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ABSTRACT

This paper deals with Shape from Silhouette (SfS) volumetric recon-
struction in the context of multi-view smart room scenarios. The
method that we propose first computes a 2D foreground object seg-
mentation in each one of the views, by using region-based models to
model the foreground, and shadow classes, and a pixel-wise model
to model the background class. Next, we calculate the reliability
maps between foreground and background/shadow classes in each
view, by computing the hellinger distance among models. These 2D
reliability maps are taken into account finally, in the 3D SfS recon-
struction algorithm, to obtain an enhanced final volumetric recon-
struction. The advantages of our system rely on the possibility to
obtain a volumetric representation which automatically defines the
optimal tolerance to errors for each one of the voxels of the vol-
ume, with a low rate of false positive and false negative errors. The
results obtained by using our proposal improve the traditional SfS
reconstruction computed with a fixed tolerance for the overall vol-
ume.

Index Terms— 3D reconstruction, Shape from Silhouette,
Multi-view foreground segmentation, reliability maps, SCGMM,
region models.

1. INTRODUCTION

3D reconstruction from multiple calibrated planar images is a major
challenge in the image processing area in order to obtain a realistic
volumetric representation of the objects and people under study. In
this field, Shape from Silhouette (SfS) gather all the techniques to re-
construct the 3D structure from a set of segmentation masks obtained
from multi-view smart-room scenarios. Many of the SfS proposals
are based on the Visual Hull concept presented by [11] and based on
the 3D geometric modeling, first introduced by [2].

Since the Visual Hull is based on the intersection of the rays
that 2D foreground points in each view define in 3D space, these
methods are highly dependent on the quality and consistency of the
silhouettes obtained in each one of the views since a miss in a view
propagates this error into the 3D volume reconstruction.

The most common errors appear due to the presence of shad-
ows and camouflage situations between foreground and background
regions. Therefore, there is a clear dependency of the 3D recon-
struction with respect to the foreground segmentation, which makes
foreground segmentation central to the problem of obtaining a cor-
rect volumetric reconstruction.

In this paper we focus on multi-view smart-room sequences
recorded by means of C' = {C4,...C},...Cu} static color cam-
eras used for a posterior 3D reconstruction. Our objective is to
establish a more complete communication between the foreground
segmentation process and the 3D reconstruction in order to obtain
an enhanced object volume.

1.1. Previous work

For several years, many authors have been working in 3D recon-
struction techniques that deal with the inconsistency of the silhou-
ettes proposing SfS techniques with enhanced robustness. In these
proposals, consistency tests between views and further processing
is applied in order to overcome the limitations in the silhouette ex-
traction. [1] uses techniques based on minimization of energy func-
tions based on the local neighborhood structures of 3D elements and
smoothing factors. Algorithms based on graph cuts allow to obtain
a global minimum of the defined energy function ([9]) with compu-
tational efficiency. [6] proposed the Space occupancy grids where
each pixel is considered as an occupancy sensor, and the visual hull
computation is formulated as a problem of fusion of sensors with
Bayesian networks. [10] worked with the Shape from Inconsistent
Silhouette by combining the probabilities of each one of the pixels,
while [5] proposed a SfS using Dempster-Shafer theory, which takes
into account the positional relationships between camera pairs and
voxels to determine the degree in which a voxel belongs to a fore-
ground object.

Although these techniques increase the computational cost, the
results obtained overcome the simple systems that consider the fore-
ground segmentation and the 3D reconstruction as separated steps.

1.2. Proposed method

In this paper, we propose a SfS system that improves the robust-
ness of the final object volume by including the information obtained
from the reliability maps of each one of the views, in the volumetric
reconstruction. The proposed system is based on three main pro-
cesses that are applied for each one of the frames of the sequence
under analysis:

Foreground segmentation: We use a Bayesian region-based
foreground segmentation method (based on [7]) for each one of
the views, which combines pixel-wise background model with
region-based foreground and shadow models. The advantages of
the probabilistic modeling is two-fold: it improves the foreground
detection of the objects, thanks to a precise modeling of each class,
and, moreover, it allows us to compute the reliability map of each
view by comparing the probabilistic models.

