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ABSTRACT

We propose a complete multi-view foreground segmentation and
3D reconstruction system that defines a 3-dimensional probabilistic
model to model the foreground object in the 3 spatial dimensions,
thus gathering the information from all the camera views. This 3D
model is projected to each one of the views in order to perform
the 2D segmentation with the foreground information shared by all
the cameras. Then, for each one of the views, a MAP-MRF clas-
sification framework is applied between the projected region-based
foreground model, the pixel-wise background model and the region-
based shadow model defined for each view. The resultant masks
are used to compute the next 3-dimensional reconstruction. This
system achieves correct results by reducing the false positive and
false negative errors in sequences where some camera sensors can
present camouflage situations between foreground and background.
Moreover, the use of the 3D model opens possibilities to use it for
objects recognition or human activity understanding.

Index Terms— 3D reconstruction, Multi-view foreground seg-
mentation, 3D probabilistic model, SCGMM.

1. INTRODUCTION

3D reconstruction from multiple calibrated planar images is a major
challenge in the image processing area in order to obtain a realis-
tic volumetric representation of the objects and people under study.
When working with multi-view sequences, it is possible to establish
a collaboration between views in order to increase the robustness of
the overall system (foreground segmentation + 3D reconstruction).
The proposals presented in the literature, usually have an indepen-
dent processing for each one of the views, and try to improve the
final results by combining the probabilities of each view or by using
the back projection of the resultant 3D reconstructions [7]. In this
paper, we propose a complete integration of the multi-view smart-
room segmentation and 3D reconstruction. We propose to define
a 3-dimensional modeling of the foreground object under analysis
in order to centralize the probabilistic information of the object, for
all the views, in the 3-dimensional space, thus giving robustness to
the process. This model will be used to achieve the objects’ seg-
mentation in each view, preserving the robustness of the model in
those views where foreground and background present high simi-
larity and also, it can be exploit to achieve 3D information of the
object’s movements.

In this system, we define a probabilistic 3D model of the fore-
ground object, where the 3D spatial-color Gaussian Mixture Model
(3D SCGMM) is defined to model the probabilistic information of
the foreground object to segment in the v = (RGB, XY, Z) do-
mains. This model will be used as a non-rigid characterization of
the object. Therefore, in order to correctly define this model, the
3-dimensional reconstruction of the object under analysis and the

texture that this object presents in the multi-view sequence are nec-
essary.

1.1. Previous work

In the recent years, there have been special interest in monitoring the
human activities and movements in order to obtain a semantic infor-
mation of the scene. Hence, approaches based on rigid human body
models have been proposed in the literature to deal with this analy-
sis. Human motion capture has been extensively studied, [13, 12, 15]
give and in-depth survey of the literature. In [5], the multi-layer
framework is proposed by means of particle-based optimization re-
lated to estimate the pose from silhouette and color data. The ap-
proaches in [1, 11, 14] require training data to learn either restrictive
motion models or a mapping from image features to the 3D pose. In
[16] the authors propose a rigid human body model that comprises
a kinematic skeleton and an attached body approximation modeled
as a Sum of Gaussians where 58 joints work together to model a
detailed spine and clavicles. In [8] shape and motion retrieval are
detected by means of EM framework to simultaneously update a set
of volumetric voxel occupancy probabilities and retrieve a best esti-
mate of the dense 3D motion field from the last consecutive frame
set. In 3-dimensional reconstruction, there have been also great in-
terest in improving the volumetric reconstruction by combining in-
formation among views. [3] proposed a SfS using Dempster-Shafer
theory, which takes into account the positional relationships between
camera pairs and voxels to determine the degree in which a voxel
belongs to a foreground object. [4] proposed the Space occupancy
grids where each pixel is considered as an occupancy sensor, and
the visual hull computation is formulated as a problem of fusion of
sensors with Bayesian networks, while [10] worked with the Shape
from Inconsistent Silhouette by combining the probabilities of each
one of the pixels.

