
other detection or tracking algorithms. 

5.1. Epipolar lines 
A test with Ground Truth Points (GTP) has been 
performed to evaluate the functionality of the epipolar 
lines. 10 Ground Truth Points (16 x 16-cm. squares with 
an inscribed cross) have been placed at different positions 
in the room, with different distortions, heights, poses, and 
distances to the different cameras of the room.  
    From their imaged coordinates, the epipolar lines 
corresponding to the GTP’s visible in camera 1 have been 
computed and represented in the other cameras. The 
resulting distances from the imaged GTP’s to their 
respective epipolar lines has not exceeded 8 pixels in any 
camera, and their mean value was about 3 pixels. We 
must indicate here that, for maximum coverage of the 
room, the five cameras are equipped with wide angle 
lenses (70º–150º), yielding significant distortion in the 
periphery of the images. 

5.2. Best camera selection 
Although all the camera selection criteria described have 
been implemented and tested, we present here a specific 
test for the best oriented camera functionality, as we think 
that this is the most useful for different image analysis 
algorithms. 
    A video sequence of a moving bar has been 
synchronously recorded from all the available cameras. 
This bar is equivalent to an orientation in the room, which 
can be known in each frame by computing the 3D 
coordinates of its extreme points. The 3D coordinates 
have been found by manually marking their image 
projections in the different cameras. As the bar moved in 
the room, it pointed at different cameras, so that the best 
oriented camera could be easily recognized from the 
images. The best camera (according to visual estimations 
from the recorded images) was correctly selected along 
the whole video sequence. In order to fully appreciate the 
correctness of the best camera selection functionality, a 
VRML 3D animation has been constructed(*). The room 
and the table are represented, and a cylinder is fitted to 
the computed 3D coordinates of the bar extreme points. 
The positions of the cameras have also been computed 
from the extrinsic parameters. During the animation, the  

                                                 
(*) The authors would like to thank Jordi Salvador for VRML display. 



 
Figure 1. Selection of best oriented camera with an oriented bar. 
 

 
Figure 2. Sphere projection over GTPs 
 

best oriented camera (according to cylinder orientation) is 
automatically selected. For a sample frame, see Figure 1. 

5.3. Sphere projection 
Two different series of tests have been carried out: sphere 
projection over GTP’s and in the oriented bar test images, 
which are described below. 
5.3.1. Sphere projection over GTP’s 
A sphere of radius 28 cm centered in the computed 3D 
coordinates of the GTP has been projected onto the five 
cameras. The length of its radius is important, because 
GTP's are 16x16cm squares, so they should be inscribed 
in the projection of the sphere. The resulting images 
(Figure 2) prove the validity of projected spheres' sizes. 
5.3.2. Sphere projection in the Oriented Bar Test 
This test consisted in projecting a sphere of radius 20 cm 
(shown in red in Figure 3) centered at the top extreme 
point of the bar, in cameras 1 to 4.  

5.4. Oriented circle projection 
As with the sphere projection functionality, two different 
series of tests have been carried out for oriented circles: 
5.4.1. Oriented circle projection over GTP’s 
A circle of radius 28  cm centered in the computed 3D 
coordinates of every GTP, has been projected onto the 
 

 
Figure 3. Sphere and oriented circle projection in the oriented bar test. 
 
five cameras. Two tests of this kind were performed: one 
with (0,0,1) as orientation vector –pointing to the ceiling–
, and (1,0,0) –pointing to one of the long walls–. As in the 
sphere projection test, the resulting images (available 
from [2]) show a good relationship between the sizes of 
the GTP's projections and their associated circles, as well 
as with their orientation. 
5.4.2. Oriented circle projection in the Oriented Bar Test 
This test consists in projecting a circle of radius 20 cm 
(shown in green in Figure 3) centered at the top extreme 
point of the bar in cameras 1 to 4. The orientation of the 
circle plane is perpendicular to the bar. Significant 
coherence of distances to the cameras and the orientation 
of the bar with the projected areas were achieved. 

6. CONCLUSIONS 
We have presented in this paper four different 
functionalities for mapping 2D images and 3D world 
objects in a multicamera system, targeted at easing video 
analysis tasts. A set of tests have been implemented and 
tested for all the functionalities. Some of the tests carried 
out have been briefly presented here in order to prove the 
potential interest of these functionalities when assisting 
image detection and tracking algorithms. 
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