Reliability maps: For each pixel of the 2D views, we compute
the Hellinger distance [3] between the foreground model and the
background and shadow models. This distance will give us a [0, 1]
bounded value which will be used as an indicator of how reliable the
foreground segmentation has been in each one of the views. If we
assume a correct modeling for each one of the classes, the similarity
between class models gives us information about the reliability of the
segmentation obtained: pixels under camouflage or shadow situation
between classes will result in small distances.

3D volume reconstruction: After computing the foreground seg-
mentation and its reliability for each one of the views, we compute



the Visual Hull reconstruction, but using only the pixels of each view
that present enough reliability to be taken into account in the pro-
cess. i.e, working only with those pixels where foreground model
is separated in the color domain from the background and shadow
models, thus dealing with inconsistent silhouettes obtained under
foreground-background camouflage situations or shadow effects.

Our system allows us a reconstruction which automatically de-
termines the optimal tolerance to errors for each one of the voxels
of the volume in order to obtain a robust 3D volume of the object,
improving the traditional SfS reconstruction obtained by defining a
fixed tolerance for the overall volume.

The remainder of the paper is organized as follows: Section 2
explains the multi-view foreground segmentation method utilized in
each view. Section 3 is devoted to the reliability maps obtained from
computing the Hellinger distance between classes, while Section 4
describes the reliable 3D reconstruction. Finally, Section 5 and Sec-
tion 6 focus on the results and conclusions respectively.

2. MULTI-VIEW FOREGROUND SEGMENTATION

Specific probabilistic models are used to represent the foreground
and background classes for each one of the camera views C;. Analo-
gously to [7], we use one pixel-wise Gaussian model in the color do-
main for the background, and two region based models for the fore-
ground and shadow classes: Spatial-Color Gaussian Mixture Model
(SCGMM) and Spatial-Color Gaussian Model (SCGM) respectively.
The color domain used in the formulation is denoted as ¢ = (r, g, b),
while the spatial domain is denoted as s = (z, y). The combination
of both color and space domains are defined as the joint domain-
range representation z = (r, g, b, z, y).

2.1. Background model

The background (bg) model consists of one Gaussian per pixel in the
RGB domain. The likelihood of the model is:

N
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2; € R® is the i-th pixel value (i = 1,...,N), p-x € R? is the
Gaussian mean, 3, , € R5*® is the covariance matrix, s; € R?
is the spatial pixel’s coordinate, ¢; € R? is the pixel’s color value,
s,k is the spatial mean of the k-th Gaussian and P(c;|bg) is the
likelihood of each color pixel-wise Gaussian [13]:
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where ficr € R? is the color mean of the Gaussian k and Yek €
R3*3 its covariance matrix.

Therefore, we use N color Gaussians, each one centered (in
space) at each pixel position (u,s) with a zero spatial variance. The
initialization of the model is done using training frames, and the up-
dating according to low pass equations for the mean and the variance
[13].

2.2. Shadow model

We use the Spatial Color Gaussian Model (SCGM) to model the
shadow (sh) regions that the object under analysis generates in the
scene. The likelihood of the model is:
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The initialization of the model is done by analyzing the pixels that
accomplish the Color Distortion and Brightness Distortion condi-
tions given in [14]. In each frame, spatial and color mean and vari-
ance are updated with the detected shadow pixels.

2.3. Foreground model

In order to achieve a correct and precise foreground (fg) modeling
in each one of the views, we use the Spatial Color Gaussian Mixture
Models (SCGMM). Therefore, for each 2D view, the likelihood of
pixel ¢ will be:
Ky
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where K, is the number of Gaussians that forms the foreground
model and wy, is the weighting coefficient.

2.4. Bayesian Foreground/Background classification

A pixel ¢ is assigned to the class | € {fg, bg, sh} that maximizes

Analogously to [7, 15, 12], we consider a MAP-MRF framework
in order to take into account neighborhood information that can be
solved using standard graph-cut algorithm [4].

3. RELIABILITY MAPS

In order to get the reliability maps of each camera view: 7%7, we
propose to analyze the foreground similarity with background and
shadow classes for each one of the camera sensors, assuming that:

-High similarity implies that both classes are modeling the same
space in a camouflage situation, and thus, the decision is not reliable.