1.2. Proposed method

In this paper, we propose a multi-view foreground segmentation
method for smart-room scenarios that uses a 3-dimensional proba-
bilistic models to model the object to segment. The work flow of the
proposed system is as follows:

Create 3D model: Once all the cameras of the multi-view sys-
tem have detected and segmented the object under analysis, the fore-
ground 3D SCGMM can be created with the 3D reconstruction ob-
tained from the 2D silhouettes. Although any SfS technique can
be used to perform the volumetric reconstruction, we utilize a con-
servative Visual Hull reconstruction with tolerance 7 = 1 in order
to reduce the possible misses without increasing too much the false
positive detections. Moreover, the voxels of this volume are col-
orized with the object colors in order to obtain a realistic volume
reconstruction, by obtaining the average color that the pixels belong-



ing to the voxel’s projection present in each view. The voxels spatial
and color information will be used to initialize the foreground 3D
SCGMM by means of the EM algorithm [2]. Next frames of the
sequence will utilize the 3D model in the segmentation process.

Foreground segmentation: Foreground segmentation is com-
puted by means of the system proposed in [6], thus combining in a
Bayesian MRF-MAP framework pixel-wise background model with
SCGMM and SCGM foreground and shadow models respectively.

3-dimensional volumetric reconstruction: As in the 3D model
creation, conservative Visual Hull reconstruction with tolerance = =
1 is used in order to obtain the 3D reconstruction of the foreground
object that will result the output of the system.

Spatial updating of the 3D model: The 3D object reconstruction
will be used to update the 3D foreground model in order to adapt it
to the movements that the foreground object performs at each frame.
If the model is correctly initialized in the color and spatial domains,
only a spatial updating will be necessary to achieve a correct charac-
terization of the object since, unlike the 2D SCGMM, the 3D recon-
struction does not present regions occluded to the camera.

Projection of the 3D SCGMM to 2D views: The final step of
this work-flow consists in projecting the 3D SCGMM to each one
of the views, in order to use the 3D model in the 2D foreground
segmentation. Therefore, for each camera sensor, the 2D foreground
model will be composed by the projection of the 3D Gaussians that
model voxels which present direct visibility from the camera sensor.

The remainder of the paper is organized as follows: Section 2
describes the 3D foreground model. Section 3 explains the projec-
tion of the 3D SCGMM to the 2D views. Finally, some results and
conclusions are presented in Section 4 and Section 5 respectively.

2. 3D FOREGROUND MODEL

In order to utilize the data redundancy that appear among views, we
propose to characterize the foreground object by defining a 3D spa-
tial probabilistic model. This model will gather all the information
of the object under analysis, thus increasing the robustness of the
multi-view segmentation process.

Since the foreground objects that appear in scene are con-
stantly moving and changing along the sequence, we propose the
3D SCGMM at region based level to model the spatial (XY Z) and
color (RG B) domains of the 3D object volume

Therefore, at each time ¢ of the multi-view sequence, our objec-
tive is to obtain an updated model parameter set:
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that maximizes the foreground volume (V;) data likelihood:

Ov, = arg max H [P(vi|Ov,)],

t v, €Vy
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where w is the Gaussians weight component, p is the mean, > de-
notes the variance, v; € R® is the input feature vector for voxel ¢ in
the v = (RGB, XY Z) domain and P(v;|0y,) is the likelihood of
voxel ¢ formulated as follows:
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where K3p is the total number of Gaussians that belong to the fore-
ground 3D SCGMM model and Gy, (vi, ftk, L) denotes the pdf of
the k-th Gaussian formulated as:
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where iy, € RE is the mean of the 3D Gaussian and X, € R6*®
denotes its Covariance matrix.

The 3D SCGMM presents a non-flexible 3D modeling, thanks
to the free movement that the 3D Gaussians present, thus adapting
well to the real shape of the object without having any movement
restrictions.

2.1. Initialization

An initial segmentation of the foreground object in each view is re-
quired in order to achieve its first 3D reconstruction. In order to
achieve it, we use the planar foreground segmentation system pro-
posed in [6] in each one of the views. Once the foreground object
has been initialized and segmented in all the views, we use conser-
vative Visual Hull reconstruction with tolerance 7 = 1, in order to
achieve the voxelized 3D volume. This volume is colorized assign-
ing to each voxel belonging to the surface of the volume, the color
of the 2D pixels correspondent to the voxel projection.

Given this initial colored volumetric reconstruction, the fore-
ground model parameter estimation can be reached via Bayes’ devel-
opment with the EM algorithm ([2]) in the (RG B, XY Z) domains.
For this aim, we use only the surface voxels of the volume, since
they are the only ones with useful information for the multi-view
segmentation analysis, and thus, this will speed up the process.

We estimate how many Gaussians are needed for correctly mod-
eling the object analogously to the proposal presented in [6], i.e. by
analyzing the color histogram for this purpose.

After the initialization of the 3D SCGMM, next frames of the se-
quence will be processed by projecting this 3D foreground model to
each one of the views. Hence, in frame ¢, we will use the projection
of the model obtained from ¢t — 1, to carry out the 2D planar detection
in each view. These planar foreground masks will make possible to
achieve the 3D SfS reconstruction for frame ¢, which will be used,
in turn, to update the 3D SCGMM before analyzing the next frame
of the sequence.

2.2. Updating

The foreground objects perform some displacements and rotations
along the scene that makes necessary the model updating at each
frame. Since the probabilistic model works in the 3D (XY Z) do-
main, and the color of the object is correctly modeled from the ini-
tialization in the overall volume, only spatial updating is the neces-
sary along the frames. We propose to update the components of the
3D Gaussian Mixture in the spatial domain, for frame ¢, in a two-
steps updating, by using the 3D volumetric reconstruction obtained
in the previous step.

2.2.1. Spatial Domain Updating

We use the color and spatial information of the voxels classified as
foreground to update only the spatial components of the Gaussian
Mixtures. Similarly to the initialization step, we will work with the
surface voxels of the 3D volume. Hence, we assign each voxel to the
Gaussian k that maximizes:
P(vilbvi, k)
P(k|vs, 0v,) S P00y, )

where P(v;|0v,) is the likelihood of the foreground model for the
voxel i (defined in Equation 2), and P(v;|fg, k) is the likelihood

given by the Gaussian k. Once each voxel has been assigned to a
Gaussian, the spatial mean and covariance matrix of each one are

P(vilbvi, k)
P(vilfv,)
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Fig. 1. Example of neighborhood and connectivity between Gaussians that
belong to the 3D foreground model. In blue color, the overlapped volume
regions between the ellipsoid a under analysis, and the neighbor Gaussians.

updated with the spatial mean and variances of the surface voxels
that each one is modeling.

Regularization of the Gaussians displacements:

Once each Gaussian has been spatially updated, we regularize
the displacements that each one suffers in the 3D space by using the
information obtained from the neighbor Gaussians, thus achieving
a more homogeneous spatial evolution of the 3D SCGMM. Hence,
given the foreground parameter set 6y, , before the spatial updat-
ing, and the parameter set after the updating: 0y, , we calculate the
spatial displacements ds—z,y,» = (dg, dy, d) of the Gaussian k by
computing: ds,x = (s k,t — fs,k,t—1)-

We define this neighborhood according to the connectivity that
each one presents in the surface of the volume with respect to the
rest of the Gaussians. If we establish the 3D spatial representa-
tion of each Gaussian, as an ellipsoid whose axis (¢) are defined by
the three eigenvalues of its spatial covariance matrix (A1, A2, A3) as:
€; = 2v/\, then two Gaussians will be connected if both present
an overlapped region of their spatial ellipsoids (formulated in Carte-
sian coordinates as: (x_e”X)Z + (y_:”y>2 + (2_6”2)2 = 1). Figure
1 shows an example of this connectileity where the Gaussian under
analysis presents some overlapped regions with the rest of the Gaus-
sians.

Hence, we propose a convolution between the set of displace-
ments that the Gaussians suffer in the spatial updating ds, and a
Gaussian kernel (GK), thus smoothing the spatial evolution of the
foreground Gaussians along the sequence obtaining the set of dis-
placement vectors ds.