-Low similarity implies classes separated enough to achieve a
correct decision.

Hence, for each one of the image pixels z; € I, in each view
C;, we propose to compute the Hellinger distance ([3]), in the color
¢ = (r, g, b) domain to detect the degree of similarity between fore-
ground and I’ € {bg, sh} models that each one of the cameras

presents:
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where 0 < H(qu”i7 ql,jl.) < 1, ¢, and ql,fi are the p.d.f.’s that
model the i-th pixel for the foreground and I’ classes respectively in
the camera view C;. BC is the Bhattacharyya Coefficient, which is
formulated, for a multivariate Gaussian distribution, as follows:
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where 0 < BC < 1, &, JZ. and El, . are the covariance matrices
of the models assoc1ated to the i-th plxel for the C -view of the

foreground and I’ € {bg,sh} classes respectlvely Mrg . and ,ul, , are

C
the mean vectors of each class, and X G _ I ’+E
Note that H (gre, ¢v) = 0 means that foreground and " models
are equal, and thus, strong camouflage situation is present in this
pixel, and otherwise H (g, q;/) = 1 implies that both models are
completely different and there is not similarity between them.
Since the foreground classes are modeled by means of SCG-
MM, ¢, i will be chosen according to the Gaussian k that maxi-
mizes the probablhty of the ¢-th pixel under analysis for each view:
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In the case of the background, since we have defined a pixel-wise
model, qifi will be directly obtained from the background Gaus-

sians associated to this pixel. For the shadow class, qg%l is the SCGM
used to model the shadow projected by the person. The foreground-
shadow reliability will be utilized only over the spatial region mod-
eled by the shadow Gaussian, since it is the only region affected by
the shadow effects.

Therefore, for each one of the pixels of C;, we will obtain the

final reliability value 'y
bg and fg-sh models:
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where the most restrictive distance between fg-bg and fg-sh is cho-
sen in the regions belonging to the spatial shadow model, and the
distance between fg-bg in the rest of the image.

4. ROBUST 3D RECONSTRUCTION

The concept of Visual Hull (VH) is strongly linked to the one of
silhouettes consistency. Total consistency hardly ever happens in re-
alistic scenarios due to inaccurate calibration or wrong silhouettes
caused by errors during the 2D foreground detection process. Be-
cause of that, some SfS methods have been designed in the past as-
suming that the silhouettes can not be consistent, thus adding a tol-
erance to error (7) in the number of views necessary to consider a
voxel as occupied. Hence, adding error tolerance to the 3D recon-
struction, the estimate of the visual hull is conservative in the sense
of assuming that 7 foreground under-segmentation errors can occur.
This approach will lead to reduce the number of false negative errors
although losing precision in the final reconstructed volume.

We propose a SfS reconstruction method based on the silhouette
reliability principle. Our system validates the regions in the silhou-
ettes which are reliable and uses only these regions of each view to
compute the robust Visual Hull of the object, thus dealing with 2D
errors.

The robust shape from silhouette algorithm that we propose is
shown in Algorithm 1, where the projection test (PT) consists in
testing the central pixel within the splat of the voxel in camera C'j.
Once the projection Test has been carried out, we can use the voxel-
pixels correspondence to check the reliability that each one of the
pixels present. The Reliability Test (RT) checks for the pixel that

Algorithm 1 Reliable Shape from Silhouette algorithm

: Silhouettes: S(c), Reliability Test: RT(voxel, camera),
Projection Test: PT (voxel, silhouette)

1: for all voxel do

2 voxel <— Foreground

3: for all cameras do

4 if PT (voxel, S(c)) is false and RT(voxel, camera) > R

Require:

then
5 voxel <— Background
6: end if
7 end for
8: end for

appear in the voxel’s projection in each view C);, the reliability value

Cj
Vi
We define the Reliability threshold Ry, as a value 0 < Ry < 1
which will determine the minimum reliability value to consider the
pixels in the final reconstruction process. In our experiments, we
have tested that a reliability factor R;;, = 0.7 yields correct results
in the final reconstruction process.

This 3D reconstruction is equivalent to define an optimal error
tolerance value 7 for each one of the voxels of the image, improving
the precision of the volume in those regions where no tolerance is
necessary, while reducing the false negative errors.

5. RESULTS

We have evaluated our proposal by analyzing four multi-view se-
quences, of the database presented in [8], which present strong dif-
ficulties to achieve a correct 3D reconstruction due to the similarity
between some foreground regions and the background. These se-
quences have been recorded with different acquisition setups in order
to better analyze the effect of the errors tolerance in the volumetric
reconstruction:

Figure 1 displays the results obtained in these four sequences
recorded with 18 cameras (first row), 16 cameras (second and fourth
rows) and 8 cameras (third row). One representative view of the
overall multi-view sequence has been selected in each case.

The qualitative evaluation is done comparing the volumetric re-
construction results with the ones obtained by using the Visual Hull
reconstruction with different tolerance to errors (7). The segmen-
tation masks used in all these reconstructions are the ones obtained
with the 2D segmentation exposed in Section 2. These segmentation
results are displayed in the second column. As we can observe, the
resultant foreground segmentation presents a low ratio of false posi-
tive and false negative detections although some false negative errors
are present in some of the views, due to the foreground-background
camouflage problem and the presence of shadows.

In the third column we can see the spatial representation of the
projected foreground model. Each ellipse represents one Gaussian
of the foreground model, and are colored with the mean color that
each distribution is modeling.

From fourth to sixth column, we can observe the different 3D
volumes that we can obtain using the Visual Hull reconstruction with
different tolerance to errors. When we do not use any tolerance to
errors (7 = 0) (Fourth column), any false negative error that ap-
pears in the 2D segmentation is propagated to the final 3D volume,
thus generating critical false negative errors in the resultant recon-
struction. When using tolerance to errors in fifth and sixth column,
we reduce significantly the propagation of the false negative errors to
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Fig. 1. Foreground segmentation and 3D volume reconstruction results. From left to right: original view; Bayesian foreground segmentation
proposed in the paper: Color ellipses correspond to the Gaussians of the foreground model, white ellipse corresponds to the spatial repre-
sentation of the shadow model; Foreground model colorized with the mean color that are modeling; the projected volume computed with
tolerance 7 = 0; volume with 7 = 1; volume with 7 = 2; Robust 3D reconstruction using our method.

the 3D space, although losing precision in the volumetric reconstruc-
tion, thus obtaining a coarse representation of the object. Our system
(seventh column) achieves a 3D reconstruction that only applies the
tolerance to errors in those pixels where the reliability between fore-
ground and background and shadow classes is low, thus reducing the
propagation of those errors to the 3D space. As we can see, our sys-
tem achieves an object reconstruction that presents similar precision
than the Visual Hull reconstruction without tolerance (7 = 0), but
solving the false negative errors.

Finally, quantitative results of these sequences are displayed in
Figure 2, where we use the projection of the volume to a 2D view in
order to compute the fmeasure. We compute this metric over equally
distributed frames on parts of the sequences that present special dif-
ficulty due to the foreground-background similarity. As we can see,
our proposal (in red color), achieves a volumetric reconstruction that
adapts better to the circumstances of the sequence under analysis
than the reconstructions with fixed tolerance. Our method maintains
a high fieasure Value for the sequences under study, maintaining the
precision of the volumetric reconstruction while reducing the false
negative detections. More qualitative and quantitative results will be
accessible in our web page !. The computational cost of our sys-
tem is 0.1 frames/second analyzing a standard sequence and using
an Intel Core2 Duo 3GHz processor and 20 GB RAM.

6. CONCLUSIONS

We have introduced in this paper a novel multi-view segmentation
and 3D reconstruction system. To this end, we have proposed a ro-
bust Visual Hull reconstruction that uses the reliability of the pix-
els to avoid those views where the pixels detected as background,
present high similarity between foreground, background and shad-
ows models. Although the system is highly dependent on the fore-
ground segmentation model and how it represents the foreground
object in each one of the views, our approach achieves better accu-
racy of the reconstructed volume while reducing the critical misses

"http://wuw. jaimegallego.com.es/icip2014_
hellinger_3d

that appear in a direct 3D reconstruction with 7 = 0, and reduc-
ing the false positive regions that appear if we decide to use a direct
7 = 1 or 7 = 2 reconstruction.
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