Ny
dsyk = Z GK(i1,i2,i3) ~d(x+i1,y+i2,z+i3), (®)]

11,12,13

where N, is the neighborhood utilized in the Gaussian &
smoothness. Hence, we maintain the consistency of the foreground
model, in order to give robustness to the overall system.

Also, in order to achieve a better adaptation of the model into the
silhouette of the object, we apply a Gaussian split criterion presented
in [6], according to the spatial size of the Gaussian. Gaussians with
big area are split into two smaller Gaussians in the direction of the
eigenvector associated to the largest eigenvalue ()\max).

3. PROJECTING 3D FOREGROUND MODEL TO 2D

The 3D foreground model gathers all the information of the fore-
ground object that we want to segment and reconstruct. In order
to use it for 2D foreground segmentation in each view, we need to
project the 3D Gaussians to each one of the cameras according to the

visibility that the surface voxels present from every view. Hence, a
R® — R? projection is proposed in each camera sensor C;:

First, a visibility test of the surface voxels is performed for each
one the views. We consider only the foreground voxels that are vis-
ible from camera C'; thus rejecting all those foreground voxels that
appear occluded by the visible ones. The visibility test consists in
obtaining the distance from the sensors to each one of the foreground
voxels, thus obtaining the minimum distance d,,:» in each projec-
tion line corresponding to the closer voxel to the camera. Applying
this to each one of the camera sensors, we obtain the bag of visible
voxels v for each view: 17 .

Next, we assign each voxel v; € v to the 3D Gaussian k that
maximizes the Equation (4), thus obtaining the group of Gaussians
that model visible voxels from each one of the views (€.

Therefore, for each one of the views C';, we project the visible
Gaussians belonging to ¢ according to the projection matrices and
focal length that each camera sensor presents. These Gaussians will
be used in the 2D planar foreground segmentation for each camera
according to [6].

4. RESULTS

We have evaluated our proposal by analyzing four multi-view se-
quences, of the database presented in [9], which present strong dif-
ficulties to achieve a correct 3D reconstruction due to the similarity
between some foreground regions and the background. These se-
quences have been recorded with different acquisition setups in or-
der to better analyze the effect of the errors tolerance in the volumet-
ric reconstruction: These four sequences recorded with 18 cameras
(Open arms), 16 cameras (baton and karate) and 8 cameras (dancer).
One representative view of the overall multi-view sequence has been
selected in each case. In these tests we want to evaluate the via-
bility of the 3D SCGMM to represent the foreground object in the
3-dimensional space, and the subsequent 2-dimensional foreground
segmentations that take place in each view by means of the 3D model
projection to the 2D images. Hence, we will show in this section
qualitative and quantitative results of the current proposal.

For each one of the sequences, the proposed system has been
applied in order to obtain the 3D SCGMM of the objects under anal-
ysis. The number of Gaussians used in order to form the foreground
model in each sequence is closed to 100. Figure 2 displays the 3D
spatial representation of the models created in each one of the se-
quences. We can observe how the combination of each one of the el-
lipsoids that represents each spatial Gaussian adapts well to the real
shape of the objects achieving a complete 3D characterization. Anal-
ogously to the 2D SCGMM, the number of Gaussians of the model
determines the precision of the modeling: the higher the number of
Gaussians of the model, the better the definition of the 3D SCGMM,
but the computational cost will increase proportionally. In this evalu-
ation, around one hundred Gaussians have been used for each model
in order to achieve a correct characterization of the foreground ob-
ject.

Qualitative results are displayed in Figure 3 for the dancer se-
quence, where four frames. In second column we can observe the
projection of the 3D SCGMM to the view under analysis. Here, the
Gaussians of the 3D model are projected to the view only if they
model any of the visible voxels obtained for each camera v“7. Each
Gaussian is drawn with the mean RG B color that each one is mod-
eling, and we can observe how the 2D spatial-color representation
adjust correctly to the real shape of the object.

In the third column we can see the 2D foreground segmenta-
tion obtained by using the 3D probabilistic model(depicted in sec-



Fig. 2. Resultant foreground 3D SCGMM. Each ellipsoid represents one
Gaussian of the foreground model projected to one 2D view.

ond column) in the Bayesian MAP-MRF foreground segmentation
explained in [6]. This segmentation achieves correct results also in
those regions where foreground and background present camouflage
situations. The robustness added by the 3D modeling avoids inde-
pendent 2D errors to be propagated in consecutive frames.

Fourth column shows the 3D volumetric reconstruction with
Tolerance to errors 7 = 1, computed with all the 2D silhouettes of
the multi-view sequence and projected to the views under analysis.
We can observe that the final reconstruction presents correct results
since we reduce the percentage of errors in the 2D silhouettes. In
order to depict the color modeling that the foreground 3D SCGMM
is applying to the 3D object, fifth column shows the volumetric
reconstruction of the object where each foreground voxel is colored
with the RG B color of the Gaussian that better represents it, accord-
ing to the Equation 4. Hence, we can realize that the 3D SCGMM
achieves a correct color-spatial representation of the object along
the sequence.

Quantitative results are displayed in Table 1, where the Preci-
sion, Recall and fmeasure results of the frames compared with the
ground truth are displayed for each one of these sequences. We can
see how the overall results are very similar to the ones obtained by
means of method Bayes+sh.rem., since, when the models are cor-
rectly initialized, both approaches present similar features. Note that
only strong false negative errors in the 3D volumetric reconstruction
could lead to errors in the 3D probabilistic modeling, which could
propagate the errors to next frames of the sequence, thus producing
a degeneration of the 3D SCGMM. More qualitative and quantitative
results will be accessible in our web page

Regarding the computational cost, considering a foreground
model with no more than 100 Gaussians, we approximate a compu-
tational cost of 0.08 frames/second, analyzing a standard sequence
with 18 cameras, and using an Intel Core2 Duo 3GHz processor
and 20 GB RAM. Since the system proposed performs several time
consuming computations at pixel-wise level, like for instance the
computation of the likelihoods for each one of the models over every
pixel, this computational cost can be improved by developing more

'http://www. jaimegallego.com.es/icip2014_3Dmodel

(a) Dancer sequence. 8 cameras.

Fig. 3. Qualitative results. In the first column, the original frames. Sec-
ond column shows the 3D SCGMM projection to the view under analysis,
where each ellipse represents one Gaussian of the model with the mean color
that each one is modeling. Third column is the 2D foreground segmentation
obtained by means of the model depicted in second column. Fourth column
displays the 3D reconstruction projected to the view under analysis, obtained
by means of the foreground segmentation of each view. Fifth column is the
3D reconstruction where each voxel is colored with the mean RGB color
value of the 3D Gaussian that better represents the voxel (according to Equa-
tion 4).

efficient algorithms which could work over GPU in a parallel way
on these parts of the algorithm.

Table 1. Quantitative results

Sequences Method Precision Recall feasure
Stick 3D SCGMM 0,98 0.97 0.98
Bayes+sh.rem. 0,97 0.94 0.96
Dancer 3D SCGMM 0.96 0.96 0.96
Bayes+sh.rem. 0.94 0.97 0.95
Karate 3D SCGMM 0.97 0.97 0.97
Bayes+sh.rem. 0.98 0.98 0.98
Open arms 3D SCGMM 0.92 0.97 0.95
Bayes+sh.rem. 0.95 0.95 0.95

5. CONCLUSIONS

We have presented in this paper a foreground segmentation system
for multi-view smart-room scenarios that uses a parametric non-
rigid probabilistic model to characterize the object under analysis
in the 3D space. This new technique develops a multi-view fore-
ground segmentation system, which combines the information ob-
tained from each one of the views to define the 3D SCGMM for
the 3D volumetric representation of the object under analysis. This
probabilistic modeling of the object achieves a robust representation
of the foreground object, which is projected to each view to perform
a Bayesian foreground segmentation [6]. This system achieves cor-
rect results, by reducing the false positive and false negative errors in
sequences where some camera sensors can present camouflage situa-
tions between foreground and background. Finally, we would like to
introduce the possibilities that this model could represent in objects
recognition or human activity understanding.
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